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Class 13. Harmonic theory (October 10)

We can now return to the problem of finding canonical representatives for classes
in H

k(M,R) on a compact oriented Riemannian manifold (M, g). Following the
general strategy outlined last time, we put inner products on the spaces of forms
A

k(M), and use these to define an adjoint d
⇤ for the exterior derivative, and a

Laplace operator � = dd
⇤ + d

⇤
d.

Linear algebra. We begin by discussing some more linear algebra. Let V be a real
vector space of dimension n, with inner product g : V ⇥ V ! R. (The example we
have in mind is V = TR,pM , with the inner product gp coming from the Riemannian
metric.) The inner product yields an isomorphism

" : V ! V
⇤
, v 7! g(v, �),

between V and its dual space V
⇤ = Hom(V,R). Note that if e1, . . . , en is an

orthonormal basis for V , then "(e1), . . . , "(en) is the dual basis in V
⇤. We endow

V
⇤ with the inner product induced by the isomorphism ", and then this dual basis

becomes orthonormal as well.
All the spaces

Vk
V also acquire inner products, by setting

g(u1 ^ · · · ^ uk, v1 ^ · · · ^ vk) = det
�
g(ui, vj)

�k
i,j=1

and extending bilinearly. These inner products have the property that, for any
orthonormal basis e1, . . . , en 2 V , the vectors

ei1 ^ · · · ^ eik

with i1 < i2 < · · · < ik form an orthonormal basis for
Vk

V .
Now suppose that V is in addition oriented. Recall that the fundamental element

� 2
Vn

V is the unique positive vector of length 1; we have � = e1 ^ · · · ^ en for
any positively-oriented orthonormal basis.

Definition 13.1. The ⇤-operator is the unique linear operator ⇤ :
Vk

V !
Vn�k

V

with the property that ↵ ^ ⇤� = g(↵,�) · � for any ↵,� 2
Vk

V .

Note that ↵^⇤� belongs to
Vn

V , and is therefore a multiple of the fundamental
element �. The ⇤-operator is most conveniently defined using an orthormal basis
e1, . . . , en for V : for any permutation � of {1, . . . , n}, we have

e�(1) ^ · · · ^ e�(n) = sgn(�) · e1 ^ · · · ^ en = sgn(�) · �,

and consequently

(13.2) ⇤
�
e�(1) ^ · · · ^ e�(k)

�
= sgn(�) · e�(k+1) ^ · · · ^ e�(n).

This relation shows that ⇤ takes an orthonormal basis to an orthonormal basis, and
is therefore an isometry: g(⇤↵, ⇤�) = g(↵,�).

Lemma 13.3. We have ⇤ ⇤ ↵ = (�1)k(n�k)
↵ for any ↵ 2

Vk
V .

Proof. Let ↵,� 2
Vk

V . By definition of the ⇤-operator, we have

(⇤ ⇤ ↵) ^ (⇤�) = (�1)k(n�k)(⇤�) ^ (⇤ ⇤ ↵) = (�1)k(n�k)
g(⇤�, ⇤↵) · �

= (�1)k(n�k)
g(↵,�) · � = (�1)k(n�k)

↵ ^ ⇤�.

This being true for all �, we conclude that ⇤ ⇤ ↵ = (�1)k(n�k)
↵. ⇤
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It follows that ⇤ :
Vk

V !
Vn�k

V is an isomorphism; this may be viewed as an
abstract form of Poincaré duality (which says that on a compact oriented manifold,
H

k(M,R) ' H
n�k(M,R) for every 0  k  n).

Inner products and the Laplacian. Let (M, g) be a Riemannian manifold that
is compact, oriented, and of dimension n. At every point p 2 M , we have an inner
product gp on the real tangent space TR,pM , and therefore also on the cotangent

space T
⇤
R,pM and on each

Vk
T

⇤
R,pM . In other words, each vector bundle

Vk
T

⇤
RM

carries a natural Euclidean metric. This allows us to define an inner product on
the space of smooth k-forms A

k(M) by the formula

(↵,�)M =

Z

M
g
�
↵,�

�
vol(g).

The individual ⇤-operators ⇤ :
Vk

T
⇤
R,pM !

Vn�k
T

⇤
R,pM at each point p 2 M

give us a a linear mapping

⇤ : A
k(M) ! A

n�k(M).

By definition, we have ↵ ^ ⇤� = g(↵,�) · vol(g), and so the inner product can also
be expressed by the simpler formula

(↵,�)M =

Z

M
↵ ^ ⇤�.

