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Class 18. The Hodge decomposition (October 31)

Consequences of the Kähler identities. The Kähler identities lead to many
wonderful relations between the di↵erent operators that we have introduced; here
we shall give the three most important ones.

Corollary 18.1. On a Kähler manifold, the various Laplace operators are related
to each other by the formula ⇤ = ⇤ = 1

2�.

Proof. By definition,

� = dd⇤ + d⇤d = (@ + @̄)(@⇤ + @̄⇤) + (@⇤ + @̄⇤)(@ + @̄).

According to the Kähler identities in Theorem 15.3, we have @̄⇤ = i@⇤ � i⇤@, and
therefore

� = (@ + @̄)(@⇤
� i⇤@ + i@⇤) + (@⇤

� i⇤@ + i@⇤)(@ + @̄)

= @@⇤ + @̄@⇤
� i@̄⇤@ + i@̄@⇤ + @⇤@ + @⇤@̄ � i⇤@@̄ + i@⇤@̄.

Now @⇤@̄ = i[⇤, @̄]@̄ = �i
�
⇤@̄� @̄⇤

�
@̄ = i@̄⇤@̄ = �@⇤@̄ by the other Kähler identity.

The above formula consequently therefore simplifies to

� = ⇤ � i@̄⇤@ + i@̄@⇤ � i⇤@@̄ + i@⇤@̄ = ⇤ � i@̄⇤@ � i@@̄⇤ + i⇤@̄@ + i@⇤@̄

= ⇤ + i@(⇤@̄ � @̄⇤) + i(⇤@̄ � @̄⇤)@ = ⇤ + @@⇤ + @⇤@ = 2⇤.

The other formula, � = 2⇤, follows from this by conjugation. ⇤

Corollary 18.2. On a Kähler manifold, the Laplace operator � commutes with
the operators ⇤, L, and ⇤, and satisfies �Ap,q(M) ✓ Ap,q(M). In particular, ⇤, L,
and ⇤ preserve harmonic forms.

Proof. By taking adjoints, we obtain from the second identity in Theorem 15.3 that

�i@̄ = (i@̄⇤)⇤ = [⇤, @]⇤ = [@⇤, L] = @⇤L � L@⇤.

Using the resulting formula L@⇤ = @⇤L + i@̄, we compute that

L⇤ = L@@⇤ + L@⇤@ = @L@⇤ + @⇤L@ + i@̄@

= @@⇤L + i@@̄ + @⇤@L + i@̄@ = @@⇤L + @⇤@L = ⇤L.

Therefore [�, L] = 2[⇤, L] = 0; after taking adjoints, we also have [⇤, �] = 0. That
� commutes with ⇤ was shown in the homework; finally, � = 2⇤, and the latter
clearly preserves the space Ap,q(M). ⇤

A nice consequence is that the Kähler form !, which is naturally defined by the
metric, is a harmonic form. Note that this is equivalent to the Kähler condition,
since harmonic forms are always closed.

Corollary 18.3. On a Kähler manifold, the Kähler form ! is harmonic.

Proof. The constant function 1 is clearly harmonic; since ! = L(1), and since the
operator L preserves harmonic functions, it follows that ! is harmonic. ⇤
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The Hodge decomposition. Now let M be a compact Kähler manifold, with
Kähler form !. We have seen in Corollary 18.1 that � = 2⇤; this implies that the
Laplace operator � preserves the type of a form, and that a form is harmonic if
and only if it is @̄-harmonic. In particular, it follows that if a form ↵ 2 Ak(M) is
harmonic, then its components ↵p,q

2 Ap,q(M) are also harmonic. Indeed, we have

0 = �↵ =
X

p+q=k

�↵p,q,

and since each �↵p,q belongs again to Ap,q(M), we see that �↵p,q = 0.

