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Class 25. Kähler manifolds and projective manifolds

At this point, a few words about the nature of projective manifolds are probably
in order. Most compact Kähler manifolds are not projective, and the subset of those
that are is quite small. To see why this should be, let us consider the space H1,1

R ,
the intersection of H1,1 and H2(M, R) inside H2(M, C). It consists of those real
cohomology classes that can be represented by a closed form of type (1, 1). We say
that a class ↵ 2 H1,1

R is a Kähler class if it can be represented by a closed positive
(1, 1)-form. The set of all such forms is a cone (since it is closed under addition,
and under multiplication by positive real numbers), the so-called Kähler cone of
the manifold M . Since positivity is an open condition (by the argument we used
in the proof of Corollary 24.3), the Kähler cone is an open subset of H1,1

R . Now in
order for M to be projective, the Kähler cone has to contain at least one nonzero
rational class. But the space H2(M, Q) ✓ H2(M, R) of all rational classes is a
countable subset, and in general, it is unlikely that the Kähler cone will intersect
it nontrivially.

Example 25.1. Consider again the case of K3-surfaces, that is, compact Kähler
surfaces whose Hodge diamond looks like

C
0 0

C C20 C
0 0

C
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(The precise definition is that a K3 surface is a simply connected compact Kähler
surface whose canonical line bundle is trivial.) When discussing Gri�th’s theorem,
we saw that nonsingular quartic hypersurfaces in P3 are K3-surfaces. The space of
homogeneous polynomials of degree 4 has dimension

�4+3
3

�
= 35, and so nonsingular

quartic hypersurfaces are naturally parametrized by an open subset in P34. On the
other hand, the automorphism group of P3 has dimension 15, and if we take its
action into account, we find that this particular class of K3-surfaces forms a 19-
dimensional family.

In the theory of deformations of complex manifolds, it is shown that there is a
20-dimensional manifold P that parametrizes all possible K3-surfaces (20 being the
dimension of H1,1). Now what about projective K3-surfaces? They form a dense
subset of P , consisting of countably many analytic subsets of dimension 19. So,
just as in the case of those K3-surfaces that can be realized as quartic surfaces in
P3, projective K3-surfaces always come in 19-dimensional families; but altogether,
they are still a relatively sparse subset of the space of all K3-surfaces.

Why are the subsets corresponding to projective K3-surfaces all of dimension
19? The answer has to do with the Hodge decomposition on H2(M, C). Let us
fix some projective K3-surface M0, and consider those M that are close to M0 on
the moduli space P . It is possible to identify the cohomology group H2(M, Z)
with H2(M0, Z), and hence H2(M, C) with H2(M0, C). We can then think of the
Hodge decomposition on H2(M, C) as giving us a decomposition of the fixed 22-
dimensional vector space H2(M0, C) into subspaces of dimension 1, 20, and 1. (This
is an example of a so-called variation of Hodge structure.)
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M0 being projective, there exists !0 2 H2(M0, Z) whose class in H2(M0, C) is
represented by a closed positive (1, 1)-form. Through the isomorphism H2(M, Z) '

H2(M0, Z), we get a class !M 2 H2(M, Z) on every nearby K3-surface M . If M is
to remain projective, then this class should still be of type (1, 1), which means that
its image in H0,2(M) should be zero. Since dim H0,2(M) = 1, this is one condition,
and so the set of M where !M 2 H1,1(M) will be a hypersurface in P (positivity
is automatic if M is close to M0).

A complex torus without geometry. To illustrate how far a general compact
Kähler manifold is from being projective, we shall now look at an example of a
2-dimensional complex torus T in which the only analytic subsets are points and
T itself. In contrast to this, a submanifold of projective space always has a very
rich geometry, since there are many analytic subsets obtained by intersecting with
various linear subspaces of projective space. The torus T in the example (due to
Steven Zucker) can therefore not be embedded into projective space.

Let V = C�C, with coordinates (z, w), and let J : V ! V be the complex-linear
mapping defined by J(z, w) = (iz, �iw). Let ⇤ ✓ V be a lattice with the property
that J(⇤) = ⇤, and form the 2-dimensional complex torus T = V/⇤. Then J
induces an automorphism of T , and we refer to T as a J-torus. Any lattice of this
type can be described by a basis of the form v1, v2, Jv1, Jv2, and is thus given by
a 2 ⇥ 4-matrix ✓

a b ia ib
c d �ic �id

◆

with complex entries. Here a, b, c, d 2 C need to be chosen such that the four
column vectors of the matrix are linearly independent over R, but are otherwise
arbitrary. In this way, we have a whole four-dimensional family of J-tori. We shall
assume in addition that ad̄ � bc̄ 6= 0.

