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Class 17. Proof of the Kähler identities (Oct 29)

Lefschetz decomposition and primitive forms. Today, we are finally going
to prove the Kähler identities. Before we do that, let us first recall the general
results about sl2(C)-representations from last time in the case of di↵erential forms.
As usual, M is a Kähler manifold of dimension n, and L, ⇤, and H are the three
operators defined by

L(↵) = ! ^ ↵, ⇤(↵) = (�1)deg↵
⇤ L ⇤ ↵, H(↵) =

�
deg ↵ � n

�
↵.

They determine a representation of sl2(C) on the vector space

An+⇤(M) =
nM

k=�n

An+k(M).

We proved that every ↵ 2 An+k(M) has a unique Lefschetz decomposition

↵ =
X

j�max(0,k)

Lj

j!
↵j ,

where ↵j 2 An+k�2j(M) is primitive, meaning that ⇤↵j = 0. We deduced that

Lk : An�k(M) ! An+k(M)

is an isomorphism for every k � 1. This leads to the following description of
primitive forms in terms of L.

Lemma 17.1. Let k � 0. A form ↵ 2 An�k(M) is primitive i↵ Lk+1(↵) = 0.

Proof. If ⇤↵ = 0, then we get Lk+1↵ = 0 from Lemma 16.1. It is therefore enough
to prove the converse. Consider a form ↵ 2 An�k(M) such that Lk+1↵ = 0. Since
k  0, the Lefschetz decomposition of ↵ takes the form

↵ =
X

j�0

Lj

j!
↵j ,

and so we get

0 = Lk+1↵ =
X

j�1

Lj+k+1

j!
↵j .

Since j + k + 1  k + 2j for j � 1, the uniqueness of the Lefschetz decomposition
implies that ↵j = 0 for j � 1, which gives us that ↵ = ↵0 is primitive. ⇤

We also introduced the Weyl element w = exp(L) exp(�⇤) exp(L), and noted
that it induces an isomorphism between An�k(M) and An+k(M) for every k 2 Z.
If ↵ 2 An�k(M) is primitive, then

w(↵) =
Lk

k!
↵;

in general, we can describe the action by w using the Lefschetz decomposition:

w(↵) =
X

j�max(0,k)

(�1)j
Lk�j

(k � j)!
↵j .
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Proof of the Kähler identities. Last time, we observed that [H, d] = d and
[L, d] = 0, due to the fact that d! = 0. We already deduced from this with the
help of representation theory that

(17.2) [⇤, d] = �wdw�1.

Now let us see how this implies the Kähler identities [⇤, d] = ⇤i(@̄ � @)⇤. The key
ingredient is Weil’s identity.

Proposition 17.3. One has w(↵) = "(deg ↵) · J(⇤↵) for every ↵ 2 Ak(X).

Here "(k) = (�1)k(k�1)/2 and J : Ak(M) ! Ak(M) is the (real) operator

J(↵) =
X

p+q=k

ip�q↵p,q.

Concretely, J acts by multiplying each occurence of dz j by i, and each occurence
of dz̄j by �i; obviously, J is compatible with taking wedge products. It is easy to
see that J is a real operator: if ↵ 2 Ak(M) is real, then ↵p,q = ↵q,p, and then

J(↵) =
X

p+q=k

ip�q↵p,q =
X

p+q=k

iq�p↵q,p = J(↵)

shows that J(↵) 2 Ak(M) is again real. Morevoer, J and ⇤ commute, because
↵ 2 Ap,q(M) implies that ⇤↵ 2 An�q,n�p(M), and so J(⇤↵) = ⇤(J↵).

We can understand where the sign factor "(k) = (�1)k(k�1)/2 comes from by
looking at the following example.

Example 17.4. Recall that in the standard metric on Cn, the pointwise length
squared of dz j = dx j + idy

j
is equal to 2. This gives

(dz 1 ^ · · · ^ dzn) ^ ⇤(dz̄1 ^ · · · ^ dz̄n) = 2ndx 1 ^ dy1 ^ · · · ^ dxn ^ dy
n
.

By comparing this with

(dz 1 ^ · · · ^ dzn) ^ (dz̄1 ^ · · · ^ dz̄n) = (�1)n(n�1)/2(dz 1 ^ dz̄1) ^ · · · ^ (dzn ^ dz̄n)

= "(n)(�2i)n · dx 1 ^ dy1 ^ · · · ^ dxn ^ dy
n

we find that
⇤(dz̄1 ^ · · · ^ dz̄n) = "(n)(�i)n · dz̄1 ^ · · · ^ dz̄n.

So "(n) shows up because of how we defined the standard orientation on a complex
manifold.

Here are two simple identities for "(k) that we will use below:

"(k + 1) = (�1)k"(k)

"(k + `) = (�1)k`"(k)"(`)

Proof of the Kähler identities. Fix ↵ 2 Ak(M). We then have

⇤
2↵ = (�1)k↵, J2↵ = (�1)k↵, w2↵ = (�1)k�n↵,

the last formula being due to H(↵) = (k � n)↵. From (17.2), we get

[⇤, d] ↵ = �wdw�1 ↵ = �(�1)k�nwdw ↵ = �(�1)k�n"(k)"(2n + 1 � k) ⇤ JdJ ⇤ ↵,

using Weil’s identity and [J, ⇤] = 0 in the last step. Now

JdJ ↵ =
X

p+q=k

ip�q(ip+1�q@↵ + ip�q�1@̄↵) = (�1)k(i@↵ � i@̄↵),
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and so we can rewrite the formula above as

[⇤, d] ↵ = (�1)n"(k)"(2n + 1 � k) ⇤ (i@̄ � i@) ⇤ ↵.

