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Class 23. The Kodaira embedding theorem (November 19)

Recall that every complex submanifold of projective space is a Kähler manifold:
a Kähler metric is obtained by restricting the Fubini-Study to the submanifold. Our
next goal is to describe exactly which compact Kähler manifolds are projective, i.e.,
can be embedded into projective space as submanifolds. A necessary condition for
M to be projective is the existence of a positive line bundle; indeed, if M ✓ PN is a
submanifold, then the restriction of OPN (1) to M is clearly a positive line bundle,
since its first Chern class is represented by the restriction of !FS to M . That this
condition is also su�cient is the content of the famous Kodaira embedding theorem:
a compact complex manifold is projective if and only if it possesses a positive line
bundle. In the next two lectures, we will use the Kodaira vanishing theorem to
prove this result.

Maps to projective space. We begin by looking at the relationship between
holomorphic line bundles and maps to projective space. Suppose then that we have
a holomorphic map f : M ! PN from a compact complex manifold to projective
space. We say that f is nondegenerate if the image f(M) is not contained in
any hyperplane of PN . It is clearly su�cient to understand nondegenerate maps,
because a degenerate map is really a map from M into a projective space of smaller
dimension.

On PN , we have the line bundle OPN (1), which we defined as the dual of the
tautological bundle OPN (�1). With respect to the standard open cover of PN by
the open sets Uj =

�
[z] 2 PN

�� zj 6= 0
 
, it is described by the transition functions

gj,k = zk/zj . The space of global sections

H0
�
PN , OPN (�1)

�
⇠= C[z0, . . . , zN ]1

is isomorphic to the space of homogeneous polynomials of degree 1, and therefore
has dimension N + 1. (A linear polynomial L(z) = a0z0 + · · · + aNzN defines a
global section of OPN (1) that is represented on the open set Uj by the holomorphic
function L(z)/zj ; alternatively, L defines a linear functional on the vector space
CN+1, and therefore on each fiber on the tautological line bundle.)

Given a nondegenerate map f : M ! PN , we obtain a holomorphic line bundle
L = f⇤

OPN (1), the pullback of OPN (1) via the map f . In general, assuming that
f : X ! Y is a holomorphic mapping between two complex manifolds, and ⇡ : E !

Y a holomorphic vector bundle on Y , the pullback bundle

f⇤E =
�

(y, e) 2 Y ⇥ E
�� f(y) = ⇡(e)

 

sits in the following commutative diagram:

f⇤E X

Y X

p1 ⇡

f

The fiber of f⇤E at a point y 2 Y is therefore exactly the fiber of the original
bundle E at the point f(y). In our specific case, we have Lp = OPN (1)f(p). More
concretely, we may define L as being the line bundle with transition functions gj,k�f
on the cover of M by the N + 1 open sets f�1(Uj). Now every section of OPN (1)
defines, by pulling back, a section of L on M , and the resulting map

H0
�
PN , OPN (1)

�
! H0(M, L)
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is injective since f is nondegenerate. We have dim H0
�
PN , OPN (1)

�
= N + 1.

Conversely, suppose that we have a holomorphic line bundle L on M , together
with a subspace V ✓ H0(M, L) that is base-point free. By this we mean that
at every point p 2 M , there should be a holomorphic section s 2 V that does
not vanish at the point p (and hence generates the one-dimensional vector space
Lp). We can then construct a holomorphic mapping from M to projective space as
follows: Let N = dim V � 1, choose a basis s0, s1, . . . , sN 2 V , and define

f : M ! PN , f(p) =
⇥
s0(p), s1(p), . . . , sN (p)

⇤
.

That is to say, at each point of M , at least one of the sections, say s0, is nonzero;
in some neighborhood U of the point, we can then sj = fjs0 for fj 2 OM (U)
holomorphic. On that open set U , the mapping f is then given by the formula
f(p) = [1, f1(p), . . . , fN (p)] 2 PN .

