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Crass 19. ExaMPLES OF KAHLER MANIFOLDS (NOVEMBER 5)

The Hodge index theorem. Last time, we showed that the pairing
Qa.8) = (-0 V72 [ wrknang
M

on H¥(M,C) has the property that i?~9Q(a,a@) > 0 for any nonzero primitive
cohomology class o € HP'9. The following special case of this fact is very useful in
the study of compact Kahler surfaces.

Ezxample 19.1. Let us consider the case of a compact Kéhler surface M, where
n = dim M = 2. Here the Hodge decomposition takes the form

H*(M,C) = H** @ (Hy"' @ Cw) ® H*?,

with Hy' = ker(A: HY' — H%0) the primitive cohomology. According to the
bilinear relations, the form || QN B is positive definite on Cw and on the subspace
H?% @ H%2; on the other hand, it is negative definite on the primitive subspace
Hé’l. Put differently, the quadratic form Q(a) = fM a A « has signature (1,m) on
the space HY1(M) N H?(M,R), where m = dimHé’l, a result known as the Hodge
index theorem for surfaces.

We shall now look at several examples of Kéhler and non-Kéhler manifolds, and
compute the Hodge decomposition in a few important examples.

The Hopf surface. The Hodge decomposition shows that compact Kéhler mani-
folds are special (in their topological or cohomological properties), when compared
to arbitrary compact complex manifolds. In this section, we construct an example
of a compact complex manifold, the so-called Hopf surface, that admits no Kahler
metric. Let S® be the three-sphere in C2, defined as the set of points (z1, z2) such
that |21]? + |22/ = 1. There is a diffeomorphism

S x R = C?\ {0}, ¢(z1,22,t) = (e'21,€20).
The infinite cyclic group Z naturally acts on S? x R, by letting
m - (z1,22,t) = (21,20, t +m)

for m € Z; since R/Z ~ S!, the quotient under this action is obviously isomorphic
to the product S® x S'. The diffeomorphism ¢ allows us to transfer the action of Z
on $? x R to an action of Z on C? \ {0}. Explicitly, it is given by the formula

m-(z1,22) = (emzl, emZQ).

The formula shows that Z acts by biholomorphisms; moreover, the action is clearly
properly discontinuous and without fixed points. By Proposition the quotient
of C?\ {0} by the action of Z is a complex manifold M. By construction, it is
diffeomorphic to S? x S!, and hence compact.

With the help of the Kiinneth formula from algebraic topology, we can compute
the cohomology of the product S? x S', and hence that of M. The result is that

bp=by =b3=bs =1, by =0,

where b, = dim H¥(M,R). It follows that M cannot possibly admit a Kihler
metric, because w would then define a nonzero class in H?(M,R), contradicting
the fact that bo = 0. (Moreover, by and b3 are not even numbers.)
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Complex projective space. An important example of a compact Kéhler mani-
fold is complex projective space P™. Its cohomology is easy to compute, using some
results from algebraic topology

Lemma 19.2. The cohomology groups of complex projective space are

Z for 0 <k < 2n even,

0 otherwise.

HE(P",Z) ~ {

Proof. To save space, we omit the coefficients from cohomology groups. We prove
the assertion by induction on n > 0, the case n = 0 being trivial (since P° is a
single point). Let [zq,21,...,2,] be homogeneous coordinates on P™, and define
Z C P" as the set of points with z, = 0. Clearly Z ~ P"~!, and the complement
P™ \ Z is isomorphic to C", whose homology groups in positive degrees are zero.
The Poincaré duality isomorphism

HY(P", Z) ~ Hyp_,(P"\ Z) ~ Ha,_(C")

now shows that H*(P", Z) ~ 0 for k < 2n, while H?"(P", Z) ~ Z. We can then
use the long exact cohomology sequence for the pair (P, Z),

<. — H¥P", Z) —» H*(P") —» H*(Z) — H*Y (P, Z) — -

to conclude that the restriction map H¥(P") — HF(Z) is an isomorphism for
k <2n — 2, and that H*"~1(P") ~ 0. Likewise, we have

o= HNZ) - H™ (P, Z) — H>"(P") — H>™(Z) — - -+,

and the terms at both ends are zero since 2n — 1 > 2dim Z = 2n — 2. O

Recall that the Fubini-Study metric on P" is Kéhler, with Kahler form wggs. We
have already seen that each L¥(1) = wj% is harmonic and gives a nonzero class in
H?k(P™ R). Since this class is clearly of type (k, k), we conclude that

C for0<p=gq<mn,

0 otherwise.

