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Class 19. Examples of Kähler manifolds (November 5)

The Hodge index theorem. Last time, we showed that the pairing

Q(↵, �) = (�1)k(k�1)/2

Z

M

!n�k
^ ↵ ^ �

on Hk(M, C) has the property that ip�qQ(↵, ↵̄) > 0 for any nonzero primitive
cohomology class ↵ 2 Hp,q. The following special case of this fact is very useful in
the study of compact Kähler surfaces.

Example 19.1. Let us consider the case of a compact Kähler surface M , where
n = dimM = 2. Here the Hodge decomposition takes the form

H2(M, C) = H2,0
�
�
H1,1

0 � C!
�

� H0,2,

with H1,1
0 = ker(⇤ : H1,1

! H0,0) the primitive cohomology. According to the
bilinear relations, the form

R
M

↵^ �̄ is positive definite on C! and on the subspace
H2,0

� H0,2; on the other hand, it is negative definite on the primitive subspace
H1,1

0 . Put di↵erently, the quadratic form Q(↵) =
R

M
↵ ^ ↵ has signature (1, m) on

the space H1,1(M) \ H2(M, R), where m = dimH1,1
0 , a result known as the Hodge

index theorem for surfaces.

We shall now look at several examples of Kähler and non-Kähler manifolds, and
compute the Hodge decomposition in a few important examples.

The Hopf surface. The Hodge decomposition shows that compact Kähler mani-
folds are special (in their topological or cohomological properties), when compared
to arbitrary compact complex manifolds. In this section, we construct an example
of a compact complex manifold, the so-called Hopf surface, that admits no Kähler
metric. Let S3 be the three-sphere in C2, defined as the set of points (z1, z2) such
that |z1|

2 + |z2|
2 = 1. There is a di↵eomorphism

' : S3
⇥ R ! C2

\ {0}, '(z1, z2, t) =
�
etz1, e

tz2

�
.

The infinite cyclic group Z naturally acts on S3
⇥ R, by letting

m · (z1, z2, t) = (z1, z2, t + m)

for m 2 Z; since R/Z ' S1, the quotient under this action is obviously isomorphic
to the product S3

⇥ S1. The di↵eomorphism ' allows us to transfer the action of Z
on S3

⇥ R to an action of Z on C2
\ {0}. Explicitly, it is given by the formula

m · (z1, z2) =
�
emz1, e

mz2

�
.

The formula shows that Z acts by biholomorphisms; moreover, the action is clearly
properly discontinuous and without fixed points. By Proposition 4.9, the quotient
of C2

\ {0} by the action of Z is a complex manifold M . By construction, it is
di↵eomorphic to S3

⇥ S1, and hence compact.
With the help of the Künneth formula from algebraic topology, we can compute

the cohomology of the product S3
⇥ S1, and hence that of M . The result is that

b0 = b1 = b3 = b4 = 1, b2 = 0,

where bk = dimHk(M, R). It follows that M cannot possibly admit a Kähler
metric, because ! would then define a nonzero class in H2(M, R), contradicting
the fact that b2 = 0. (Moreover, b1 and b3 are not even numbers.)
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Complex projective space. An important example of a compact Kähler mani-
fold is complex projective space Pn. Its cohomology is easy to compute, using some
results from algebraic topology

Lemma 19.2. The cohomology groups of complex projective space are

Hk(Pn, Z) '

(
Z for 0  k  2n even,

0 otherwise.

Proof. To save space, we omit the coe�cients from cohomology groups. We prove
the assertion by induction on n � 0, the case n = 0 being trivial (since P0 is a
single point). Let [z0, z1, . . . , zn] be homogeneous coordinates on Pn, and define
Z ✓ Pn as the set of points with zn = 0. Clearly Z ' Pn�1, and the complement
Pn

\ Z is isomorphic to Cn, whose homology groups in positive degrees are zero.
The Poincaré duality isomorphism

Hk(Pn, Z) ' H2n�k(Pn
\ Z) ' H2n�k(Cn)

now shows that Hk(Pn, Z) ' 0 for k < 2n, while H2n(Pn, Z) ' Z. We can then
use the long exact cohomology sequence for the pair (Pn, Z),