Note. A more invariant description of the map f is the following: Let P(V ) be the
set of codimension 1 subspaces of V ; any such is the kernel of a linear functional
on V , unique up to scaling, and so P(V ) is naturally isomorphic to the projective
space of lines through the origin in V ⇤. From this point of view, the mapping
f : M ! P(V ) takes a point p 2 M to the subspace V (p) =

�
s 2 V

�� s(p) = 0
 
.

Since V is assumed to be base-point free, V (p) ✓ V is always of codimension 1,
and so the mapping is well-defined.

The two processes above are clearly inverse to each other, and so we obtain the
following result: nondegenerate holomorphic mappings f : M ! PN are in one-
to-one correspondence with base-point free subspaces V ✓ H0(M, L) of dimension
N + 1. In particular, any holomorphic line bundle L whose space of global sections
H0(M, L) is base-point free defines a holomorphic mapping

'L : M ! PN ,

where N = dim H0(M, L) � 1. We abbreviate this by saying that L is base-point
free; alternatively, one says that L is globally generated, since it implies that the
restriction mapping H0(M, L) ! Lp is surjective for each point p 2 M .

Example 23.1. Consider the line bundle OP1(k) on the Riemann sphere P1. We
have seen in the exercises that its space of sections is isomorphic to the space of
homogeneous polynomials of degree k in C[z0, z1]. What is the corresponding map
to projective space? If we use the monomials zk

0 , zk�1
0 z1, . . . , z0z

k�1
1 , zk

1 as a basis,
we see that the line bundle is base-point free, and that the map is given by

P1
! Pk, [z0, z1] 7! [zk

0 , zk�1
0 z1, . . . , z0z

k�1
1 , zk

1 ].

It is easy to see that this is an embedding; the image is the so-called rational normal
curve of degree k.

Example 23.2. More generally, the line bundle OPn(k) embeds Pn into the larger
projective space PN , where N =

�
n+k

n

�
�1; this is the so-called Veronese embedding.

The Kodaira embedding theorem. For a line bundle L and a positive integer
k, we let Lk = L⌦L⌦ · · ·⌦L be the k-fold tensor product of L. We can now state
Kodaira’s theorem in a more precise form.

Theorem 23.3. Let M be a compact complex manifold, and let L be a positive line
bundle on M . Then there is a positive integer k0 with the following property: for
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every k � k0, the line bundle Lk is base-point free, and the holomorphic mapping
'Lk is an embedding of M into projective space.

In general, suppose that L is a base-point free line bundle on M ; let us investigate
under what conditions the corresponding mapping ' : M ! PN is an embedding.
Clearly, the following two conditions are necessary and su�cient:

(a) ' is injective: if p, q 2 M are distinct points, then '(p) 6= '(q).
(b) At each point p 2 M , the di↵erential '⇤ : T 0

p
M ! T 0

'(p)PN is injective.

Indeed, since M is compact, the map ' is automatically open, and so the first
condition implies that ' is a homeomorphism onto its image '(M). The second
condition, together with the implicit function theorem, can then be used to show
that the inverse map '�1 is itself holomorphic, and hence that ' is an embedding.

We shall now put both conditions in a more intrinsic form that only refers to the
line bundle L and its sections. As above, let s0, s1, . . . , sN be a basis for the space of
sections H0(M, L). Then (a) means that, for any two distinct points p, q 2 M , the
two vectors

�
s0(p), s1(p), . . . , sN (p)

�
and

�
s0(q), s1(q), . . . , sN (q)

�
should be linearly

independent. Equivalently, the restriction map

H0(M, L) ! Lp � Lq

that associates to a section s the pair of values (s(p), s(q)) should be surjective. If
this is satisfied, one says that L separates points.