HP9(P™) ~ {

In other words, the Hodge diamond of P™ has the following shape:
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Complex tori. Another useful class of example are complex tori. Recall that
a complex torus is a quotient of C™ by a lattice A, that is, a discrete subgroup
isomorphic to Z?". We have seen that 7' = C"/A is a compact complex manifold
(since the action of A by translation is properly discontinuous and without fixed
points). The quotient map 7: C" — T is locally biholomorphic, and so we can use
small open subsets of C™ as coordinate charts on 7. With this choice of coordinates,
it is easy to see that the pullback map 7*: AP9(T) — AP9(C") is injective and
identifies AP9(T') with the space of smooth (p, ¢)-forms on C™ that are invariant
under translation by elements of A.

In fact, T" has a natural Kéhler metric: On C", we have the Euclidean metric
with Kéahler form %Z dz; N\ dZj, where z1,..., 2, are the coordinate functions on
C™. This metric is invariant under translations, and thus descends to a Hermitian
metric h on T. Let w be the associated (1, 1)-form; since ¢*w = % > dzi NdZ;, it is
clear that dw = 0, and so h is a Kédhler metric.

Lemma 19.3. The Laplace operator for this metric is given by the formula
A (Z s rdzg A dEK) = ZA@J,K ~dzy N dZg,

where Ap = — Z?Zl (5290/8:8? + 32@/8%2») is the ordinary Laplacian on smooth
functions.

Proof. The injectivity of n*: AP9(T) — AP9(C™) allows us to do the calculation
on C", where the metric is the standard one. In the notation from the appendix,

we have
n

A=20=200"+0"9)=2 > (9;e;e10; + €1.0;05¢;).
G k=1

Now 5,’; = —0, and so the summation simplifies to

— Z (éjéjé,’;é)k + é,’i@kéjéj) = — Z 8k(§j (éjéz + éZéj) = *22 8j(§j.
Jrk=1 Jk=1 j=1
This means that we have

n

> P _
A ZQDJ,KdZJ/\dZK :*422 82’]‘82]* dzy NdZk,
JK J,K j=1

which gives the asserted formula because 402 /0z;0z; = 9*p/ 895? + 0%/ ay?-. O

The lemma shows that the space H°(T) of real-valued smooth functions on T
that are harmonic for the metric A can be identified with the space of harmonic
functions on C" that are A-periodic. Since T is compact, we know that H?(T) ~
H°(T,R) ~ R, and so any such function is constant. This means that all harmonic
forms of type (p,q) on T can be described as

(19.4) > Y aykdzy Adzk,
|71=p|K|=q

with constants ay x € C. Thus if we let Vg = H'(T,R), then H(T,C) = V¢ =
V10 @ VOl with V1O generated by dzi,...,dz,, and V%! by their conjugates.
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Since any harmonic form as in (19.4) is a wedge product of forms in V¢, it follows
from the Hodge theorem that we have

k
H*T,C) ~ \ Ve,

and under this isomorphism, the Hodge decomposition of T is nothing but the
abstract decomposition

k
AV= @ v

p+q=k

into the subspaces VP4 = AP V10 @ ATV A basis for the space VP4 is given
by the forms dz; A dzx with |J| = p and |K| = ¢q. Note that we have dim V1 =

dim V%! = n, and hence
WP = dim VP9 = <”> <“>
p q

Example 19.5. Let T be a three-dimensional complex torus. Then the Hodge dia-
mond of T has the following shape:

C
c3 c?
c? C? c3
C (CIO (ClO C
c? C?® c3
c3 c?
C

Hypersurfaces in projective space. As a more involved (and more useful) ex-
ample, we shall describe how to compute the Hodge numbers of a hypersurface in
projective space. As usual, let [zq, 21,...,2p+1] denote the homogeneous coordi-
nates on P"*1. Then any homogeneous polynomial F € Cl[zo, 21, . ., 2n+1] defines
an analytic subset Z(F), consisting of all points where F'(z) = 0. (Different poly-
nomials can define the same analytic set; but if we assume that F' is not divisible
by the square of any nonunit, then the zero set uniquely determines F' by the Null-
stellensatz from algebraic geometry.) If for every z # 0, at least one of the partial
derivatives 0F/0z; is nonzero, then Z(F) is a complex submanifold of P! of
dimension n by the implicit mapping theorem (stated above as Theorem [7.3)).