· · · ! Hk(Pn, Z) ! Hk(Pn) ! Hk(Z) ! Hk+1(Pn, Z) ! · · ·

to conclude that the restriction map Hk(Pn) ! Hk(Z) is an isomorphism for
k  2n � 2, and that H2n�1(Pn) ' 0. Likewise, we have

· · · ! H2n�1(Z) ! H2n(Pn, Z) ! H2n(Pn) ! H2n(Z) ! · · · ,

and the terms at both ends are zero since 2n � 1 > 2 dimZ = 2n � 2. ⇤

Recall that the Fubini-Study metric on Pn is Kähler, with Kähler form !FS . We
have already seen that each Lk(1) = !^k

FS is harmonic and gives a nonzero class in
H2k(Pn, R). Since this class is clearly of type (k, k), we conclude that

Hp,q(Pn) '

(
C for 0  p = q  n,

0 otherwise.

In other words, the Hodge diamond of Pn has the following shape:

C
0 0

0 C 0

0 0 0 0

0 C 0

0 0

C

1
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Complex tori. Another useful class of example are complex tori. Recall that
a complex torus is a quotient of Cn by a lattice ⇤, that is, a discrete subgroup
isomorphic to Z2n. We have seen that T = Cn/⇤ is a compact complex manifold
(since the action of ⇤ by translation is properly discontinuous and without fixed
points). The quotient map ⇡ : Cn

! T is locally biholomorphic, and so we can use
small open subsets of Cn as coordinate charts on T . With this choice of coordinates,
it is easy to see that the pullback map ⇡⇤ : Ap,q(T ) ! Ap,q(Cn) is injective and
identifies Ap,q(T ) with the space of smooth (p, q)-forms on Cn that are invariant
under translation by elements of ⇤.

In fact, T has a natural Kähler metric: On Cn, we have the Euclidean metric
with Kähler form i

2

P
dzj ^ dz̄j , where z1, . . . , zn are the coordinate functions on

Cn. This metric is invariant under translations, and thus descends to a Hermitian
metric h on T . Let ! be the associated (1, 1)-form; since q⇤! = i

2

P
dzj ^ dz̄j , it is

clear that d! = 0, and so h is a Kähler metric.

Lemma 19.3. The Laplace operator for this metric is given by the formula

�
⇣X

'J,KdzJ ^ dz̄K

⌘
=

X
�'J,K · dzJ ^ dz̄K ,

where �' = �
P

n

j=1

�
@2'/@x2

j
+ @2'/@y2

j

�
is the ordinary Laplacian on smooth

functions.

Proof. The injectivity of ⇡⇤ : Ap,q(T ) ! Ap,q(Cn) allows us to do the calculation
on Cn, where the metric is the standard one. In the notation from the appendix,
we have

� = 2⇤ = 2(@̄@̄⇤ + @̄⇤@̄) = 2
nX

j,k=1

�
@̄j ēj ē

⇤
k
@̄⇤

k
+ ē⇤

k
@̄⇤

k
@̄j ēj

�
.

Now @̄⇤
k

= �@k, and so the summation simplifies to

�

nX

j,k=1

�
@̄j ēj ē

⇤
k
@k + ē⇤

k
@k@̄j ēj

�
= �

nX

j,k=1

@k@̄j

�
ēj ē

⇤
k

+ ē⇤
k
ēj

�
= �2

nX

j=1

@j @̄j .

This means that we have

�

0

@
X

J,K

'J,KdzJ ^ dz̄K

1

A = �4
X

J,K

nX

j=1

@2'J,K

@zj@z̄j

dzJ ^ dz̄K ,

which gives the asserted formula because 4@2'/@zj@z̄j = @2'/@x2
j
+ @2'/@y2

j
. ⇤

The lemma shows that the space H
0(T ) of real-valued smooth functions on T

that are harmonic for the metric h can be identified with the space of harmonic
functions on Cn that are ⇤-periodic. Since T is compact, we know that H

0(T ) '

H0(T, R) ' R, and so any such function is constant. This means that all harmonic
forms of type (p, q) on T can be described as

(19.4)
X

|J|=p

X

|K|=q

aJ,KdzJ ^ dz̄K ,

with constants aJ,K 2 C. Thus if we let VR = H1(T, R), then H1(T, C) = VC =
V 1,0