Lemma 25.2. If we let f = ad̄ � bc̄, then both the real and the imaginary part of
✓ = f�1dz ^ dw̄ are closed (1, 1)-forms with integral cohomology class.

Proof. Both the real and the imaginary part of ✓ are closed forms of type (1, 1),
because Re ✓ = 1

2 (✓ + ✓) and Im ✓ = 1
2i

(✓ � ✓). As explained before, we have
⇤ = H1(T, Z), and so to show that a closed form defines an integral cohomology
class, it su�ces to evaluate it on vectors in ⇤. If we substitute (u1, v1) and (u2, v2)
into the form dz ^ dw̄, we obtain u1v2 � u2v1. The 16 evaluations of dz ^ dw̄ can
thus be summarized by the matrix computation
0

BB@

�c̄ a
�d̄ b
�ic̄ ia
�id̄ ib

1

CCA

✓
a b ia ib
c̄ d̄ ic̄ id̄

◆
=

0

BB@

0 ad̄ � bc̄ 0 i(ad̄ � bc̄)
bc̄ � ad̄ 0 i(bc̄ � ad̄) 0

0 i(ad̄ � bc̄) 0 bc̄ � ad̄
i(bc̄ � ad̄) 0 ad̄ � bc̄ 0

1

CCA ,

which proves that all values of ✓ on ⇤ ⇥ ⇤ are contained in the set {0, ±1, ±i}. ⇤

Now let ↵ = Re ✓ and � = Im ✓; both are closed (1, 1)-forms with integral coho-
mology class. Our next goal is to show that, for a generic lattice ⇤ (corresponding
to a generic choice of a, b, c, d 2 C), these are the only cohomology classes that are
both integral and of type (1, 1).

Lemma 25.3. If the lattice ⇤ is generic, then H2(T, Z) \ H1,1(T ) = Z↵ � Z�.
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Proof. Let e1, e2, e3, e4 be the four basis vectors of ⇤, and let e⇤
1, e

⇤
2, e

⇤
3, e

⇤
4 2 H1(T, Z)

be the dual basis. According to the calculation above, we then have

↵ = e⇤
1 ^ e⇤

2 � e⇤
3 ^ e⇤

4 and � = e⇤
1 ^ e⇤

4 � e⇤
2 ^ e⇤

3.

We can now write any element in H2(T, Z) in the form

' =
X

1j<k4

uj,ke⇤
j

^ e⇤
k
,

where the six coe�cients uj,k are integers. In order for this form to be of type
(1, 1), what has to happen is that dz ^ dw ^ ' = 0. For every choice of integers
uj,k, this is a polynomial equation in the four complex numbers a, b, c, d.

What are those equations? By a computation similar to the above, one has
0

BB@

�c a
�d b
ic ia
id ib

1

CCA

✓
a b ia ib
c d �ic �id

◆
=

0

BB@

0 ad � bc �2iac �i(ad + bc)
bc � ad 0 �i(ad + bc) �2ibd
2iac i(ad + bc) 0 ad � bc

i(ad + bc) 2ibd bc � ad 0

1

CCA ,

from which it follows that

dz^dw = (ad�bc)(e⇤
1^e⇤

2+e⇤
3^e⇤

4)�i(ad+bc)(e⇤
1^e⇤

4+e⇤
2^e⇤

3)�2iace⇤
1^e⇤

3�2ibde⇤
2^e⇤

4.

After simplifying the resulting formulas, we find that dz^dw^' = Ce⇤
1^e⇤

2^e⇤
3^e⇤

4,
where the coe�cient is given by

C = (ad � bc)(u3,4 + u1,2) � i(ad + bc)(u2,3 + u1,4) + 2iacu2,4 + 2ibdu1,3.

To complete the proof, we have to show that for a general choice of (a, b, c, d) 2 C4,
the equation C = 0 can only be satisfied if ' is a linear combination of ↵ and �.

