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Class 24. The Kodaira embedding theorem and applications
(November 21)

We are in the middle of proving the Kodaira embedding theorem. We were
considering the blowup ⇡ : M̃ ! M at a point P 2 M , and wanted to show that
if L is a positive line bundle on M , then the pullback line bundle L̃ = ⇡⇤L can be
made positive in the following manner.

Lemma. Let L be a positive line bundle on M . Then for su�ciently large k, the
line bundle L̃k

⌦ [�E] is again positive.

Proof. Recall that a real (1, 1)-form ↵ is said to be positive if ↵(⇠, ⇠) > 0 for every
nonzero tangent vector ⇠ 2 T 0

p
M . A holomorphic line bundle is positive if it admits

a Hermitian metric for which the real (1, 1)-form i

2⇡
⇥ is positive.

We give the pullback line bundle L̃ = ⇡⇤L the induced Hermitian metric. Since
L is positive, its first Chern class ! = i

2⇡
⇥L is a positive form, and so i

2⇡
⇥

L̃
= ⇡⇤!

is positive outside the exceptional divisor E. At points of E, however, the form
⇡⇤! fails to be positive—more precisely, we have (⇡⇤!)(⇠, ⇠) = 0 for any ⇠ that is
tangent to E—because the restriction of L̃ to E is trivial. The idea is to construct
a Hermitian metric hE on [�E] which is positive in the directions tangent to E; by
choosing k � 0, we can then make sure that ⌦k = ⇡⇤! + i

2⇡
⇥E , which represents

the first Chern class of L̃k
⌦ [�E], is a positive form on M̃ .

To construct that metric, let U be an open neighborhood of the point p, isomor-
phic to an open polydisk D ✓ Cn, and let z1, . . . , zn be the resulting holomorphic
coordinate system centered at p. Then U1 = ⇡�1(U) is isomorphic to Bl0 D, the
blow-up of the origin in D, which we originally constructed as a submanifold of the
product D⇥Pn�1. We may thus view U1 itself as being a submanifold of U ⇥Pn�1;
under this identification, the line bundle [�E] is isomorphic to the pullback of
OPn�1(1) by the map q : U1 ! Pn�1. The latter has a canonical metric, and so we
get a Hermitian metric h1 on the restriction of [�E] to the open set U1. Note that
i/2⇡ times its curvature form is equal to the pullback q⇤!FS of the Fubini-Study
from Pn�1.

Let M⇤ = M \ {p}; by construction, the map ⇡ is an isomorphism between
U2 = M̃ \ E and M⇤, and since [�E] is trivial on the complement of E, it has a
distinguished nowhere vanishing section sE over U2, corresponding to the constant
function 1 2 OM (M⇤). We can thus put a Hermitian metric h2 on the restriction of
[�E] to U2, by declaring the pointwise norm of sE to be 1. Now let ⇢1 + ⇢2 = 1 be
a partition of unity subordinate to the open cover U, M⇤, and define a Hermitian
metric on [�E] by setting

hE = (⇢1 � ⇡)h1 + (⇢2 � ⇡)h2.

This is well-defined, and indeed a Hermitian metric (because the convex combina-
tion of two Hermitian inner products on a vector space is again a Hermitian inner
product).

To complete the proof, we have to argue that ⌦k = i

2⇡
⇥E + k⇡⇤! is a positive

form if k � 0. First consider the open set U1 = ⇡�1(U) containing the exceptional
divisor. For any k > 0, the form k ·pr⇤

1!+pr⇤
2!FS on the product U ⇥Pn�1 is clearly

positive. In a su�ciently small neighborhood V of the exceptional divisor (namely
outside the support of ⇢2 �⇡), ⌦k is the restriction of that form to the submanifold
U1, and is therefore positive as well. On the other hand, the complement M̃ \ V of
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that neighborhood is a compact set in M̃ \ E, on which i

2⇡
⇥E is bounded and ⇡⇤!

is positive. By taking k su�ciently large, we can therefore make ⌦k be positive on
M̃ \ V as well. ⇤

Proof of the embedding theorem. We now come to the proof of Theorem 23.3.
We continue to let M be a compact complex manifold, and L ! M a positive line
bundle. In order to prove the embedding theorem, we have to show that for k � 0,
the following three things are true:

(1) The line bundle Lk is base-point free, and therefore defines a holomorphic
mapping 'Lk : M ! PNk , where Nk = dim H0(M, Lk) � 1. Equivalently,
for every point p 2 M , the restriction map H0(M, Lk) ! Lk

p
is surjective.