� V 0,1, with V 1,0 generated by dz1, . . . , dzn, and V 0,1 by their conjugates.
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Since any harmonic form as in (19.4) is a wedge product of forms in VC, it follows
from the Hodge theorem that we have

Hk(T, C) '

k^
VC,

and under this isomorphism, the Hodge decomposition of T is nothing but the
abstract decomposition

k^
V =

M

p+q=k

V p,q

into the subspaces V p,q =
V

p V 1,0
⌦

V
q V 0,1. A basis for the space V p,q is given

by the forms dzJ ^ dz̄K with |J | = p and |K| = q. Note that we have dim V 1,0 =
dim V 0,1 = n, and hence

hp,q = dimV p,q =

✓
n

p

◆✓
n

q

◆
.

Example 19.5. Let T be a three-dimensional complex torus. Then the Hodge dia-
mond of T has the following shape:

C

C3 C3

C3 C9 C3

C C10 C10 C

C3 C9 C3

C3 C3

C

1

Hypersurfaces in projective space. As a more involved (and more useful) ex-
ample, we shall describe how to compute the Hodge numbers of a hypersurface in
projective space. As usual, let [z0, z1, . . . , zn+1] denote the homogeneous coordi-
nates on Pn+1. Then any homogeneous polynomial F 2 C[z0, z1, . . . , zn+1] defines
an analytic subset Z(F ), consisting of all points where F (z) = 0. (Di↵erent poly-
nomials can define the same analytic set; but if we assume that F is not divisible
by the square of any nonunit, then the zero set uniquely determines F by the Null-
stellensatz from algebraic geometry.) If for every z 6= 0, at least one of the partial
derivatives @F/@zj is nonzero, then Z(F ) is a complex submanifold of Pn+1 of
dimension n by the implicit mapping theorem (stated above as Theorem 7.3).

Note. We will show later that, in fact, any complex submanifold of projective space
is defined by polynomial equations; moreover, if M ✓ Pn+1 has dimension n, then
M = Z(F ) for a homogeneous polynomial F 2 C[z0, z1, . . . , zn+1].

From now on, we fix F 2 C[z0, z1, . . . , zn+1] with the above properties, and let
M = Z(F ) be the corresponding submanifold of Pn+1. We also let d = deg F be
the degree of the hypersurface. As usual, we give M the Kähler metric induced
from the Fubini-Study metric on Pn+1; then ! is the restriction of !FS . Since we
know that the cohomology of Pn+1 is generated by powers of !FS , and since the
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powers of ! define nonzero cohomology classes on M , the restriction map

Hk(Pn+1, C) ! Hk(M, C)

must be injective for 0  k  2n. Now it is a fact (which we might prove later on)
that the map is an isomorphism for 0  k < n. This result is known as the Lefschetz
hyperplane section theorem; it implies that the cohomology of M is isomorphic to
that of projective space in all degrees except k = n. In the remaining case, we have

Hn(M, C) = Hn(Pn+1, C) � Hn

0 (M, C),

where Hn

0 (M, C) is the so-called primitive cohomology of the hypersurface M . Note
that the first summand, Hn(Pn+1, C), will be either one-dimensional (if n is even),
or zero (if n is odd).

Gri�ths’ formula. The Hodge decomposition theorem shows that we have

Hn

0 (M, C) = Hn,0
0 � Hn�1,1

0 � · · · � H0,n

0 ,

and a pretty result by Phillip Gri�ths makes it possible to compute the dimensions
of the various summands.

Theorem 19.6. Let M ✓ Pn+1 be a complex submanifold of dimension n, defined
by a homogeneous polynomial F 2 C[z0, z1, . . . , zn+1] of degree d. Then

(19.7) Hp,n�p

0 '
An+1(M, n + 1 � p)

An+1(M, n � p) + dAn(M, n � p)
,

where Ak(M, `) denotes the space of rational k-forms on Pn+1 with a pole of order
at most ` along the hypersurface M , and d is the exterior derivative.

