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Class 11. Other cohomology theories (October 3)

Example 11.1. Let us return to the exponential sequence on a complex manifold
M . From Proposition 10.14, we obtain a long exact sequence

0 H
0(M,ZM ) H

0(M, OM ) H
0(M, O

⇤
M ) H

1(M,ZM ) · · ·

One can show that the cohomology groups H
i(M,ZM ) are (naturally) isomorphic

to the singular cohomology groups H
i(M,Z) defined in algebraic topology. Thus

whether or not the map OM (M) ! O
⇤
M (M) is surjective depends on the group

H
1(M,Z); for instance, H

1(C⇤
,Z) ' Z, and this explains the failure of surjectivity.

On the other hand, if M is simply connected, then H
1(M,Z) = 0, and therefore

OM (M) ! O
⇤
M (M) is surjective.

Example 11.2. Let 0 ! F ! ds F ! F/ ds F ! 0 be the short exact sequence
at the start of the Godement resolution. Because ds F is flasque, it has no higher
cohomology, and so

0 ! H
0(X, F ) ! H

0(X, ds F ) ! H
0(X, F/ ds F ) ! H

1(X, F ) ! 0

is exact. It is a fun exercise to think about what kind of description of H
1(X, F )

we get in this way.

Čech cohomology. In addition to the general framework introduced above, there
are many other cohomology theories; one that is often convenient for calculations
is Čech cohomology. We shall limit our discussion to a special case that will be
useful later.

Let X be a topological space and F a sheaf of abelian groups. Fix an open cover
U of X. The group of p-cochains for the cover is the product

C
p(U, F ) =

Y

U0,...,Up2U

F (U0 \ U1 \ · · · \ Up);

we denote a typical element by g, with components gU0,...,Up 2 F (U0\· · ·\Up). The
restriction maps for the sheaf F allow us to define a di↵erential �p : C

p(U, F ) !
C

p+1(U, F ) by setting �p(g) = h, where

hU0,...,Up+1 =
p+1X

k=0

(�1)kgU0,...,Uk�1,Uk+1,...,Up+1 |U0\U1\···\Up+1 .

Then a somewhat tedious computation shows that �p+1 � �p = 0, and thus

(11.3) 0 C
0(U, F ) C

1(U, F ) C
2(U, F ) · · ·�0 �1 �2

is a complex of abelian groups. We define the Čech cohomology group H
i(U, F ) to

be the i-th cohomology group of the complex.

Example 11.4. From the sheaf axioms, one readily proves that H
0(U, F ) ' F (X).

Example 11.5. Let L ! M be a holomorphic line bundle on a complex manifold M .
The transition functions g↵,� 2 O

⇤
M (U↵ \U�) satisfy the relations g↵,� ·g�,� = g↵,� .

In other words, we have a cohomology class in H
1(U, O

⇤
M ). If this class is trivial,

we have g↵,� = s�/s↵ for s↵ 2 O
⇤
M (U↵), which means that the s

�1
↵ form a nowhere

vanishing section of the line bundle. Thus we can think of H
1(U, O

⇤
M ) as the

obstruction to the existence of such a section.
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One can define Čech cohomology groups more generally, but unless the topo-
logical space X is nice, they lack the good properties of Godement’s theory (for
instance, there is not in general a long exact cohomology sequence). This drawback
notwithstanding, Čech cohomology can frequently be used to compute the groups
H

i(X, F ). The following result, known as Cartan’s lemma, is the main result in
this direction.

Theorem 11.6. Suppose that the cover U is acyclic for the sheaf F , in the sense
that H

i(U1 \ · · · \ Up, F ) = 0 for every U1, . . . , Up 2 U and every i > 0. Then
there are natural isomorphisms

H
i(U, F ) ' H

i(X, F )

between the Čech cohomology and the usual cohomology of F .

The proof is not that di�cult, but we leave it out since it requires a knowledge
of spectral sequences.