(2) The mapping 'Lk is injective; equivalently, for every pair of distinct points
p, q 2 M , the restriction map H0(M, Lk) ! Lk

p
� Lk

q
is surjective.

(3) The mapping 'Lk is an immersion, which means that its di↵erential is
injective; equivalently, the map H0(M, Lk)(p) ! T 1,0

p
M ⌦ Lk

p
is surjective

at every point p 2 M .

In each of the three cases, the strategy is to blow up the point (or points) in
question, and to reduce the surjectivity to the vanishing of some cohomology group
on the blow-up. We then show that, after choosing k � 0, the group is question is
zero by Kodaira’s theorem.

We shall divide the proof into four steps, which are fairly similar to each other.

Step 1 . To show that Lk is base-point free for k � 0, we begin by proving that for
every fixed point p 2 M , the map H0(M, Lk) ! Lk

p
is surjective once k is large.

Let ⇡ : M̃ ! M denote the blow-up of M at the point p, and let E = ⇡�1(p) be the
exceptional divisor. Let i : E ,! M̃ be the inclusion map, and let L̃ = ⇡⇤L be the
pullback of the line bundle. Every section of L on M defines by pullback a section
of L̃ = ⇡⇤L on M̃ . The resulting linear map

H0(M, Lk) ! H0(M̃, L̃k)

is an isomorphism by Hartog’s theorem. Indeed, suppose that s̃ is a global section
of L̃k. Since M̃ \E ' M⇤, the restriction of s̃ to M̃ \E gives a holomorphic section
of Lk over M⇤. If n � 2, then Hartog’s theorem shows that this section extends
holomorphically over the point p, proving that s̃ is in the image of H0(M, Lk). (If
n = 1, we have M̃ = M and E = {p}, and so the statement is trivial.)

Now clearly a section of Lk vanishes at the point p i↵ the corresponding section of
L̃k vanishes along the exceptional divisor E; in other words, we have a commutative
diagram

H0(M, Lk) Lk

p

H0(M̃, L̃k) H0(E, i⇤L̃k).

⇠= ⇠=

Note that i⇤L̃k
' OE ⌦ Lk

p
, since the restriction of L̃k to the exceptional divisor is

the trivial line bundle with fiber Lk

p
. It is therefore su�cient to prove that, on M̃ ,

the restriction map H0(M̃, L̃k) ! H0(E, i⇤L̃k) is surjective.
Because of the long exact cohomology sequence

H0(M̃, L̃k) ! H0(E, i⇤L̃k) ! H1
�
M̃, L̃k

⌦ [�E]
�
,
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the surjectivity is a consequence of H1
�
M̃, L̃k

⌦ [�E]
�

' 0. This will follow from
the Kodaira vanishing theorem, provided we can show that

L̃k
⌦ [�E] ' K

M̃
⌦ Pk

for some positive line bundle Pk. By Lemma 23.5, we have K
M̃

' ⇡⇤KM ⌦ [E]n�1,
and so

Pk ' ⇡⇤�Lk
⌦ K�1

M

�
⌦ [�E]n.

Now fix a su�ciently large integer `, with the property that L`
⌦ K�1

M
is positive.

By Lemma 23.6, there exists an integer m0 such that the line bundle L̃m
⌦ [�E] is

positive for m � m0. But then

⇡⇤�L`
⌦ K�1

M

�
⌦
�
L̃m

⌦ [�E]
�n

' ⇡⇤�Lmn+`
⌦ K�1

M

�
⌦ [�E]n

is positive, and so it su�ces to take k � m0n + `. With this choice of k, we have

H1
�
M̃, L̃k

⌦ [�E]
�

' H1
�
M̃, K

M̃
⌦ Pk

�
' 0,

which vanishes by Theorem 22.2 because Pk is a positive line bundle. So if k �

m0n + `, then the restriction map H0(M, Lk) ! Lk

p
is surjective.