To explain Gri�ths’ formula, we recall that a rational (n + 1)-form on Cn+1 is
an expression

A(z1, . . . , zn+1)

B(z1, . . . , zn+1)
dz1 ^ · · · ^ dzn+1,

where A, B 2 C[z0, z1, . . . , zn+1] are polynomials, with B not identically zero. On
the set of points where B 6= 0, this defines a holomorphic di↵erential form, but
there may be poles along the zero set of B. If we homogenize the expression (by
replacing zj with zj/z0 and multiplying through by a power of z0), we see that
rational (n + 1)-forms on Pn+1 can be described as

P (z0, z1, . . . , zn+1)

Q(z0, z1, . . . , zn+1)
⌦;

here ⌦ is given by the formula

⌦ =
n+1X

j=0

(�1)jzjdz0 ^ · · · ^ cdzj ^ · · · ^ dzn+1,

and P, Q 2 C[z0, z1, . . . , zn+1] are homogeneous polynomials with deg P +(n+2) =
deg Q. If the rational form has a pole of order at most ` along the hypersurface M ,
and no other poles, then we must have Q = F `, and so deg P = `d � (n + 2).

Likewise, one can prove by homogenizing rational n-forms on Cn+1 that any
rational n-form on Pn+1 with a pole of order at most ` along M can be put into
the form

↵ =
X

0j<kn+1

(�1)j+k
zkPj � zjPk

F `
dz0 ^ · · · ^ cdzj ^ · · · ^ ddzk ^ · · · ^ dzn+1,
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for homogeneous polynomials Pj 2 C[z0, z1, . . . , zn+1] of degree deg Pj = `d�(n+1).
A short computation shows that we have

(19.8) d↵ =
F
P

j

@Pj

@zj
� `

P
j
Pj

@F

@zj

F `+1
⌦.

Returning to Gri�ths’ formula (19.7), every rational (n + 1)-form with a pole
of order at most (n + 1 � p) along M can thus be written as P⌦/Fn+1�p, with
P 2 C[z0, z1, . . . , zn+1] homogeneous of degree (n+1� p)d� (n+2). Writing S for
the polynomial ring, and S` for the space of homogeneous polynomials of degree `,
we can say that

An+1(M, n + 1 � p) ' S(n+1�p)d�(n+2),

by identifying the rational form P⌦/Fn+1�p with the homogeneous polynomial P .
The formula in (19.8) shows that we have

An+1(M, n � p) + dAn(M, n � p) '

n+1X

j=0

S(n�p)d�(n+1)
@F

@zj

+ S(n�p)d�(n+2)F.

The Jacobian ideal of the hypersurface M is the homogeneous ideal J(F ) ✓ S
generated by the partial derivatives of F ,

J(F ) = S

✓
@F

@z0
,
@F

@z1
, . . . ,

@F

@zn+1

◆
.

Recall that we always have F 2 J(F ); this follows from the identity

G =
1

deg G

n+1X

j=0

zj

@G

@zj

for homogeneous polynomials G. With the help of the graded ring R(F ) = S/J(F ),
we can now restate Gri�ths’ formula for the Hodge decomposition of the primitive
cohomology groups of M as follows: Suppose that F 2 C[z0, z1, . . . , zn+1] is an
irreducible homogeneous polynomial of degree d, whose zero set M = Z(F ) is
a submanifold of Pn+1. Then the summands of the Hodge decomposition of the
primitive cohomology of M can be described as

(19.9) Hp,n�p

0 (M) ' R(F )(n+1�p)d�(n+2).

To see this formula in action, let us compute a few examples:

Example 19.10. Let M ✓ P2 be a smooth plane curve of degree d, defined by a
homogeneous equation F 2 C[z0, z1, z2] with deg F = d. Since H1(P2, C) = 0, we
have H1

0 (M) ' H1(M, C) in this case. Gri�ths’ formula (with n = 1) says that

H1,0(M) ' R(F )d�3 ' Sd�3,

and so we find that the genus of the Riemann surface M is given by the formula

g = h1,0(M) = dim Sd�3 =

✓
d � 1

2

◆
.