By subtracting suitable multiples of ↵ and �, we may assume that u3,4 = u2,3 =
0. We are then left with the equation

(ad � bc)u1,2 � i(ad + bc)u1,4 + 2iacu2,4 + 2ibdu1,3 = 0.

If we now set a = xb and c = yd, and choose x, y 2 C algebraically independent
over Q, we arrive at

(x � y)u1,2 � i(x + y)u1,4 + 2ixyu2,4 + 2iu1,3,

which clearly has no nontrivial solution in integers u1,2, u1,4, u2,4, u1,3. This proves
that each of the polynomial equations above defines a proper analytic subset of
C4, and consequently of measure zero. We have countably many of these sets
(parametrized by the choice of uj,k), and it follows that the set of parameters
(a, b, c, d) 2 C4 for which the corresponding J-torus satisfies H1,1(T ) \ H2(T, Z) 6=
Z↵ � Z� has measure zero. ⇤

From now on, we let T be a generic J-torus in the sense of Lemma 25.3. Recall
that J defines an automorphism of T . It is easy to see that we have J⇤✓ = f�1(idz)^
(idw̄) = �✓, and hence J⇤↵ = �↵ and J⇤� = ��. Since T is generic, we conclude
that J⇤' = �' for every class ' 2 H2(T, Z) \ H1,1(T ).

Lemma 25.4. If T is a generic J-torus, then T contains no analytic subsets of
dimension one.
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Proof. We will first show that T contains no one-dimensional complex submanifolds.
Suppose to the contrary that C ✓ T was such a submanifold. Integration over C
defines a cohomology class [C] 2 H2(T, Z)\H1,1(T ), and by the calculation above,
we have [J�1C] = J⇤[C] = �[C]. This shows that [C] + [J�1C] = 0. But such an
identity is impossible on a compact Kähler manifold: letting ! be the Kähler form
of the natural Kähler metric on T , the integral

Z

T

! ^
�
[C] + [J�1C]

�
=

Z

C

!|C +

Z

J�1C

!|J�1C = vol(C) + vol(J�1C)

is the volume of the two submanifolds with respect to the induced metric, and
hence positive. This is a contradiction, and so it follows that T cannot contain any
one-dimensional submanifolds.

Similarly, if Z ✓ T is a one-dimensional analytic subset, one can show that
integration over the set of smooth points of Z (the complement of a finite set of
points) defines a cohomology class [Z] 2 H2(T, Z)\H1,1(T ), whose integral against
the Kähler form ! is positive. As before, we conclude that there cannot be such
analytic subsets in a generic J-torus T . ⇤
The Levi extension theorem. To conclude our discussion of the class of compact
Kähler manifolds that can be embedded into projective space, we will prove Chow’s
theorem: every complex submanifold of Pn is defined by polynomial equations, and
hence an algebraic variety. We will deduce this from an extension theorem for
analytic sets, known as the Levi extension theorem. First, recall a basic definition
from earlier in the semester: a closed subset Z of a complex manifold M is said to
be analytic if, for every point p 2 Z, there are locally defined holomorphic functions
f1, . . . , fr 2 OM (U) such that Z \ U = Z(f1, . . . , fr) is the common zero set.

Here is the statement of the extension theorem (first proved in this form by the
two German mathematicians Remmert and Stein).

Theorem 25.5. Let M be a connected complex manifold of dimension n, and let
Z ✓ M be an analytic subset of codimension at least k + 1. If V ✓ M \ Z is an
analytic subset of codimension k, then the closure V in M remains analytic.

Example 25.6. Recall the following special case of Hartog’s theorem: if f is a
holomorphic function on M\{p}, and if dim M � 2, then f extends to a holomorphic
function on M . In the same situation, Levi’s theorem shows that if V ✓ M \ {p} is
an analytic subset of codimension 1, then its closure V is analytic in M . The Levi
extension theorem may thus be seen as a generalization of Hartog’s theorem from
holomorphic functions to analytic sets.