Consider now the other condition. Fix a point p 2 M , and suppose for simplicity
that s0(p) 6= 0 and s1(p) = · · · = sN (p) = 0. In a neighborhood of p, we then have
sj = fjs0 for holomorphic functions f1, . . . , fN that vanish at the point p, and (b)
is saying that the matrix of partial derivatives

0

BBB@

@f1/@z1 @f1/@z2 · · · @f1/@zn

@f2/@z1 @f2/@z2 · · · @f2/@zn

...
...

...
@fN/@z1 @fN/@z2 · · · @fN/@zn

1

CCCA

should have rank n at the point p. Another way to put this is that the holomorphic
1-forms df1, df2, . . . , dfN should span the holomorphic cotangent space T 1,0

p
M . More

intrinsically, we let H0(M, L)(p) denote the space of sections that vanish at p. We
can write any such section as s = fs0, with f holomorphic in a neighborhood of
p and satisfying f(p) = 0. Then df(p) ⌦ s0 is a well-defined element of the vector
space T 1,0

p
M ⌦ Lp, independent of the choice of s0; in these terms, condition (b) is

equivalent to the surjectivity of the linear map

H0(M, L)(p) ! T 1,0
p

M ⌦ Lp.

If this holds, one says that L separates tangent vectors.
Since our main tool is a vanishing theorem, it is useful to notice that both

conditions can also be stated using the language of sheaves. For any point p 2 M ,
we define Ip as the sheaf of all holomorphic functions on M that vanish at the
point p. Likewise, we let Ip(L) denote the sheaf of holomorphic sections of L that
vanish at p, and note that it is a subsheaf of the sheaf OM (L) of all holomorphic
sections of L. We then have an exact sequence of sheaves

0 ! Ip(L) ! OM (L) ! Lp ! 0,
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where we consider Lp as a sheaf supported at the point p (meaning that for any
open set U ✓ M , we have Lp(U) = Lp if p 2 U , and zero otherwise). The relevant
portion of the long exact sequence of cohomology groups is

0 ! H0
�
M, Ip(L)

�
! H0(M, L) ! Lp ! H1

�
M, Ip(L)

�
,

and so the surjectivity of the restriction map would follow from the vanishing of
the group H1

�
M, Ip(L)

�
. The problem is that, unless M is a Riemann surface,

this is not the cohomology group of a holomorphic line bundle, and so the Kodaira
vanishing theorem does not apply to it. To overcome this di�culty, we shall use
the device of blowing up: it replaces a point (codimension n) with a copy of Pn�1

(codimension n � 1), and thus allows us to work with line bundles.

Blowing up. Let M be a complex manifold of dimension n. Recall from Lecture 5
that the blow-up of M at a point p is another complex manifold Blp M , in which the
point is replaced by a copy of Pn�1. This so-called exceptional divisor E is basically
the projective space of lines in T 0

p
M , and should be thought of as parametrizing

directions from p into M . Here is a brief review of the construction of Blp M . First,
we defined the blow-up of Cn at the origin as

Bl0 Cn =
� �

z, [a]
�

2 Cn
⇥ Pn�1

�� z lies on the line C · a
 
.

The first projection ⇡ : Bl0 Cn
! Cn is an isomorphism outside the origin, and

⇡�1(0) is a copy of Pn�1. For any open set D ✓ Cn containing the origin, we then
define Bl0 D as ⇡�1(D). Finally, given a point p on an arbitrary complex manifold
M , we choose a coordinate chart � : U ! D around p, with D ✓ Cn an open
polydisk, and construct the complex manifold Blp M by gluing together M \ {p}

and Bl0 D according to the map �.
We now have to undertake a more careful study of the blow-up. From now on,

we set M̃ = Blp M , and let ⇡ : Blp M ! M be the blow-up map. The exceptional
divisor E = ⇡�1(p) is a complex submanifold of M̃ of dimension n � 1. We briefly
recall why. The statement only depends on a small open neighborhood of E in M̃ ,
and so it su�ces to prove this for the exceptional divisor in Bl0 Cn. Here, we have
the second projection q : Bl0 Cn

! Pn�1, and so we get n natural coordinate charts
Vj = q�1(Uj) (where Uj is the set of points [a] 2 Pn�1 with aj 6= 0). These are
given by

Cn
! Vj , (b1, . . . , bn) 7!