So for instance, smooth plane cubic curves always have genus one.
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Appendix: The standard proof of the Kähler identities

For people who are not afraid of big computations, here is the standard proof
of the Kähler identities in Theorem 15.3. The two identities are conjugates of each
other, which means that we only need to prove one of them. Moreover, the identities
only involve the metric h and its first derivatives, and so they hold on a general
Kähler manifold as soon as they are known on Cn with the Euclidean metric. It is
therefore enough to prove the identity

[⇤, @] = i@̄⇤

on Cn with the Euclidean metric h. In this metric, dzj is orthogonal to dz̄k, and
to dzk for k 6= j, while

h(dzj , dzj) = h(dxj + idyj , dxj + idyj) = g(dxj , dxj) + g(dyj , dyj) = 2.

More generally, we have h(dzJ ^ dz̄K , dzJ ^ dz̄K) = 2|J|+|K|.
To facilitate the computation, we introduce a few additional but more basic

operators on the spaces Ap,q = Ap,q(Cn). First, define

ej : Ap,q
! Ap+1,q, ↵ 7! dzj ^ ↵

as well as its conjugate

ēj : Ap,q
! Ap,q+1, ↵ 7! dz̄j ^ ↵.

We then have

L↵ = ! ^ ↵ =
i

2

nX

j=1

dzj ^ dz̄j ^ ↵ =
i

2

nX

j=1

ej ēj↵.

Using the induced Hermitian inner product on forms, we then define the adjoint

e⇤
j
: Ap,q

! Ap�1,q

by the pointwise condition that h(ej↵, �) = h(↵, e⇤
j
�).

Lemma 19.11. The adjoint e⇤
j
has the following properties:

(1) If j 62 J , then e⇤
j
(dzJ ^ dz̄K) = 0, while e⇤

j
(dzj ^ dzJ ^ dz̄K) = 2dzJ ^ dz̄K .

(2) eke⇤
j

+ e⇤
j
ek = 2 id in case j = k, and 0 otherwise.

Proof. By definition, we have

h(e⇤
j
dzJ ^ dz̄K , dzL ^ dz̄M ) = h(dzJ ^ dz̄K , dzj ^ dzL ^ dz̄M ),

and since dzj occurs only in the second term, the inner product is always zero,
proving that e⇤

j
dzJ ^ dz̄K = 0. On the other hand,

h(e⇤
j
dzj ^ dzJ ^ dz̄K , dzL ^ dz̄M ) = h(dzj ^ dzJ ^ dz̄K , dzj ^ dzL ^ dz̄M )

= 2h(dzJ ^ dz̄K , dzL ^ dz̄M ),

which is nonzero exactly when J = L and K = M . From this identity, it follows
that e⇤

j
dzj ^ dzJ ^ dz̄K = 2dzJ ^ dz̄K , establishing (1).

To prove (2) for j = k, observe that since dzj ^ dzj = 0, we have

e⇤
j
ej

�
dzJ ^ dz̄K

�
=

(
0 if j 2 J ,

2dzJ ^ dz̄K if j 62 J,
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while

eje
⇤
j

�
dzJ ^ dz̄K

�
=

(
2dzJ ^ dz̄K if j 2 J ,

0 if j 62 J .

Taken together, this shows that eje⇤
j

+ e⇤
j
ej = 2 id. Finally, let us prove that

eke⇤
j
+ e⇤

j
ek = 0 when j 6= k. By (1), this is clearly true on dzJ ^ dz̄K in case j 62 J .

On the other hand,

eke⇤
j

�
dzj ^ dzJ ^ dz̄K

�
= 2ek

�
dzJ ^ dz̄K

�
= 2dzk ^ dzJ ^ dz̄K

and

e⇤
j
ek

�
dzj ^ dzJ ^ dz̄K

�
= e⇤

j

�
dzk ^ dzj ^ dzJ ^ dz̄K

�
= �2dzk ^ dzJ ^ dz̄K ,

and the combination of the two proves the asserted identity. ⇤

We also define the di↵erential operator

@j : Ap,q
! Ap,q,

X

J,K

'J,KdzJ ^ dz̄K 7!

X

J,K

@'J,K

@zj

dzJ ^ dz̄K

and its conjugate

@̄j : Ap,q
! Ap,q,

X

J,K

'J,KdzJ ^ dz̄K 7!

X

J,K

@'J,K

@z̄j

dzJ ^ dz̄K .