We begin the proof by making several reductions. In the first place, it su�ces to
prove the statement under the additional assumption that Z ✓ M is a submanifold
of codimension � k. The general case follows from this by the following observation:
by one of the exercises, the set of singular points of Z (i.e., those points where Z
is not a submanifold of M) is contained in a proper analytic subset Z1. Similarly,
the set of singular points of Z1 is contained in a proper analytic subseteq Z2 ⇢ Z1.
Thus we have a chain Z = Z0 � Z1 � Z2 � · · · of closed analytic sets, with each
Zj \ Zj+1 a complex submanifold of codimension � k in M . Since there can be no
infinite strictly decreasing chains of analytic sets, we have Zr+1 = ; for some r 2 N.
We may now extend V successively over the submanifolds Zj \Zj+1, by first taking
the closure of V in M \ Z1, then in M \ Z2, and so on.
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In the second place, the definition of analytic sets is local, and so we only need
to show that V is analytic in a neighborhood of any of its points. We may therefore
assume in addition that M is a polydisk in Cn containing the origin, and that
0 2 Z. After a suitable change of coordinates, we can furthermore arrange that the
submanifold Z is of the form z1 = z2 = · · · = zk+1 = 0.

Thus the general case of Levi’s theorem is reduced to the following local state-
ment.

Proposition 25.7. Let D ✓ Cn be a polydisk containing the origin, and let Z =
Z(z1, . . . , zk+1). If V is an analytic subset of D \Z of codimension k, then V is an
analytic subset of D.

For simplicity, we shall only give the proof in the case k = 1 and n = 2. Exactly
the same argument works for k = 1 and arbitrary n, except that the notation
becomes more cumbersome; to prove the general case, one needs to know slightly
more about the local structure of analytic sets than we have proved.

To fix the notation, let us say that D = �2 is the set of points (z, w) 2 C2 with
|z| < 1 and |w| < 1, and that Z consists of the point (0, 0). Furthermore, V is
an analytic subset of D \ {(0, 0)} of dimension one, and we may clearly choose the
coordinate system in such a way that the line z = 0 is not contained in V . We will
prove the theorem by explicitly constructing a holomorphic function H 2 O(D)
whose zero locus is V .

Let D0 = �⇤
⇥ � be the set of points in D where z 6= 0. We first want to

show that V 0 = V \D0 is defined by the vanishing of a single holomorphic function
on D0. Consider the associated line bundle OD0(�V 0). We already know that
H1(D0, O) ' 0 and H2(D0, Z) ' 0, and so the long exact sequence coming from the
exponential sequence shows that H1(D0, O⇤) ' 0. We conclude that the line bundle
OD0(�V 0) is trivial, and hence that there is a holomorphic function h 2 O(D0)
whose zero set is the divisor V 0. The rest of the proof consists in suitably extending
h to a holomorphic function H on a neighborhood of the origin in D.

Since V does not contain the line z = 0, the intersection V \ Z(z) consists of a
discrete set of points in the punctured disk 0 < |w| < 1. We may thus find a small
circle, say of radius " > 0, that does not meet any of these points. By continuity,
the set of points (z, w) with |z|  � and |w| = " will not meet V , provided that we
choose � > 0 su�ciently small.

Now we claim that V intersects each vertical disk in the same number of points.
For fixed z with 0 < |z|  �, that number is given by the integral

d(z) =
1

2⇡i

Z

|w|="

1

h(z, w)

@h(z, w)

@w
dw 2 Z,

which counts the zeros of the holomorphic function h(z, �) inside the disk |w| < ".
Since d(z) is continuous and integer-valued, it has to be constant; let d = d(0) be
the constant value.

For fixed z with 0 < |z|  �, we let w1(z), . . . , wd(z) be the w-coordinates of the
intersection points (in any order). The power sums

dX

j=1

wj(z)k =
1

2⇡i

Z

|w|="

wk

h(z, w)

@h(z, w)

@w
dw

are evidently holomorphic functions of z as long as 0 < |z| < �. By Newton’s
identities, the same is therefore true for the elementary symmetric functions �k(z).



6 CH. SCHNELL

On the other hand, |�k(z)| is clearly bounded by the quantity
�

d

k

�
·"k, and therefore

extends to a holomorphic function on the set |z| < � by Riemann’s theorem.
If we now define

H(z, w) = wd
� �1(z)wd�1 + �2(z)wd�2 + · · · + (�1)d�d(z),

then H is a holomorphic function for |z| < � and |w| < ", whose roots for fixed
z 6= 0 are exactly the points w1(z), . . . , wd(z). Its zero set Z(H) is a closed analytic
set which, by construction, contains all points of V that satisfy 0 < |z| < � and
|w| < ". It is then not hard to see that Z(H) = V on the open subset where |z| < �
and |w| < ", proving that V is indeed analytic.


