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Class 20. Holomorphic vector bundles and connections (November 7)

Hypersurfaces in projective space, continued.

Example 20.1. Let us look at the case of a K3-surface, namely a complex submani-
fold M ✓ P3 defined by a homegeneous equation F 2 C[z0, z1, z2, z3] of degree d = 4.
Here we have H1(M, C) ' H1(P3, C) = 0, and H2(M, C) = H2(P3, C)�H2

0 (M, C).
To compute the Hodge decomposition on the primitive part of the cohomology, we
apply Gri�ths’ formula (with n = 2 and d = 4). Firstly,

H2,0
0 (M) ' R(F )0 ' S0,

and therefore h2,0(M) = 1. Secondly,

H1,1
0 (M) ' R(F )4 = S4

� 3X

j=1

S1
@F

@zj

,

and counting dimension, we find that

h1,1(M) = 1 + dimS4 � 4 dimS1 = 1 +

✓
4 + 3

3

◆
� 4 ·

✓
1 + 3

3

◆
= 20.

Because we know from general principles that h0,2(M) = h2,0(M), those two num-
bers su�ce to write down the Hodge diamond of M , which looks like

C
0 0

C C20 C
0 0

C

1

Note. If the polynomial F is complicated, counting the dimension of the space
R(F )(n+1�p)d�(n+2) may be fairly involved. Luckily, there is a shortcut: One can
prove that the dimensions are the same for any irreducible homogeneous polyno-
mial F of degree d (whose zero set is a submanifold), and so it su�ces to do the
computations in the easy case F = zd

0 +zd

1 + · · ·+zd

n+1. The reason is that the space
of all such polynomials (as an open subset of a complex vector space) is connected,
and that the Hodge numbers dim Hp,n�p

0 are continuous functions on that space.

Residues. The proof of Theorem 19.6 requires several results from algebraic ge-
ometry and algebraic topology that we do not have at our disposal; but we can at
least describe the so-called residue map

An+1(M, n + 1 � p) ! Hp,n�p

0 (M)

that induces the isomorphism. Recall the notion of a residue from complex analysis:
given a meromorphic function f(z) on an open set U , holomorphic on U \ {z0}, we
write f(z) =

P
j2Z aj(z � z0)j as a Laurent series, and then

Resz0 f =
1

2⇡i

Z

|z�z0|="

f(z)dz = a�1.

Put di↵erently, the residue map assigns to a meromorphic one-form f(z)dz a com-
plex number at each point where the form has a pole.

The same construction works for M ✓ Pn+1, and explains the case p = n from
above: there is a map ResM from rational (n + 1)-forms on Pn+1 with a first-order
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pole along M to the space of holomorphic n-forms on M . Namely, around each
point of the submanifold M , we can find local coordinates t1, . . . , tn+1 on an open
neighborhood U ✓ Pn+1 such that M \ U is the subset defined by t1 = 0. Given
↵ 2 An+1(M, 1), we then have

↵|U =
f(t1, t2, . . . , tn+1)

t1
dt1 ^ · · · ^ dtn+1

for some holomorphic function f , and then the residue of ↵|U is the holomorphic
n-form f(0, t2, . . . , tn+1)dt2^ · · ·^dtn+2 on M \U . One can show that this does not
depend on the choice of coordinates, and thus defines a global holomorphic n-form
ResM ↵ on M .

On forms with a pole of higher order, an additional step is needed. Suppose that
↵ 2 An+1(M, `) has a pole of order at most ` � 2. In local coordinates, we can
again express ↵ in the form

↵|U =
f(t1, t2, . . . , tn+1)

t`1
dt1 ^ · · · ^ dtn+1.

For ` � 2, the identity

d

✓
f

t`�1
1

dt2 ^ · · · ^ dtn+1

◆
= �(` � 1)↵|U +

@f/@t1

t`�1
1

dt1 ^ · · · ^ dtn+1

allows us to write ↵|U = � + d�, where � is an (n+1)-form, and � an n-form, both
holomorphic on U \ (M \U) and with a pole of order at most `�1. In other words,
we can adjust ↵|U by an exact form and reduce the order of the pole. To do this
globally, choose an open covering U of M by suitable open subsets of Pn+1, and let
1 =

P
i2I

⇢i be a partition of unity subordinate to U. If ↵|Ui = �i + d�i, then

↵ =
X

i2I

⇢i↵|Ui = d

 
X

i2I

⇢i�i

!
+
X

i2I

�
⇢i�i � d⇢i ^ �i

�
.

On the principle that the residue of an exact form should be zero, we can thus
replace ↵ by the second term on the right-hand side, which is a (n + 1)-form ↵1

with smooth coe�cients and a pole of order at most ` � 1. Note that the type of
↵1 is now (n + 1, 0) + (n, 1), since d⇢i is no longer a holomorphic form. Continuing
in this manner, we can reduce the order of the pole step-by-step until we arrive at
a first-order pole where we know how to define the residue.

