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Crass 20. HOLOMORPHIC VECTOR BUNDLES AND CONNECTIONS (NOVEMBER 7)
Hypersurfaces in projective space, continued.

Example 20.1. Let us look at the case of a K3-surface, namely a complex submani-
fold M C IP? defined by a homegeneous equation F' € Clzg, 21, 22, 23] of degree d = 4.
Here we have H'(M,C) ~ H'(P3,C) = 0, and H*(M,C) = H?*(P?,C)® H3(M, C).
To compute the Hodge decomposition on the primitive part of the cohomology, we
apply Griffiths’ formula (with n = 2 and d = 4). Firstly,

HZ(M) ~ R(F)o ~ So,
and therefore h*?(M) = 1. Secondly,
3
OF
HY 00 = R =51 ) Y s
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and counting dimension, we find that

443 1+3

Because we know from general principles that h%2?(M) = h?°(M), those two num-
bers suffice to write down the Hodge diamond of M, which looks like

C
0 0
c ¢ c
0 0
C

Note. If the polynomial F' is complicated, counting the dimension of the space
R(F)(n41-p)d—(n+2) may be fairly involved. Luckily, there is a shortcut: One can
prove that the dimensions are the same for any irreducible homogeneous polyno-
mial F of degree d (whose zero set is a submanifold), and so it suffices to do the
computations in the easy case F' = 20 +2{+---+2¢, . The reason is that the space
of all such polynomials (as an open subset of a complex vector space) is connected,
and that the Hodge numbers dim H{"" " are continuous functions on that space.

Residues. The proof of Theorem requires several results from algebraic ge-
ometry and algebraic topology that we do not have at our disposal; but we can at
least describe the so-called residue map

A" (M,n+1—p) — HP" P (M)

that induces the isomorphism. Recall the notion of a residue from complex analysis:
given a meromorphic function f(z) on an open set U, holomorphic on U \ {z}, we
write f(2) = 3_;czaj(z — 20)” as a Laurent series, and then

1
Res,, f = 5 /Z_ZO_E f(z)dz =a_;.

Put differently, the residue map assigns to a meromorphic one-form f(z)dz a com-
plex number at each point where the form has a pole.

The same construction works for M C P**! and explains the case p = n from
above: there is a map Resy, from rational (n + 1)-forms on P**! with a first-order
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pole along M to the space of holomorphic n-forms on M. Namely, around each
point of the submanifold M, we can find local coordinates ¢1,...,¢,+1 on an open
neighborhood U C P"*! such that M N U is the subset defined by t; = 0. Given
a € A" (M, 1), we then have

f(t17t27 e 7tn+1)

Oé|U: P dtl/\"'/\dthrl
1

for some holomorphic function f, and then the residue of «|y is the holomorphic
n-form f(0,ta,...,tht1)dta A+ Adtyy2 on MNU. One can show that this does not
depend on the choice of coordinates, and thus defines a global holomorphic n-form
Respr o on M.

On forms with a pole of higher order, an additional step is needed. Suppose that
a € A" (M, ) has a pole of order at most £ > 2. In local coordinates, we can
again express « in the form

f(tl,tg, “ e 7tn+1)
tl
1

a|U: dt; A - ANdtpyr.

For £ > 2, the identity

f of /ot

d<tl—1dt2/\”./\dt”+1 = —([—1)Q|U+t£7_1dt1/\-'-/\dtn+1

1 1
allows us to write a|y = 8+ dv, where 8 is an (n+ 1)-form, and v an n-form, both
holomorphic on U\ (M NU) and with a pole of order at most ¢ — 1. In other words,
we can adjust a|y by an exact form and reduce the order of the pole. To do this
globally, choose an open covering U of M by suitable open subsets of P"*+!, and let
1=),c; pi be a partition of unity subordinate to U. If a|y, = 3; + dv;, then

o= Zpia v, =d (Zm%) + Z(Pzﬂi — dp; Ai).

i€l i€l i€l

On the principle that the residue of an exact form should be zero, we can thus
replace « by the second term on the right-hand side, which is a (n 4 1)-form a;
with smooth coefficients and a pole of order at most ¢ — 1. Note that the type of
oy is now (n+1,0) + (n, 1), since dp; is no longer a holomorphic form. Continuing
in this manner, we can reduce the order of the pole step-by-step until we arrive at
a first-order pole where we know how to define the residue.