�
bja, [a]

�

where a = (b1, . . . , bj�1, 1, bj+1, . . . , bn). In these charts, the map ⇡ takes the form

⇡(b1, . . . , bn) = (bjb1, . . . , bjbj�1, bj , bjbj+1, . . . , bjbn

�
,

and so the exceptional divisor E \ Uj is exactly the submanifold defined by the
single equation bj = 0.

Since E has dimension n� 1, it determines a holomorphic line bundle O
M̃

(�E),
whose sections over any open set U ✓ M̃ are those holomorphic functions on U
that vanish along U \ E. To simplify the notation, we write OE(1) for the image
of OPn�1(1) under the isomorphism E ' Pn�1.

Lemma 23.4. The restriction of O
M̃

(�E) to the exceptional divisor is isomorphic
to OE(1).

Proof. The statement only depends on a small neighborhood of E in M̃ , and we
may therefore assume that we are dealing with the blowup of Cn at the origin.
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We have seen in the exercises that the second projection q : Bl0 Cn
! P�1 is the

holomorphic line bundle OPn�1(�1). The exceptional divisor is precisely the im-
age of the zero section, and by another exercise, its line bundle is isomorphic to
q⇤

OPn�1(1). Obviously, the restriction of this line bundle to the exceptional divisor
is now OPn�1(1), as claimed. ⇤

To simplify the notation a little, we shall write [�E] for the line bundle O
M̃

(�E),
and [E] for its dual. As usual, we also let [E]k be the k-fold tensor product of [E]
with itself. Lastly, we write KM for the canonical bundle ⌦n

M
. In order to apply

the Kodaira vanishing theorem on M̃ , we need to now how the canonical bundle
K

M̃
is related to KM .

Lemma 23.5. The canonical bundle of M̃ satisfies K
M̃

' ⇡⇤KM ⌦ [E]n�1.

Proof. To show the gist of the statement, we shall only prove this in the case
M = Cn and M̃ = Bl0 Cn. With z1, . . . , zn the usual coordinate system on Cn, the
canonical bundle ⌦n

M
is trivial, generated by the section dz1 ^ · · · ^ dzn. To prove

the lemma, it is enough to show that the line bundle K
M̃

⌦ [�E]n�1 is trivial on M̃ .
Note that its holomorphic sections are holomorphic n-forms that vanish at least to
order n � 1 along E.

Consider the pullback ⇡⇤(dz1 ^ · · ·^dzn). In one of the n open sets Vj that cover
the blow-up, the exceptional divisor is defined by the equation bj = 0, and the
map ⇡ is given by the formula ⇡(b1, . . . , bn) = (bjb1, . . . , bjbj�1, bj , bjbj+1, . . . , bjbn).
Consequently, we have

⇡⇤(dz1 ^ · · · ^ dzn) = d(bjb1) ^ · · · ^ d(bjbj�1) ^ dbj ^ d(bjbj+1) ^ · · · ^ d(bjbn)

= bn�1
j

db1 ^ · · · ^ dbn,

and so ⇡⇤(dz1 ^ · · · ^ dzn) is a global section of K
M̃

⌦ [�E]n�1. The above formula
shows that, moreover, it generates that line bundle on each open set Vj , and so the
line bundle is indeed trivial. ⇤

Let L be a positive line bundle on M , and write L̃ = ⇡⇤L for the pullback line
bundle on M̃ . Then L̃ is no longer positive: the first Chern class c1(L̃) is the
pulllback of c1(L), and so it is trivial along the exceptional divisor E; in particular,
at cannot be represented by a Kähler form on M̃ . The following lemma shows how
to fix this problem.

Lemma 23.6. Let L be a positive line bundle on M . Then for su�ciently large k,
the line bundle L̃k

⌦ [�E] is again positive.