Note. We will show later that, in fact, any complex submanifold of projective space
is defined by polynomial equations; moreover, if M C P**! has dimension n, then
M = Z(F) for a homogeneous polynomial F' € Clzg, 21, - - ., Zn+t1]-

From now on, we fix F € Clzo, 21, ..., 2n+1] with the above properties, and let
M = Z(F) be the corresponding submanifold of P"*!. We also let d = deg F' be
the degree of the hypersurface. As usual, we give M the Kahler metric induced
from the Fubini-Study metric on P"*!; then w is the restriction of wrg. Since we
know that the cohomology of P**! is generated by powers of wrg, and since the
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powers of w define nonzero cohomology classes on M, the restriction map
H*P" ', C) — H*(M,C)
must be injective for 0 < k < 2n. Now it is a fact (which we might prove later on)
that the map is an isomorphism for 0 < k < n. This result is known as the Lefschetz
hyperplane section theorem; it implies that the cohomology of M is isomorphic to
that of projective space in all degrees except £ = n. In the remaining case, we have
H"(M,C) = H"(P"™',C) @ H}(M,C),

where HJ' (M, C) is the so-called primitive cohomology of the hypersurface M. Note

that the first summand, H"™(P"*!, C), will be either one-dimensional (if n is even),

or zero (if n is odd).

Griffiths’ formula. The Hodge decomposition theorem shows that we have
HSL(M, (C) _ HSMO ® H(?)’L—l,l - Hgm’

and a pretty result by Phillip Griffiths makes it possible to compute the dimensions

of the various summands.

Theorem 19.6. Let M C P! be a complex submanifold of dimension n, defined
by a homogeneous polynomial F' € Clzo, 21, ..., 2n+1] of degree d. Then

ALY (M 1-
ArtH(M,n — p) + dA™(M,n — p)
where AF(M, () denotes the space of rational k-forms on P"*1 with a pole of order
at most £ along the hypersurface M, and d is the exterior derivative.

To explain Griffiths’ formula, we recall that a rational (n + 1)-form on C**! is
an expression

A(Zl e Zn+1)
AT O T Aoy A A dz ,
B(z1,..., Zn41) ! i
where A, B € C[zp, 21, ..., 2n+1] are polynomials, with B not identically zero. On

the set of points where B # 0, this defines a holomorphic differential form, but
there may be poles along the zero set of B. If we homogenize the expression (by
replacing z; with z;/2zo and multiplying through by a power of zy), we see that
rational (n + 1)-forms on P"*! can be described as

1:)(,20,2117 e 72,’71_;,_1)(2
Q(ZO> Zlyees Zn+1)
here 2 is given by the formula

n+1
Q=Y (-~ zdag A Adzy Ao Az,
7=0

)

and P,Q € C[zg, 21, - - ., Zn+1] are homogeneous polynomials with deg P+ (n+2) =
deg Q. If the rational form has a pole of order at most £ along the hypersurface M,
and no other poles, then we must have Q = F*, and so deg P = ¢d — (n + 2).

Likewise, one can prove by homogenizing rational n-forms on C"*! that any
rational n-form on P?*! with a pole of order at most ¢ along M can be put into
the form

2P — 2 P —~ —
o= Z (—1)J+k%d?&0/\'“/\d2’j/\"'/\de/\"'/\dZnJrl,
0<j<k<n+1
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for homogeneous polynomials P; € C|z, 21, . . . , Zn4+1] of degree deg P; = ¢d—(n+1).
A short computation shows that we have
sz 0z _gzj P]g%
Fe+l
Returning to Griffiths’ formula (19.7), every rational (n + 1)-form with a pole
of order at most (n + 1 — p) along M can thus be written as PQ/F"t1=P  with
P € Clzo, 21, - - - y Zn+1] homogeneous of degree (n+1—p)d — (n+2). Writing S for
the polynomial ring, and Sy for the space of homogeneous polynomials of degree ¢,
we can say that

(19.8) dov = Q.