Unfortunately, the value of m0 might depend on the point p 2 M that we started
from. To show that one value works for all points p 2 M , we use a compactness
argument. Namely, if H0(M, Lk) ! Lk

p
is surjective at some point p 2 M , it means

that Lk has a section that does not vanish at p. The same section is nonzero at
nearby points, and so the restriction map is surjective on some neigborhood of the
point. We can therefore cover M by open sets Ui, such that the restriction map is
surjective for k � ki. By compactness, finitely many of these open sets cover M ,
and if we let k0 be the maximum of the corresponding ki, then we get surjectivity
at all points for k � k0. We have now shown that the mapping 'Lk is well-defined
and holomorphic for su�ciently large values of k.

Step 2 . Exactly the same proof shows that, given any pair of distinct points p, q 2

M , the restriction map H0(M, Lk) ! Lk

p
�Lk

q
is surjective for k � 0. We only need

to let ⇡ : M̃ ! M be the blow-up of M at both points, and E = ⇡�1(p) [ ⇡�1(q)
the union of the two exceptional divisors (which is still a submanifold of dimension
n � 1). If i : E ,! M̃ denotes the inclusion, it su�ces to prove the surjectivity of

H0(M̃, L̃k) ! H0(E, i⇤L̃k),

which holds for the same reason as before once k � 0. Note that the value of k
now depends on the pair of points p, q 2 M ; but this time, we cannot use the same
compactness proof because M ⇥ M \ � is no longer compact. We will deal with
this issue in the last step of the proof.

Step 3 . Next, we prove that for a fixed point p 2 M , the map

H0(M, Lk)(p) ! T 1,0
p

M ⌦ Lk

p

becomes surjective if k � 0. Here H0(M, Lk)(p) denotes the space of sections of Lk

that vanish at the point p. Again let ⇡ : M̃ ! M be the blow-up of M at the point
p, let i : E ,! M̃ be the inclusion of the single exceptional divisor, and let L̃ = ⇡⇤L
be the pullback of our positive line bundle. This time, we use the commutative
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diagram

H0(M, Lk)(p) T 1,0
p

M ⌦ Lk

p

H0
�
M, L̃k

⌦ [�E]
�

H0
�
E, i⇤L̃k

⌦ [�E]
�
.

⇠= ⇠=

Note that the restriction of L̃k
⌦ [�E] to the exceptional divisor is isomorphic to

OE(1) ⌦ L̃k

p
, and so its space of global sections is H0

�
E, OE(1)

�
⌦ L̃k

p
. Sections of

OE(1) are linear forms in the variables z1, . . . , zn, which exactly correspond to the
holomorphic cotangent space T 1,0

p
M .

In other words, it is now su�cient to prove the surjectivity of

H0
�
M̃, L̃k

⌦ [�E]
�

! H0
�
E, OE(1)

�
⌦ L̃k

p
,

for which we may use the exact sequence

H0
�
M̃, L̃k

⌦ [�E]
�

! H0
�
E, i⇤L̃k

⌦ [�E]
�

! H1
�
M̃, L̃k

⌦ [�E]2
�
.

To prove the vanishing of the group H1
�
M̃, L̃k

⌦ [�E]2
�
, we argue as before to

obtain
L̃k

⌦ [�E]2 ' K
M̃

⌦ Qk

for a positive line bundle Qk, once k � (n � 1)m0 + `. The required vanishing then
follows from Theorem 22.2. Again, note that the lower bound on k may depend on
the point p 2 M .

Step 4 . To finish the proof, we have to argue that there is a single integer k0, such
that (a) and (b) hold for all points p, q 2 M once k � k0. We shall prove this by
using the compactness of the product M ⇥ M .

Recall that (b) holds at some point p0 2 M i↵ the di↵erential of the mapping
'Lk is injective. By basic calculus, this implies that 'Lk is injective in a small
neighborhood of p0, and so (a) and (b) are both true for all (p, q) with p 6= q that
belong to a small neighborhood of (p0, p0) 2 M ⇥ M . On the other hand, Step 3
shows that (a) holds in a neighborhood of every pair (p, q) with p 6= q. It follows
that we can cover M ⇥M by open subsets Vi, on each of which (a) and (b) are true
once k � ki. By compactness, finitely many of those open sets cover the product,
and so we again obtain a single value of k0 such that 'Lk is an embedding for
k � k0. This completes the proof of the Kodaira embedding theorem.