If we apply the above process to ↵ 2 An+1(M, n + 1 � p), then ↵1 will have a
pole of order at most (n� p) and be of type (n+1, 0)+ (n, 1); eventually, we arrive
at ↵n�p which has a first-order pole and is of type (n + 1, 0) + · · · + (p + 1, n � p).
If we take the residue (by looking at the coe�cient of dt1/t1 in local coordinates),
we thus obtain

ResM ↵ =
def

ResM ↵n�p 2 An,0(M) � · · · � Ap,n�p(M),

and this explains why poles of higher order give rise to forms of di↵erent types on
M . One can show that the resulting form is closed and independent of the choices
made; in this way, we obtain the map

ResM :
An+1(M, n + 1 � p)

An+1(M, n � p) + dAn(M, n � p)
! Hp,n�p

0 (M).

The proof that it is an isomorphism is nontrivial.
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Holomorphic vector bundles. Let M be a complex manifold. Recall that a
holomorphic vector bundle of rank r is a complex manifold E, together with a
holomorphic mapping ⇡ : E ! M , such that two conditions are satisfied:

(1) For each point p 2 M , the fiber Ep = ⇡�1(p) is a C-vector space of dimen-
sion r.

(2) For every p 2 M , there is an open neighborhood U and a biholomorphism

� : ⇡�1(U) ! U ⇥ Cr

mapping Ep into {p}⇥Cr, such that the composition Ep ! {p}⇥Cr
! Cr

is an isomorphism of C-vector spaces.

For two local trivializations (U↵, �↵) and (U� , ��), the composition �↵ � ��1
�

is
of the form (id, g↵,�) for a holomorphic mapping

g↵,� : U↵,� ! GLr(C).

As we have seen, these transition functions satisfy the compatibility conditions

g↵,� · g�,� · g�,↵ = id on U↵ \ U� \ U� ,

g↵,↵ = id on U↵;

conversely, every collection of transition functions determines a holomorphic vector
bundle. Also recall that a holomorphic section of the vector bundle is a holomorphic
mapping s : M ! E such that ⇡ � s = id; locally, such a section is described by
holomorphic functions s↵ : U↵ ! Cr, subject to the condition that g↵,� · s� = s↵

on U↵ \ U� .

Definition 20.2. A morphism between two holomorphic vector bundles ⇡ : E ! M
and ⇡0 : E0

! M is a holomorphic mapping f : E ! E0 satisfying ⇡0
� f = ⇡, such

that the restriction of f to each fiber is a linear map fp : Ep ! E0
p
. If each fp is an

isomorphism of vector spaces, then f is said to be an isomorphism.

Example 20.3. The trivial vector bundle of rank r is the product M ⇥Cr. A vector
bundle E is trivial if it is isomorphic to the trivial bundle. Equivalently, E is trivial
if it admits r holomorphic sections s1, . . . , sr whose values s1(p), . . . , sr(p) give a
basis for the vector space Ep at each point p 2 M .

Given a holomorphic vector bundle ⇡ : E ! M , we let A(U, E) denote the space
of smooth sections of E over an open set U ✓ M . Likewise, Ap,q(U, E) denotes the
space of (p, q)-forms with coe�cients in E; in a local trivialization �↵ : ⇡�1(U↵) !

U↵ ⇥ Cr, these are given by r-tuples !↵ 2 Ap,q(U)�r, subject to the relation

!↵ = g↵,� · !�

on U↵ \ U� . As usual, they can also be viewed as sections of a sheaf A
p,q(E).

Example 20.4. Say L is a line bundle (so r = 1), which means that the transition
functions g↵,� 2 O

⇤
M

(U↵ \U�) are holomorphic functions. In this case, a (p, q)-form
with coe�cients in L is nothing but a collection of smooth forms !↵ 2 Ap,q(U↵),
subject to the condition that !↵ = g↵,�!� . The individual forms do not agree on
the intersections between the open sets (as they would for a usual (p, q)-form), but
di↵er by the factor g↵,� . One can view this as a “twisted” version of (p, q)-forms.
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Hermitian metrics and the Chern connection. For a smooth function f 2

A(U), the exterior derivative df is a smooth 1-form on U . Since M is a complex
manifold, we have d = @ + @̄, and correspondingly, df = @f + @̄f . Because of the
Cauchy-Riemann equations, f is holomorphic if and only if @̄f 2 A0,1(U) is zero.

For a holomorphic vector bundle E ! M , there similarly exists an operator
@̄ : A(M, E) ! A0,1(M, E), with the property that a smooth section s is holomor-
phic i↵ @̄s = 0. To construct this @̄-operator, note that in a local trivialization
�↵ : ⇡�1(U↵) ! U↵ ⇥ Cr, smooth sections of E are given by smooth mappings
s↵ : U↵ ! Cr; we may then define @̄s↵ = (@̄s↵,1, . . . , @̄s↵,r), which is a vector
of length r whose entries are (0, 1)-forms. On the overlap U↵ \ U� between two
trivializations, we have s↵ = g↵,� · s� , and therefore

@̄s↵ = g↵,� · @̄s�

because the entries of the r ⇥ r-matrix g↵,� are holomorphic functions. This shows
that if s 2 A(U, E), then @̄s is a well-defined element of A0,1(U, E).