If we apply the above process to a € A"TY(M,n + 1 — p), then a; will have a
pole of order at most (n — p) and be of type (n+1,0) + (n, 1); eventually, we arrive
at a,—, which has a first-order pole and is of type (n +1,0) +---+ (p+1,n — p).
If we take the residue (by looking at the coefficient of d¢1/t; in local coordinates),
we thus obtain

Resyr a = Resyr a,_p € A™O(M) @ - @ AP"P(M),

and this explains why poles of higher order give rise to forms of different types on
M. One can show that the resulting form is closed and independent of the choices
made; in this way, we obtain the map

A Y (M, n+1—p)
ArtH(M,n — p) + dA™(M,n — p)

The proof that it is an isomorphism is nontrivial.

Resp — HY"P(M).
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Holomorphic vector bundles. Let M be a complex manifold. Recall that a
holomorphic vector bundle of rank r is a complex manifold F, together with a
holomorphic mapping 7: E — M, such that two conditions are satisfied:

(1) For each point p € M, the fiber E, = 7~!(p) is a C-vector space of dimen-
sion 7.
(2) For every p € M, there is an open neighborhood U and a biholomorphism

¢: N (U) = UxC"

mapping E, into {p} x C", such that the composition E, — {p} xC" — C"
is an isomorphism of C-vector spaces.

For two local trivializations (Un, ¢o) and (Ug, ¢3), the composition ¢, o gblgl is
of the form (id, g, g) for a holomorphic mapping

Jo,B: Ua”g — GLT((C).
As we have seen, these transition functions satisfy the compatibility conditions

ga,ﬂ'gB77.977a:id on UamUﬁmey,
Ja,o =1id  on Uy;

conversely, every collection of transition functions determines a holomorphic vector
bundle. Also recall that a holomorphic section of the vector bundle is a holomorphic
mapping s: M — FE such that m o s = id; locally, such a section is described by
holomorphic functions s,: Uy, — C", subject to the condition that g,g - sg = sa
on U, NUs.

Definition 20.2. A morphism between two holomorphic vector bundles 7: E — M
and 7’: B/ — M is a holomorphic mapping f: E — E’ satisfying 7’ o f = m, such
that the restriction of f to each fiber is a linear map f,: E, — EI’,. If each f, is an
isomorphism of vector spaces, then f is said to be an isomorphism.

Ezxample 20.3. The trivial vector bundle of rank r is the product M x C". A vector
bundle F is trivial if it is isomorphic to the trivial bundle. Equivalently, F is trivial
if it admits r holomorphic sections s1,..., s, whose values s1(p),..., s (p) give a
basis for the vector space E, at each point p € M.

Given a holomorphic vector bundle 7: E — M, we let A(U, E) denote the space
of smooth sections of E over an open set U C M. Likewise, AP4(U, E') denotes the
space of (p, q)-forms with coefficients in E; in a local trivialization ¢, : 71 (U,) —
U, x C", these are given by r-tuples w, € AP4(U)®" subject to the relation

Wa = Ja,p - Wp
on U, NUg. As usual, they can also be viewed as sections of a sheaf &7?9(E).

Ezample 20.4. Say L is a line bundle (so r = 1), which means that the transition
functions ga,5 € O3;(UaNUg) are holomorphic functions. In this case, a (p, ¢)-form
with coefficients in L is nothing but a collection of smooth forms w, € A?4(U,),
subject to the condition that w, = go,sgwg. The individual forms do not agree on
the intersections between the open sets (as they would for a usual (p, ¢)-form), but
differ by the factor g, 5. One can view this as a “twisted” version of (p, ¢)-forms.
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Hermitian metrics and the Chern connection. For a smooth function f €
A(U), the exterior derivative df is a smooth 1-form on U. Since M is a complex
manifold, we have d = 0 + 9, and correspondingly, df = df + 0f. Because of the
Cauchy-Riemann equations, f is holomorphic if and only if 9f € A%'(U) is zero.

For a holomorphic vector bundle £ — M, there similarly exists an operator
0: A(M,E) — A% (M, E), with the property that a smooth section s is holomor-
phic iff s = 0. To construct this J-operator, note that in a local trivialization
bo: m1(Uy) — U, x C7, smooth sections of E are given by smooth mappings
Sq: Uy — C7; we may then define 0s, = (53a,1, .. .,586”), which is a vector
of length r whose entries are (0,1)-forms. On the overlap U, N Ug between two
trivializations, we have s, = go,5 - 53, and therefore

080 = g - 085

because the entries of the r X r-matrix g, g are holomorphic functions. This shows
that if s € A(U, E), then 0s is a well-defined element of A%!(U, E).