Consequences of Kodaira’s theorem. In algebraic geometry, a line bundle is
called very ample if 'L is an embedding; L is called ample if Lk is very ample
for k � 0. Thus what we have shown is: a line bundle L on a compact Kähler
manifold M is positive i↵ it is ample. Thus for the complex geometer, ampleness
corresponds to positivity of curvature, in the sense that i

2⇡
⇥ is a positive form.

Example 24.1. During the proof of Theorem 23.3, we saw that if ⇡ : Blp M ! M
is the blow-up of M at some point p, and if L is a positive line bundle on M , then
⇡⇤Lk

⌦ [�E] is a positive line bundle on Blp M for k � 0. It follows that if the
manifold M is projective, the blow-up Blp M is also projective. Since the latter
was defined by gluing, this is not at all obvious.

The Kodaira embedding theorem can be restated to provide a purely cohomo-
logical criterion for a compact Kähler manifold to be projective.
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Proposition 24.2. Let M be a compact Kähler manifold. Then M is projective if,
and only if, there exists a closed positive (1, 1)-form ! 2 A2(M) whose cohomology
class [!] is rational, i.e., belongs to the subspace H2(M, Q) ✓ H2(M, C).

Proof. If M is projective, then we can take for ! the restriction of the Fubini-Study
form from projective space. We will prove the converse by showing that M has a
positive line bundle. After multiplying ! by a positive integer, we can assume that
[!] belongs to the image of the map H2(M, Z) ! H2(M, C). As M is Kähler, we
have H2(M, C) = H2,0(M)�H1,1(M)�H0,2(M), and as previously explained, the
exact sequence

H1(M, OM ) ! H1(M, O⇤
M

)
c1
�! H2(M, Z) ! H2(M, OM )

shows that [!] is the first Chern class of a holomorphic line bundle L on M . By
construction, L is positive (since its first Chern class is represented by the positive
form !), and so M is projective by Theorem 23.3. ⇤

In certain cases, the criterion can be used directly to prove projectivity. A very
useful one is the following.

Corollary 24.3. If a compact Kähler manifold M satisfies H2(M, OM ) ' 0, then
it is necessarily projective.

Proof. Fix some Kähler metric h0 on M , and let !0 be the Kähler form. Then !0

is a closed positive (1, 1)-form whose cohomology class belongs to H2(M, R). We
can represent classes in H2(M, C) uniquely by harmonic forms (with respect to the
metric h0), with classes in H2(M, R) represented by real forms. Moreover, the inner
product (↵, �)M that we previously defined gives us a way to measure distances in
H2(M, C). By assumption, the two subspaces H0,2(M) and H2,0(M) in the Hodge
decomposition are both zero, and so H2(M, C) = H1,1(M). In particular, any real
harmonic form in H

2(M) has type (1, 1). The space of rational classes H2(M, Q)
is dense in H2(M, R), and so for any " > 0, there exists a harmonic (1, 1)-form !
with rational cohomology class satisfying k!�!0kM < ". Now the point is that, M
being compact, any such ! that is su�ciently close to !0 will still be positive. Here
is a careful proof.2 Let us choose an orthonormal basis !0, !1, . . . , !m 2 H

2(M),
where !0 is our initial Kähler form and !1, . . . , !m are real and primitive. We can
then write any real harmonic form ! 2 H

2(M) uniquely as

! = c0!0 + c1!1 + · · · + cm!m,

with c0, . . . , cm 2 R. Then

k! � !0k
2
M

= (c0 � 1)2 + c2
1 + · · · + c2

m
< "

implies that ! = !0 + (c0 � 1)!0 + c1!1 + · · · + cm!m is the sum of a positive
form and a form whose pointwise values are very small, and is therefore positive
for su�ciently small values of " > 0. We can then conclude by the criterion in
Proposition 24.2. ⇤
Example 24.4. A Calabi-Yau manifold is a compact Kähler manifold M whose
canonical bundle KM is isomorphic to the trivial line bundle, and on which the
cohomology groups Hq(M, OM ) for 1  q  dim M � 1 vanish. If dim M � 3, then
such an M can always be embedded into projective space.

2
I thank Jiasheng for asking about this point.
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Example 24.5. Any compact Riemann surface is projective. (This can of course be
proved more easily by other methods.)