On the other hand, this method cannot be used to define analogues of d or
@, because the corresponding derivatives of the g↵,� do not vanish. The correct
generalization of d, as it turns out, is that of a connection on E. As in di↵erential
geometry, a connection on a complex vector bundle is a mapping

r : T (M) ⇥ A(M, E) ! A(M, E)

that associates to a smooth tangent vector field ⇠ and a smooth section s another
smooth section r⇠s, to be viewed as the derivative of s along ⇠. The connection is
required to be A(M)-linear in its first argument and to satisfy the Leibniz rule

r⇠(fs) = (⇠f) · s + fr⇠s

for any smooth function f . Given a local trivialization � : ⇡�1(U) ! U ⇥ Cr, we
have r distinguished holomorphic sections s1, . . . , sr of E, corresponding to the
coordinate vectors on Cr. We can then represent the action of the connection as

rsj =
rX

k=1

✓j,k ⌦ sk

for certain ✓j,k 2 A1(U); this shorthand notation means that

r⇠sj =
rX

k=1

✓j,k(⇠)sk.

Because of the Leibniz rule, the 1-forms ✓j,k uniquely determine the connection.
As in di↵erential geometry, it is necessary to choose a metric on the vector bundle

before one has a canonical connection. We have already encountered the following
notion for the holomorphic tangent bundle T 0M .

Definition 20.5. A Hermitian metric on a complex vector bundle ⇡ : E ! M is a
collection of Hermitian inner products hp : Ep ⇥ Ep ! M that vary smoothly with
p 2 M , in the sense that h(s1, s2) is a smooth function for any two smooth sections
s1, s2 2 A(M, E).

Given a local trivialization � : ⇡�1(U) ! U ⇥ Cr of the vector bundle as above,
we describe the Hermitian metric h through its coe�cient matrix, whose entries

hj,k = h(sj , sk)
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are smooth functions on U . We have hk,j = hj,k, and the matrix is positive definite.
It turns out that, once we have chosen a Hermitian metric on E, there is a unique

connection compatible with the metric and the complex structure on E. To define it,
we observe that the complexified tangent bundle splits as TCM = T 0M �T 00M into
the holomorphic and antiholomorphic tangent bundles. Correspondingly, we can
split any connection on E as r = r

0 +r
00, with r

0 : T 0(M)⇥A(M, E) ! A(M, E)
and r

00 : T 00(M) ⇥ A(M, E) ! A(M, E).

Proposition 20.6. Let E be a holomorphic vector bundle with a Hermitian metric
h. Then there exists a unique connection that is compatible with the metric, in the
sense that for every smooth tangent vector field ⇠, we have

⇠ · h(s1, s2) = h(r⇠s1, s2) + h(s1, r⇠s2),

and compatible with the complex structure, in the sense that

r
00
⇠
s = (@̄s)(⇠)

for any smooth section ⇠ of the anti-holomorphic tangent bundle T 00M .

This connection is called the Chern connection of the holomorphic vector bundle
E; one usually abbreviates the second condition by writing r

00 = @̄.

Proof. To prove the uniqueness, suppose that we have such a connection r; we will
find a formula for the coe�cients ✓j,k in terms of the metric. So let � : ⇡�1(U) !

U ⇥ Cr be a local trivialization of the vector bundle, and let s1, . . . , sr denote the
corresponding holomorphic sections of E over U . The Hermitian metric is described
by its coe�cient matrix, whose entries hj,k = h(sj , sk) are smooth functions on U .
The second condition means that r

00sj = @̄sj = 0 because each sj is holomorphic,
and so we necessarily have

rsj = r
0sj =

rX

k=1

✓j,k ⌦ sk

with (1, 0)-forms ✓j,k 2 A1,0(U) that uniquely determine the connection. By the
first condition,

dhj,k = h(rsj , sk) + h(sj , rsk) =
rX

l=1

�
hl,k✓j,l + hj,l✓k,l

�
,

and this identity shows that @hj,k =
P

hl,k✓j,l and @̄hj,k =
P

hj,l✓k,l (which is
the conjugate of the other identity). If we let hj,k denote the entries of the inverse
matrix, it follows that

✓j,k =
rX

l=1

hl,k@hj,l,

which proves the uniqueness of the Chern connection. Conversely, we can use this
formula to define the connection locally; because of uniqueness, the local definitions
have to agree on the intersections of di↵erent open sets, and so we get a globally
defined connection on E. ⇤

Example 20.7. One should think of the Chern connection r as a replacement for
the exterior derivative d, and of r

0 as a replacement for @; in this way, the identity
r = r

0 + @̄ generalizes the formula d = @ + @̄. In fact, d is the Chern connection
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on the trivial bundle E = M ⇥C (whose smooth sections are the smooth functions)
for the Hermitian metric induced by the standard metric on C.