Corollary 18.4. On a compact Kähler manifold M , the space of harmonic forms
decomposes by type as

H
k(M) ⌦R C =

M

p+q=k

H
p,q(M),

where H
p,q(M) is the space of (p, q)-forms that are @̄-harmonic (and hence also

harmonic).

Since we know that each cohomology class contains a unique harmonic represen-
tative, we now obtain the famous Hodge decomposition of the de Rham cohomology
of a compact Kähler manifold. We state it in a way that is independent of the par-
ticula Kähler metric.

Theorem 18.5. Let M be a compact Kähler manifold. Then the de Rham coho-
mology with complex coe�cients admits a direct sum decomposition

(18.6) Hk(M,C) =
M

p+q=k

Hp,q,

with Hp,q equal to the subset of those cohomology classes that contain a d-closed
form of type (p, q). We have Hq,p = Hp,q, where complex conjugation is with respect
to the real structure on Hk(M,C) ' Hk(M,R)⌦RC; moreover, Hp,q is isomorphic
to the Dolbeault cohomology group Hp,q(M) ' Hq(M, ⌦p

M
).

Proof. Since M is a Kähler manifold, it admits a Kähler metric h, and we can
consider forms that are harmonic for this metric. By Theorem 13.7, every class
in Hk(M,C) contains a unique complex-valued harmonic form ↵. Since ↵ =P

p+q=k
↵p,q, with each ↵p,q harmonic and hence in Hp,q, we obtain the asserted de-

composition. Note that by its very description, the decomposition does not depend
on the choice of Kähler metric. Since the conjugate of a (p, q)-form is a (q, p)-
form, it is clear that Hp,q = Hq,p. Finally, every harmonic form is automatically
@̄-harmonic, and so we have Hp,q

' H
p,q(M) ' Hp,q(M) by Theorem 14.3. ⇤

Recall the definition of the sheaf ⌦p

M
holomorphic p-forms: its sections are

smooth (p, 0)-forms that can be expressed in local coordinates as

↵ =
X

j1<···<jk

fj1,...,jkdzj1 ^ · · · ^ dzjk ,

with locally defined holomorphic functions fj1,...,jk . This expression shows that
@̄↵ = 0. A useful (and surprising) fact is that on a compact Kähler manifold, any
global holomorphic p-form is harmonic, and hence satisfies d↵ = 0.
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Corollary 18.7. On a compact Kähler manifold M , every holomorphic form is
harmonic, and so we get an embedding H0(M, ⌦p

M
) ,! Hp(M,C) whose image is

precisely the space Hp,0.

Proof. If ↵ 2 Ap,0(M) is holomorphic, it satisfies @̄↵ = 0; on the other hand,
@̄⇤↵ = 0 since it would belong to the space Ap,�1(M). Thus ↵ is @̄-harmonic, and
hence also harmonic. ⇤

The decomposition of the cohomology groups of M can be represented by the
following picture, often called the Hodge diamond due to its shape.

Hn,n

Hn,n�1 Hn�1,n

Hn,n�2 Hn�1,n�1 Hn�2,n

Hn,0 Hn�1,1 H1,n�1 H0,n

H2,0 H1,1 H0,2

H1,0 H0,1

H0,0

1

It has several symmetries: On the one hand, we have Hq,p = Hp,q; on the other
hand, the ⇤-operator induces an isomorphism between Hp,q and Hn�q,n�p.

Example 18.8. Let M be a compact Riemannan surface. Then any Hermitian
metric h on M is Kähler, and so we get the decomposition

H1(M,C) = H1,0
� H0,1,

with H1,0
' H0(M, ⌦1

M
) and H0,1

' H1(M, OM ). In particular, the dimension is
dim H1(M,R) = 2g, where g = dimC H0(M, ⌦1

M
) is the genus. This means that

the genus is a topological invariant of M , a fact that should be familiar from the
theory of Riemann surfaces.