Complex tori. A nice class of compact Kähler manifolds is that of complex tori,
which meant quotients of the form T = Cn/⇤, for ⇤ a lattice in Cn. In the exercises,
we have seen that the standard metric on V descends to a Kähler metric on T . To
illustrate the usefulness of Kodaira’s theorem, we shall settle the following question:
when is a complex torus T projective?

Example 24.6. Everyone knows that elliptic curves (the case n = 1) can always be
embedded into P2 as cubic curves.

The following theorem, known as Riemann’s criterion, gives a necessary and
su�cient condition for T to be projective. Since the proof I gave in class was not
completely satisfactory, I have added some details here.

Theorem 24.7. Let T = Cn/⇤ be a complex torus. Then T is projective if, and
only if, there exists a positive definite Hermitian bilinear form h : Cn

⇥ Cn
! C,

whose imaginary part E = � Im h takes integral values on ⇤ ⇥ ⇤.

Proof. In order to prove that T is projective, it is enough to find a closed positive
(1, 1)-form whose cohomology class is integral. The two conditions in the proposi-
tion are saying that T carries such a form, although some translation is needed to
see that this is the case.

Let us first show why the existence of the form h implies that T is projective.
Choose a basis v1, . . . , vg 2 V , and let z1, . . . , zg be the corresponding linear coor-
dinate system on V . Then dz 1, . . . , dzn 2 A1,0(T ) and dz̄1, . . . , dz̄n 2 A0,1(T ) are
well-defined smooth forms on T . The positive definite Hermitian bilinear form h is
represented by a g ⇥ g-matrix with entries

hj,k = h(vj , vk);

it is Hermitian symmetric and positive definite. The associated (1, 1)-form

! =
i

2

gX

j,k=1

hj,kdzj ^ dz̄k

is therefore positive and, obviously, closed. To see that its class in H2(T, C) belongs
to the image of H2(T, Z), we can compute its integrals over a collection of 2-cycles
that generate H2(T, Z). We can use the images in T of

[0, 1] ⇥ [0, 1] ! V, (x, y) 7! x� + y�,

where �, � 2 � are two arbitrary elements. Then

dzj ^ dz̄k = (�jdx + �jdy) ^ (�kdx + �kdy) =
�
�j�k � �j�j

�
dx ^ dy

The integral in question thus becomes

i

2

gX

j,k=1

Z 1

0

Z 1

0
hj,kdzj ^ dz̄k =

i

2

gX

j,k=1

hj,k

�
�j�k � �j�j

�
=

i

2

⇣
h(�, �) � h(�, �)

⌘
.

This is easily seen to equal E(�, �) = � Im h(�, �), and so we get the result.
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We also need to prove the converse. Suppose that ! 2 A1,1(T ) is a closed
positive real (1, 1)-form whose class in H2(T, R) lies in the subspace H2(T, Z).
Using dz 1, . . . , dzn, dz̄1, . . . , dz̄n, we can write ! as a finite sum

! =
i

2

gX

j,k=1

fj,kdzj ^ dz̄k,

where each fj,k 2 A(T, C) is now a smooth function on T . Positivity of ! means
that the matrix with entries fj,k is positive definite at every point of T . We want
a matrix with constant entries, and so we consider the averages

hj,k =
1

vol(T )

Z

T

fj,k vol(g) 2 C,

where vol(g) is the volume form for the Euclidean metric on T . The matrix with
entries hj,k is then the average of the matrices with entries fj,k, and as such, it is
still positive definite. It remains to show that the cohomology class of the new form

!0 =
i

2

gX

j,k=1

hj,kdzj ^ dz̄k

is still integral. This can be done as follows. For any x 2 T , consider the translation
automorphism tx : T ! T , tx(y) = x + y. The cohomology class of the pullback
t⇤
x
! belongs to H2(T, Z), and so the integral

Z

�,�

t⇤
x
!

over the above generators of H2(T, Z) takes values in Z for every �, � 2 �. It is
easy to see that Z

�,�

!0 =
1

vol(T )

Z

T

✓Z

�,�

t⇤
x
!

◆
vol(g),

and as an average of integers, this is itself an integer. ⇤
Note. If we denote by J : V ! V the homomorphism given by multiplication by i,
then the fact that h is a Hermitian form implies h(Jv, Jw) = h(v, w). It follows
that E(Jv, Jw) = E(v, w); moreover,

h(v, w) = E(v, Jw) � iE(v, w),

and so E uniquely determines h.