Clearly, both commute with the operators ej and e⇤
j
, as well as with each other. As

before, let @⇤
j

= �⇤@̄j⇤ be the adjoint of @j , and @̄⇤
j

= �⇤@j⇤ that of @̄j . Integration
by parts (against compactly supported forms) proves the following lemma.

Lemma 19.12. We have @⇤
j

= �@̄j and @̄⇤
j

= �@j.

We now turn to the proof of the crucial identity [⇤, @] = i@̄⇤.

Proof. All the operators in the identity can be expressed in terms of the basic
ones, as follows. Firstly, L = i

2

P
ej ēj , and so the adjoint is given by the formula

⇤ = �
i

2

P
ē⇤
j
e⇤
j
. Quite evidently, we have @ =

P
@jej and @̄ =

P
@̄j ēj , and after

taking adjoints, we find that @⇤ = �
P

@̄je⇤
j

and that @̄⇤ = �
P

@j ē⇤
j
. Using these

expressions, we compute that

⇤@ � @⇤ = �
i

2

X

j,k

⇣
ē⇤
j
e⇤
j
@kek � @kekē⇤

j
e⇤
j

⌘
= �

i

2

X

j,k

@k

⇣
ē⇤
j
e⇤
j
ek � ekē⇤

j
e⇤
j

⌘
.

Now ē⇤
j
e⇤
j
ek � ekē⇤

j
e⇤
j

= ē⇤
j
(e⇤

j
ek + eke⇤

j
), which equals 2ē⇤

j
in case j = k, and is zero

otherwise. We conclude that

⇤@ � @⇤ = �i
X

j

@j ē
⇤
j

= i@̄⇤,

which is the Kähler identity we were after. ⇤

One can use a similar computation to prove the identity

[L, ⇤] = (p � n) id on Ap(M),

from Proposition 15.5, which we used to show that the Lie algebra sl2(C) acts on
the space of di↵erential forms on M .
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Proof. The identity involves no derivatives of the metric, and it is therefore su�cient
to prove it for the Euclidean metric on Cn. We shall use the operators ej and
e⇤
j

introduced on the previous two pages. As shown there, L = i

2

P
ej ēj and

⇤ = i

2

P
e⇤
j
ē⇤
j
, and so we have

L⇤ � ⇤L = �
1

4

nX

j,k=1

⇣
ekēke⇤

j
ē⇤
j

� e⇤
j
ē⇤
j
ekēk

⌘
=

1

4

nX

j,k=1

⇣
eke⇤

j
ēkē⇤

j
� e⇤

j
ekē⇤

j
ēk

⌘

For j = k, we can use the identity eje⇤
j

+ e⇤
j
ej = 2 id to compute that

nX

j=1

⇣
eje

⇤
j
ēj ē

⇤
j

� e⇤
j
ej ē

⇤
j
ēj

⌘
=

nX

j=1

⇣
eje

⇤
j
ēj ē

⇤
j

� (2 id �eje
⇤
j
)(2 id �ēj ē

⇤
j
)
⌘

= 2
nX

j=1

⇣
eje

⇤
j

+ ēj ē
⇤
j

� 2 id
⌘
.

On the other hand, we have eje⇤
k

+ e⇤
k
ej = 0 if j 6= k, and therefore

nX

j=1

⇣
eke⇤

j
ēkē⇤

j
� e⇤

j
ekē⇤

j
ēk

⌘
=

nX

j=1

⇣
eke⇤

j
ēkē⇤

j
� eke⇤

j
ēkē⇤

j

⌘
= 0.

Combining the two individual calculations, we find that

L⇤ � ⇤L =
1

2

nX

j=1

⇣
eje

⇤
j

+ ēj ē
⇤
j

� 2 id
⌘

=
1

2

nX

j=1

⇣
eje

⇤
j

+ ēj ē
⇤
j

⌘
� n id .

Now eje⇤
j

acts as multiplication by 2 on dzJ ^ dz̄K whenever j 2 J , and otherwise
it is zero; the same is true for ēj ē⇤

j
. Consequently, the operator [L, ⇤] multiplies

dzJ ^ dz̄K by the integer |J | + |K| � n, as asserted. ⇤