Example 18.9. Let us consider the case of a compact connected Kähler manifold of
dimension two (so n = 2). In that case, the Hodge diamond looks like this:

H2,2

H2,1 H1,2

H2,0 H1,1 H0,2

H1,0 H0,1

H0,0

1

If we let hp,q = dim Hp,q(M), then h0,0 = h2,2 = 1 since M is connected. Moreover,
the two symmetries mentioned above show that h1,0 = h0,1 = h2,1 = h1,2 and that
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h2,0 = h0,2. We also have h1,1
� 1, since the class of the Kähler form ! is a nonzero

element of H1,1.

Consequences of the Hodge decomposition. The Hodge decomposition the-
orem shows that compact Kähler manifold have various topological properties not
shared by arbitrary complex manifolds.

Corollary 18.10. On a compact Kähler manifold, the odd Betti numbers b2k+1 =
dim H2k+1(M,R) are always even.

Proof. Indeed, b2k+1 = dimC H2k+1(M,C). The latter decomposes as

H2k+1(M,C) =
M

p+q=2k+1

Hp,q,

and since dimC Hp,q = dimC Hq,p, we get the assertion. ⇤

Corollary 18.11. On a compact Kähler manifold, the even Betti numbers b2k are
always nonzero.

Proof. Since the operator L = !^ (�) preserves harmonic forms, each !^k = Lk(1)
is harmonic; moreover, it is not zero because of Wirtinger’s formula vol(M) =
1
n!

R
M
!^n. Its cohomology class gives a nonzero element in H2k(M,R). ⇤

Another property of compact Kähler manifolds that is used very often in complex
geometry is the following @@̄-Lemma.

Proposition 18.12. Let M be a compact Kähler manifold, and let � be a smooth
form that is both @-closed and @̄-closed. If � is also either @-exact or @̄-exact, then
it can be written as � = @@̄ .

Proof. We shall suppose that � = @̄↵. Let ↵ = �+ �� be the decomposition given
by (13.6), with � harmonic. We then have 2⇤� = �� = 0, and therefore @̄� = 0.
Using the previously mentioned identity @̄@⇤ = �@⇤@̄, we compute that

� = @̄↵ = @̄(2⇤)� = 2@̄(@@⇤ + @⇤@)� = �2@@̄(@⇤�) � 2@⇤@̄@�.

Now @� = 0, and so the form @⇤@̄@� belongs to ker @ \ im @⇤ = {0}. Consequently,
we have ! = @@̄ with  = �2@⇤�. ⇤

The Lefschetz decomposition in cohomology. We showed earlier that the
three operators

L(↵) = ! ^ ↵, ⇤(↵) = (�1)deg ↵
⇤ L ⇤ ↵, H(↵) =

�
deg↵� n

�
↵

determine a representation of the Lie algebra sl2(C) on the space of all forms

An+⇤(M) =
nM

k=�n

An+k(M).

We have just seen that all three operators actually commute with the Laplace
operator �, and this makes the space of all harmonic forms

H
n+⇤(M) =

nM

k=�n

H
n+k(M)
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is a subrepresentation. On a compact Kähler manifold, we can use the fact that
every class in Hk(M,C) is uniquely represented by a harmonic form to get an
induced representation of sl2(C) on the total cohomology

Hn+⇤(M,R) =
nM

k=�n

Hn+k(M,R).

Let us denote the three operators in this representation by the symbols Lcoh , ⇤coh ,
and Hcoh , to emphasize that we are now looking at cohomology. To be precise, if
[↵] 2 Hn+k(M,R) is a cohomology class, then

Lcoh [↵] = [L↵0], ⇤coh [↵] = [⇤↵0], Hcoh [↵] = [H↵0],

where ↵0 2 H
k(M) is the harmonic representative of the given class. Of course,

H[↵] = (deg↵� n)[↵] and Lcoh [↵] = [! ^ ↵] = [!] ^ [↵],

since the di↵erence ↵ � ↵0 is exact. But ⇤coh [↵] 6= [⇤↵]; in fact, the latter does
not even make sense usually, because ⇤ does not take closed forms to closed forms.
(The commutator [⇤, d] is not zero!)