AnJrl(M? n+1-— p) = S(n+1—p)d—(n+2)a
by identifying the rational form PQ/F"*1~P with the homogeneous polynomial P.
The formula in (19.8) shows that we have
n+1

" " oF
A -‘rl(M, n — p) + dA (M, n — p) ~ Z S(n_p)d_(n_i_l)aizj + S(n—p)d—('n,—',-Q)F'
=0

The Jacobian ideal of the hypersurface M is the homogeneous ideal J(F) C S
generated by the partial derivatives of F,

J(F)S<8F oF oF >

020" 021" Oz
Recall that we always have F' € J(F); this follows from the identity
n+1
1

deg G ‘

oG
G= - Zja

for homogeneous polynomials G. With the help of the graded ring R(F') = S/J(F),
we can now restate Griffiths’ formula for the Hodge decomposition of the primitive
cohomology groups of M as follows: Suppose that F' € Clzg, 21,...,2n41] Is an
irreducible homogeneous polynomial of degree d, whose zero set M = Z(F) is
a submanifold of P**!. Then the summands of the Hodge decomposition of the
primitive cohomology of M can be described as

(199) H(I))ynip(M) = R(F)(n+1—p)d—(7z+2)~

To see this formula in action, let us compute a few examples:

Example 19.10. Let M C P? be a smooth plane curve of degree d, defined by a
homogeneous equation F € C[zo, 21, 23] with deg F' = d. Since H'(P?,C) = 0, we
have H} (M) ~ H'(M,C) in this case. Griffiths’ formula (with n = 1) says that

HY(M) ~ R(F)q_3 ~ Sq_3,

and so we find that the genus of the Riemann surface M is given by the formula

g=h""(M)=dimS; 35 = (dg 1).

So for instance, smooth plane cubic curves always have genus one.
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APPENDIX: THE STANDARD PROOF OF THE KAHLER IDENTITIES

For people who are not afraid of big computations, here is the standard proof
of the Kéhler identities in Theorem [15.3] The two identities are conjugates of each
other, which means that we only need to prove one of them. Moreover, the identities
only involve the metric h and its first derivatives, and so they hold on a general
Kéhler manifold as soon as they are known on C™ with the Euclidean metric. It is
therefore enough to prove the identity

[A, 0] = i0*

on C" with the Euclidean metric k. In this metric, dz; is orthogonal to dz, and
to dzy for k # j, while

h(dzj,dz;) = h(dz; + idy;, dx; + idy;) = g(dxj, dz;) + g(dy;, dy;) = 2.

More generally, we have h(dz; A dZg,dz; NdzZg) = oI I+IK]
To facilitate the computation, we introduce a few additional but more basic
operators on the spaces AP = AP:9(C"™). First, define

ej: APY — APTLA oy dz; A a
as well as its conjugate
j: APY — APITL o dZ A
We then have
. n . n
La=wAha= %Zdzj/\déj/\a: %Zejéja.
j=1 j=1
Using the induced Hermitian inner product on forms, we then define the adjoint
e;r AP — AP—1a
by the pointwise condition that h(e;a, ) = h(a, ejp).
Lemma 19.11. The adjoint €} has the following properties:
(1) If j & J, then ej(dz; Ndzk) = 0, while e}(dz; Ndzy NdzZi) = 2dz; NdZk .
(2) exe; +ejer, = 2id in case j =k, and 0 otherwise.
Proof. By definition, we have
h(e;fdzJ NdZg,dzp NdzZy) = h(dzg AN dZi, dz; A dzp A dZar),

and since dz; occurs only in the second term, the inner product is always zero,
proving that ejdz; A dzx = 0. On the other hand,
h(e;fdzj Ndzy NdZg,dzp, N\ dZM) = h(dzj Ndzy NdZg, de ANdzp N dZM)
= Qh(dZJ ANdZg,dzp N dZM),
which is nonzero exactly when J = L and K = M. From this identity, it follows
that ejdz; Adzy A dzx = 2dz; A dZk, establishing (1).
To prove (2) for j = k, observe that since dz; A dz; = 0, we have