It has the advantage of hiding the terms coming from the metric.
We already know that the exterior derivative d is a linear di↵erential operator.

Since the bundles in question carry Euclidean metrics, there is a unique adjoint;
the ⇤-operator allows us to write down a simple formula for it.

Proposition 13.4. The adjoint d
⇤ : A

k(M) ! A
k�1(M) is given by the formula

d
⇤ = �(�1)n(k+1)

⇤ d ⇤ .

Proof. Fix ↵ 2 A
k�1(M) and � 2 A

k(M). By Stokes’ theorem, the integral of
d
�
↵ ^ ⇤�

�
= d↵ ^ ⇤� + (�1)k�1

↵ ^ d(⇤�) over M is zero, and therefore

(d↵,�)M =

Z

M
d↵ ^ ⇤� = (�1)k

Z

M
↵ ^ d ⇤ � = (�1)k

Z

M
↵ ^ ⇤

�
⇤

�1
d ⇤ �

�

This shows that the adjoint is given by the formula d
⇤
� = (�1)k ⇤

�1
d ⇤ �. Since

d ⇤ � 2 A
n�k+1(M), we can use the identity from Lemma 13.3 to compute that

d
⇤
� = (�1)k(�1)(n�k+1)(k�1)

⇤ d ⇤ �,

from which the assertion follows because k
2 + k is an even number. ⇤

Definition 13.5. For each 0  k  n, we define the Laplace operator � : A
k(M) !

A
k(M) by the formula � = d � d

⇤ + d
⇤

� d. A form ! 2 A
k(M) is called harmonic

if �! = 0, and we let H
k(M) = ker � be the space of all harmonic forms.

More precisely, each � is a second-order linear di↵erential operator from the
vector bundle

Vk
T

⇤
RM to itself. It is easy to see that � is formally self-adjoint;

indeed, the adjointness of d and d
⇤ shows that

(�↵,�)M = (d↵, d�)M + (d⇤
↵, d

⇤
�)M = (↵, ��)M .

By computing a formula for � in local coordinates, one shows that � is an elliptic
operator. We may therefore apply the fundamental theorem of elliptic operators
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(Theorem 12.9) to conclude that the space of harmonic forms H
k(M) is finite-

dimensional, and that we have an orthogonal decomposition

(13.6) A
k(M) = H

k(M) � im
�
� : A

k(M) ! A
k(M)

�
.

We can now state and prove the main theorem of real Hodge theory.

Theorem 13.7. Let (M, g) be a compact and oriented Riemannian manifold. Then
the natural map H

k(M) ! H
k(M,R) is an isomorphism; in other words, every de

Rham cohomology class contains a unique harmonic form.

Proof. Recall that a form ! is harmonic i↵ d! = 0 and d
⇤
! = 0; this follows

from the identity (�!,!)M = kd!k
2
M + kd

⇤
!k

2
M . In particular, harmonic forms

are automatically closed, and therefore define classes in de Rham cohomology. We
have to show that the resulting map H

k(M) ! H
k(M,R) is bijective.

To prove the injectivity, suppose that ! 2 H
k(M) is harmonic and d-exact, say

! = d for some  2 A
k�1(M). Then

k!k
2
M = (!, d )M = (d⇤

!, )M = 0,

and therefore ! = 0. Note that this part of the proof is elementary, and does not
use any of the results from the theory of elliptic operators.

To prove the surjectivity, take an arbitrary cohomology class and represent it by
some ↵ 2 A

k(M) with d↵ = 0. The decomposition in (13.6) shows that we have

↵ = ! + �� = ! + dd
⇤
� + d

⇤
d�.

with ! 2 H
k(M) harmonic and � 2 A

k(M). Since d! = 0, we get 0 = d↵ = dd
⇤
d�,

and therefore

kd
⇤
d�k

2
M = (d⇤

d�, d
⇤
d�)M = (d�, dd

⇤
d�)M = 0,

proving that d
⇤
d� = 0. This shows that ↵ = ! + dd

⇤
�, and so the harmonic form

! represents the original cohomology class. ⇤

Note. The space of harmonic forms H
k(M) depends on the Riemannian metric g;

this is because the definition of the operators d
⇤ and � involves the metric.