This gives us the Kähler identity [⇤, d] = ⇤(i@̄ � i@)⇤ if we observe that

(�1)n"(k)"(2n + 1 � k) = (�1)n(�1)k(2n+1�k)"(2n + 1) = 1. ⇤
Proof of Weil’s identity. All that is left to do is to prove Weil’s identity. The
advantage is that this is again a pointwise statement. Fix a point p 2 M , and
consider the 2n-dimensional real vector space V = T ⇤

R,pM . In addition to the inner

product g = gp and the element ! = !p 2
V2 V coming from the Kähler form, we

now also have the operator J = Jp acting on
V

V . Recall that TR,pM is isomorphic
to the holomorphic tangent space T 0

p
M . Choose local coordinates z1, . . . , zn cen-

tered at p such that @/@z1, . . . , @/@zn form an orthonormal basis in T 0
p
M . Then the

2n real vector fields @/@x1, . . . , @/@xn, @/@y1, . . . , @/@yn form an othornomal basis
in TR,pM , and in this basis, we have J(@/@xj) = @/@yj and J(@/@yj) = �@/@xj .
We use the (positively oriented) dual basis dx 1, dy1, . . . , dxn, dy

n
in T ⇤

R,pM . Since
J(dz j) = idz j and J(dz̄j) = �idz̄j , we have

J(dx j) =
J(dz j) + J(dz̄j)

2
=

idz j � idz̄j
2

= �dy
j

and J(dy
j
) = dx j .

In this way, we find an orthonormal basis e1, e2, . . . , e2n�1, e2n 2 V that is posi-
tively oriented and has the property that

! = e1 ^ e2 + · · · + e2n�1 ^ e2n

and that J(e1) = �e2 and J(e2) = e1 and so on. We can now prove Weil’s identity
by induction on n � 1.

Proof of Weil’s identity. We again treat the case n = 1 first. Here V = R2, with
basis e1, e2; the other basis elements are 1 2

V0 V and e1 ^ e2 2
V2 V . We already

know from the proof of Proposition 15.5 that

⇤(1) = e1 ^ e2, ⇤(e1) = e2, ⇤(e2) = �e1, ⇤(e1 ^ e2) = 1.

Together with J(e1) = �e2 and J(e2) = e1 and the fact that J is compatible with
wedge products, this gives

J ⇤ (1) = e1 ^ e2, J ⇤ (e1) = e1, J ⇤ (e2) = e1, J ⇤ (e1 ^ e2) = 1,

If we compare this against

w(1) = e1 ^ e2, w(e1) = e1, w(e2) = e2, w(e1 ^ e2) = �1,

we see that the required sign changes are exactly "(0) = 1, "(1) = 1, and "(2) = �1.
Weil’s identity therefore holds for n = 1.

In order to do the general case, we use induction on the dimension. If n � 2, we
again decompose V = V1�V2, for example by letting V1 be the span of e1, . . . , e2n�2,
and letting V2 be the span of e2n�1 and e2n. By induction, we already know
the identity on V1 and V2. So it is again enough to prove that Weil’s identity is
compatible with direct sums.

So let us consider more generally the case where V = V1 � V2. Suppose that
each dim Vj = 2nj is even, and that we have a positively oriented orthonormal

basis in each Vj ; let us denote by ⇤j the ⇤-operator on Vj , and by !j 2
V2 Vj the

“Kähler form”. We use the notation Jj and wj for the other two operators that
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appear in Weil’s identity; by induction on the dimension, we can assume that the
identity holds on V1 and V2. The union of the two orthonormal bases, with the
same ordering, gives us a positively oriented orthonormal basis on V = V1 �V2. We
keep the symbols ⇤, w, and J for the resulting operators on V . During the proof
of Proposition 15.5, we showed that the isomorphism

^
V ⇠=

^
V1 ⌦

^
V2

is actually an isomorphism of sl2(C)-representations. Keeping the same notation,
it follows that the Weyl element acts according to the rule

w(↵ ^ �) = (w1↵) ^ (w2�).

We also know already that

⇤(↵ ^ �) = (�1)deg↵·deg �(⇤1↵) ^ (⇤2�).

The rest of the proof is a simple computation:

w(↵ ^ �) = (w1↵) ^ (w2�) = "(↵)"(�) · (J1 ⇤1 ↵) ^ (J2 ⇤2 �)

= "(↵)"(�)(�1)deg↵·deg �
· J ⇤ (↵ ^ �)

= "(deg ↵ + deg �) · J ⇤ (↵ ^ �)

Because deg(↵ ^ �) = deg ↵ + deg �, this gives us the result we want. ⇤
A formula for the inner product. Now suppose that M is compact. Weil’s
identity also makes it possible to describe the inner product between two forms
↵, � 2 Ap,q(M) using the Weyl element. Set k = p + q. Recall that

(↵, �)M =

Z

M

↵ ^ ⇤�̄.

Since �̄ 2 Aq,p(M), Weil’s identity becomes

w(�̄) = "(k) ⇤ (J �̄) = "(k)iq�p
⇤ �̄.

Substituting into the formula for the inner product, we get

(↵, �)M = ip�q"(k) ·

Z

M

↵ ^ w(�̄)

So the sl2(C)-representation actually gives us the inner product as well.