0 ifjed,

‘o (dzg A dzx) =
ejes (dzg 1 d2) {ZdZJ/\dZK ifj e,
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while
2dzy NdzZg ifj€J,

eje;f (dz_] A dEK) = {0 g

Taken together, this shows that ejej + efe; = 2id. Finally, let us prove that
erxej +ejer =0 when j # k. By (1), this is clearly true on dzy AdZk in case j & J.
On the other hand,

eke; (dzj ANdzy N\ déK) = 2ey, (dZJ A dZK) =2dzi, Ndzg NdZx
and
eser(dz; Ndzy Ndzg) = € (dzp Adz; Adzg Ndzg) = —2dz, Adzy A dzg,
and the combination of the two proves the asserted identity. ([

We also define the differential operator
0

PILE dzy NdZg
82’]‘

ﬁj:AP’q%AP’q, ZQDJ)KCZZJ/\dEK*—)Z
J K J,K

and its conjugate

5]': APT — AP E SDJ7KdZJ/\d2K}—) E g{’KdZJ/\de.
z.
J K J K J

0

Clearly, both commute with the operators e; and e}, as well as with each other. As
before, let 97 = — *5]-* be the adjoint of 9;, and 5]’!‘ = —x0;* that of 5]-. Integration
by parts (against compactly supported forms) proves the following lemma.

Lemma 19.12. We have 0; = —5j and 5;-‘ = —0;.
We now turn to the proof of the crucial identity [A, 9] = i0*.

Proof. All the operators in the identity can be expressed in terms of the basic
ones, as follows. Firstly, L = § > e;é;, and so the adjoint is given by the formula
A = —%> erel. Quite evidently, we have 0 =} 0;e; and 0 =" 0;e;, and after
taking adjoints, we find that 0* = —»_ 0;e} and that 0* = — ) 0;€;. Using these
expressions, we compute that

_ Z P —k k| __ Z P —% %

A0 — OA = —3 E (ejejakek — Opereje; ) = —3 g Ok | Ejejer — ereje; ).
g,k J.k

Now éjejek — eké;e; = é}‘(e;‘»ek + eke;), which equals 2éj in case j = k, and is zero

otherwise. We conclude that

AO — OA = _Z'Zajé; =i0",
j

which is the Kéhler identity we were after. (I

One can use a similar computation to prove the identity
[L,A] = (p—n)id on AP(M),

from Proposition which we used to show that the Lie algebra sl3(C) acts on
the space of differential forms on M.
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Proof. The identity involves no derivatives of the metric, and it is therefore sufficient
to prove it for the Euclidean metric on C". We shall use the operators e; and

e; introduced on the previous two pages. As shown there, L = %Zejéj and

A =35> eje;, and so we have

1 n 1 n
== (erewele) —eieierr) = 5 > (exelere; — elerdie
LA — AL = 1 (ekeke] €, — €€ ekek> 1 (ekej €r€; — €;ekE; ek)
jk=1 jk=1

For j =k, we can use the identity eje; + eje; = 2id to compute that

n n

[Py * %= _ P sl % f1 5 5%
g (ejejejej—ejejejej)—g (ejejejej (2id —ejej)(2id e]ej))
i=1

j=1

= 2Z(ejej +é;€ — 2id>.
j=1
On the other hand, we have e;ej, + efe; = 0 if j # k, and therefore

n n
§ : * = —x * k= _§ ook A
(ekejekej - ejekejek) = (ekejekej eke] ekeJ) 0.
=1 =1
Combining the two individual calculations, we find that

1 - * — % : 1 - * = % :
LA - AL = 3 Z(ejej +ej€; — 21d) =3 Z(ejej + ejej) —nid.

j=1 j=1
Now eje’ acts as multiplication by 2 on dz; A dzgx whenever j € J, and otherwise

it is zero; the same is true for €;e;. Consequently, the operator [L, A] multiplies
dzj N dZg by the integer |J| + |K| — n, as asserted. O