More linear algebra. Our next goal is to extend the Hodge theorem to the Dol-
beault cohomology groups H

p,q(M) on a compact complex manifold M with a
Hermitian metric h. Recall that this means a collection of positive definite Her-
mitian forms hp : T

0
pM ⇥ T

0
pM ! C on the holomorphic tangent spaces that vary

smoothly with the point p 2 M .
As in the case of Riemannian manifolds, we begin by looking at a single Hermitian

vector space (V, h); in our applications, V = T
0
pM will be the holomorphic tangent

space to a complex manifold. Thus let V be a complex vector space of dimension
n, and h : V ⇥ V ! C a positive definite form that is linear in its first argument,
and satisfies h(v2, v1) = h(v1, v2).

We denote the underlying real vector space by VR, noting that it has dimension
2n. Multiplication by i defines a linear operator J 2 End(VR) with the property
that J

2 = � id. The complexification VC = C ⌦R VR is a complex vector space of
dimension 2n; it decomposes into a direct sum

(13.8) VC = V
1,0

� V
0,1

,
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where V
1,0 = ker(J � i id) and V

0,1 = ker(J + i id) are the two eigenspaces of J .
For any v 2 VR, we have v = 1

2 (v � iJv)+ 1
2 (v + iJv); this means that the inclusion

VR ,! VC, followed by the projection VC ⇣ V
1,0, defines an R-linear map

VR ! V
1,0

, v 7!
1

2
(v � iJv)

which is an isomorphism of real vector spaces. This justifies identifying the original
complex vector space V with the space V

1,0. (But we will see in a moment that,
from the point of view of the inner product h, this is not quite the correct way to
make the identification.)

The decomposition in (13.8) induces a decomposition

(13.9)
k̂

VC =
M

p+q=k

⇣ p̂

V
1,0

⌘
⌦

⇣ q̂

V
0,1

⌘
=

M

p+q=k

V
p,q

,

and elements of V
p,q are often said to be of type (p, q).

We have already seen that the Hermitian form h defines an inner product g =
Re h on the real vector space VR. It satisfies g(Jv1, Jv2) = g(v1, v2), and conversely,
we can recover h from g by the formula

h(v1, v2) = g(v1, v2) + ig(v1, Jv2).

As usual, g induces inner products on the spaces
Vk

VR, which we extend sesquilin-

early to Hermitian inner products h on
Vk

VC. We compute that

h(v1 � iJv1, v2 � iJv2) = 2
�
g(v1, v2) + ig(v1, Jv2)

�
,

and this shows that the correct way to identify V with V
1,0 is via the isomorphism

V ! V
1,0

, v 7!
1

p
2

�
v � iJv

�
,

because then the original Hermitian inner product h on V will agree with the
induced Hermitian inner product on V

1,0.

Lemma 13.10. The decomposition in (13.9) is orthogonal with respect to the Her-
mitian inner product h.

Recall that VR is automatically oriented; the natural orientation is given by
v1, Jv1, . . . , vn, Jvn for any complex basis v1, . . . , vn 2 V . It follows that if e1, . . . , en

is any orthonormal basis of V with respect to the Hermitian inner product h, then

e1, Je1, e2, Je2, . . . , en, Jen

is a positively oriented orthonormal basis for VR; in particular, the fundamental
element is given by the formula ' = (e1 ^ Je1) ^ · · · ^ (en ^ Jen).

As usual, we have the ⇤-operator
Vk

VR !
V2n�k

VR; we extend it C-linearly to

⇤ :
Vk

VC !
V2n�k

VC. Since we obtained the Hermitian inner product h on
Vk

VC
by extending g linearly in the first and conjugate-linearly in the second argument,
the ⇤-operator satisfies the identity

↵ ^ ⇤� = h(↵,�) · '

for ↵,� 2
Vk

VC.

Lemma 13.11. The ⇤-operator maps V
p,q into V

n�q,n�p, and satisfies ⇤
2
↵ =

(�1)p+q
↵ for any ↵ 2 V

p,q.
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Proof. For � 2 V
p,q and ↵ 2 V

r,s, we have ↵^⇤� = h(↵,�) ·' = 0 unless p = s and
q = r; this is because the decomposition by type is orthogonal (Lemma 13.10). It
easily follows that ⇤� has type (n� q, n�p). The second assertion is a restatement

of Lemma 13.3, where we proved that ⇤
2 = (�1)k(2n�k) id = (�1)k id on

Vk
VR. ⇤

The dual vector space V
⇤
R = Hom(VR,R) also has a complex structure J , by

defining (Jf)(v) = f(Jv) for f 2 V
⇤
R and v 2 VR. Note that the isomorphism

" : VR ! V
⇤
R , v 7! g(v, �)

is only conjugate-linear, since "(Jv) = g(Jv, �) = �g(v, J�) = �J"(v).