On the other hand, this method cannot be used to define analogues of d or
0, because the corresponding derivatives of the g, g do not vanish. The correct
generalization of d, as it turns out, is that of a connection on E. As in differential
geometry, a connection on a complex vector bundle is a mapping

V: T(M) x A(M, E) — A(M, E)

that associates to a smooth tangent vector field £ and a smooth section s another
smooth section V¢s, to be viewed as the derivative of s along £. The connection is
required to be A(M)-linear in its first argument and to satisfy the Leibniz rule

Ve(fs)=(&f) - s+ fVes

for any smooth function f. Given a local trivialization ¢: 7=1(U) — U x C", we
have r distinguished holomorphic sections si,...,s, of F, corresponding to the
coordinate vectors on C”. We can then represent the action of the connection as

T
Vs; = Z Oj,k @ sk
k=1
for certain 6, € A'(U); this shorthand notation means that

Vgsj- = Z ej’k(f)sk.
k=1

Because of the Leibniz rule, the 1-forms 6; , uniquely determine the connection.

As in differential geometry, it is necessary to choose a metric on the vector bundle
before one has a canonical connection. We have already encountered the following
notion for the holomorphic tangent bundle 7" M.

Definition 20.5. A Hermitian metric on a complex vector bundle 7: E — M is a
collection of Hermitian inner products h,: £, x £, — M that vary smoothly with
p € M, in the sense that h(s1, s2) is a smooth function for any two smooth sections
S1,82 € A(]\f7 E)

Given a local trivialization ¢: 7=1(U) — U x C" of the vector bundle as above,
we describe the Hermitian metric h through its coefficient matrix, whose entries

hjk = h(sj,sk)
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are smooth functions on U. We have hy ; = h; i, and the matrix is positive definite.

It turns out that, once we have chosen a Hermitian metric on F, there is a unique
connection compatible with the metric and the complex structure on E. To define it,
we observe that the complexified tangent bundle splits as TcM = T'M &T" M into
the holomorphic and antiholomorphic tangent bundles. Correspondingly, we can
split any connection on E as V = V' + V" with V': T"(M) x A(M,E) — A(M, E)
and V": T"(M) x A(M,E) — A(M, E).

Proposition 20.6. Let E be a holomorphic vector bundle with a Hermitian metric
h. Then there exists a unique connection that is compatible with the metric, in the
sense that for every smooth tangent vector field £, we have

&- h(817 82) = h(VgSh 82) + h<81, V582)7
and compatible with the complex structure, in the sense that
Vis = (95)(€)
for any smooth section & of the anti-holomorphic tangent bundle T M .

This connection is called the Chern connection of the holomorphic vector bundle

E; one usually abbreviates the second condition by writing V" = 0.

Proof. To prove the uniqueness, suppose that we have such a connection V; we will
find a formula for the coefficients 6, in terms of the metric. So let ¢: 7= 1(U) —
U x C" be a local trivialization of the vector bundle, and let sq,..., s, denote the
corresponding holomorphic sections of F over U. The Hermitian metric is described
by its coefficient matrix, whose entries h;, = h(s;, sx) are smooth functions on U.
The second condition means that V”s; = 5sj = 0 because each s; is holomorphic,
and so we necessarily have

VSj = V/Sj = Zaj’k X Sk
k=1
with (1,0)-forms 60;, € A0(U) that uniquely determine the connection. By the
first condition,
dhj i = h(Vsj,s6) + h(s;, Vi) = Y (huibso+ hjiBer),
=1

and this identity shows that Oh;x = > h;x0;, and Ohj = > h; 0k, (which is
the conjugate of the other identity). If we let h%"* denote the entries of the inverse

matrix, it follows that
,

Ojc = Y _h"Fon;,,
1=1
which proves the uniqueness of the Chern connection. Conversely, we can use this
formula to define the connection locally; because of uniqueness, the local definitions
have to agree on the intersections of different open sets, and so we get a globally
defined connection on F. |

FEzample 20.7. One should think of the Chern connection V as a replacement for
the exterior derivative d, and of V' as a replacement for J; in this way, the identity
V = V'’ + 0 generalizes the formula d = 9 + 9. In fact, d is the Chern connection
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on the trivial bundle E = M x C (whose smooth sections are the smooth functions)
for the Hermitian metric induced by the standard metric on C.