From the sl2(C)-representation, we obtain the following Lefschetz decomposition
of the cohomology of M .

Theorem 18.13. Let M be a compact Kähler manifold with Kähler form !. Then
every cohomology class a 2 Hn+k(M,C) admits a unique decomposition

a =
X

j=max(k,0)

Lj

coh

j!
aj ,

with aj 2 Hn+k�2j(M,R) primitive. This means that ⇤cohaj = 0, or equivalently,

that L2j�k+1
coh aj = 0.

The decomposition is compatible with the Hodge decomposition: ! is a (1, 1)-
form, and so LcohHp,q

✓ Hp+1,q+1 and ⇤cohHp,q
✓ Hp�1,q�1, because this is true

on the level of harmonic forms. It follows that if a 2 Hp,q, then we get aj 2 Hp�j,q�j

for the components in the Lefschetz decomposition.
The best-known consequence of the Lefschetz decomposition is the following

result, usually called the Hard Lefschetz Theorem, “hard” in the sense of “di�cult”.

Corollary 18.14. The operator Lk

coh : Hn�k(M,R) ! Hn+k(M,R) is an isomor-
phism for every k � 1.

Proof. This holds on the level of harmonic forms because of Corollary 16.8. ⇤

The Hodge-Riemann bilinear relations. The last step in our proof of the
Kähler identities was Weil’s identity

w(↵) = "(↵)J(⇤↵).

I already explained last time that this identity is very useful for describing the inner
product (↵,�)M =

R
M
↵^⇤� on the space of forms more in terms of representation

theory. We can turn it around to describe the positivity of the natural pairing

Hk(M,R) ⌦ H2n�k(M,R) ! R,
�
[↵], [�]

�
7!

Z

M

↵ ^ �
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on cohomology. First, we can use the Lefschetz isomorphism to turn this into a
(nondegenerate) pairing on Hk(M,R). Fix an integer 0  k  n, and define a
bilinear form on the space Ak(M) by the formula

Q(↵,�) = (�1)k(k�1)/2
· (Ln�k↵,�)M = (�1)k(k�1)/2

Z

M

!n�k
^ ↵ ^ �.

It is easy to see that Q(�,↵) = (�1)kQ(↵,�), and so Q is either linear or antilinear,
depending on the parity of k. Moreover, if d↵ = d� = 0, then the value of Q(↵,�)
only depends on the cohomology classes of ↵ and �, and so this defines a pairing

Q : Hk(M,R) ⌦ Hk(M,R) ! R.

We obtain the so-called Hodge-Riemann bilinear relations.

Theorem 18.15. The bilinear form Q(↵,�) = (�1)k(k�1)/2
R

M
!n�k

^ ↵ ^ � has
the following two properties:

(1) In the Hodge decomposition of Hk(M,C), the subspaces Hp,q and Hp
0
,q

0
are

orthogonal to each other unless p = q0 and q = p0.
(2) For any nonzero primitive class ↵ 2 Hp,q, we have ip�qQ(↵,↵) > 0.

Proof. Because Q(↵,�) only depends on the cohomology classes of ↵ and �, it is
enough to consider the case where ↵,� 2 H

k(M) are harmonic forms. The first
assertion is easy to see by looking at types. For the second one, suppose that
↵,� 2 H

p,q(M) are primitive with p + q = k, so that ⇤↵ = ⇤� = 0. From Weil’s
identity (in Proposition 17.3), we get

(↵,�)M =

Z

M

↵ ^ ⇤� =
(�1)k(k�1)/2ip�q

(n � k)!

Z

M

↵ ^ Ln�k� =
ip�q

(n � k)!
Q(↵,�).

This shows that ip�qQ(↵,�) = (n � k)! · (↵,�)M is indeed a positive-definite inner
product on the space Hp,q. ⇤