Example 11.7. Let U = {U0, U1} be the standard open cover of P1. A good excercise
in the use of Čech cohomology is to prove that H

0(U, O) = C, while H
j(U, O) =

0 for j � 1. We will show later today that this cover is acyclic, and therefore
H

j(P1
, O) = 0 for j � 1. (The vanishing of H

1(P1
, O) is exactly the existence of

Laurent series.)

Dolbeault cohomology. On a complex manifold M , there is another way to com-
pute the cohomology groups of the sheaves OM and ⌦p

M (and, more generally, of the
sheaf of sections of any holomorphic vector bundle), by relating them to Dolbeault
cohomology. Recall that we had defined the Dolbeault cohomology groups

H
p,q(M) =

ker @̄ : A
p,q(M) ! A

p,q+1(M)

coker @̄ : Ap,q�1(M) ! Ap,q(M)
,

where A
p,q(M) denotes the space of smooth (p, q)-forms on M . Clearly, each

H
p,q(M) is a complex vector space, and can also be viewed as the q-th cohomology

group of the complex

0 A
p,0(M) A

p,1(M) A
p,2(M) · · · A

p,n(M) 0.
@̄ @̄

The purpose of today’s class is to prove the following result, usually referred to
as Dolbeault’s theorem. Recall that ⌦p

M is the sheaf of holomorphic p-forms; its
sections over an open set U ✓ M are all smooth (p, 0)-forms ↵ 2 A

p,0(U) such that
@̄↵ = 0.

Theorem 11.8. On a complex manifold M , we have natural isomorphisms

H
q
�
M, ⌦p

M

�
' H

p,q(M)

for every p, q 2 N.

The proof is based on the @̄-Poincaré lemma (Lemma 8.1) and some general
sheaf theory. We fix an integer p � 0, and consider the complex of sheaves

(11.9) 0 ⌦p
M A

p,0
A

p,1
A

p,2 · · · A
p,n 0.

@̄ @̄

It is a complex because @̄ � @̄ = 0; the first observation is that it is actually exact.

Lemma 11.10. The complex of sheaves in (11.9) is exact.
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Proof. It su�ces to prove the exactness at the level of stalks; after fixing a point of
M and choosing local coordinates, we may assume without loss of generality that M

is an open subset of Cn. Now let ! 2 A
p,q(U) be defined on some open neighborhood

of the point in question, and suppose that @̄! = 0. If q = 0, this means that ! is
holomorphic, and therefore ! 2 ⌦p

M (U), proving that the complex is exact at A
p,0.

If, on the other hand, q > 0, then Lemma 8.1 shows that there is a possibly smaller
open neighborhood V ✓ U such that ! = @̄ for some  2 A

p,q�1(V ), and so we
have exactness on stalks. ⇤

We will show in a moment that the higher cohomology groups for each of the
sheaves A

p,q vanish. Assuming this for the time being, let us complete the proof
of Theorem 11.8

Proof. Probably the most convenient way to get the conclusion is by using a spectral
sequence; but since it is not di�cult either, will shall give a more basic proof. We
begin by breaking up (11.9) into several short exact sequences:

(11.11)

⌦p
M Q

2
Q

4

A
p,0

A
p,1

A
p,2

A
p,3 · · ·

Q
1

Q
3

@̄ @̄ @̄

Here Q
k = ker

�
@̄ : A

p,k ! A
p,k+1

�
= im

�
@̄ : A

p,k�1 ! A
p,k
�
, using that the

original complex is exact.
Now recall that we have H

0
�
M, A

p,q
�

= A
p,q(M). Since Q

q+1 is a subsheaf
of A

p,q+1, the sequence 0 ! Q
q ! A

p,q ! A
p,q+1 is exact. After passage to

cohomology, we find that

ker
�
@̄ : A

p,q(M) ! A
p,q+1(M)

�
' H

0
�
M, Q

q
�
.

Also, 0 ! Q
q�1 ! A

p,q�1 ! Q
q ! 0 is exact, and as part of the corresponding

long exact sequence, we have

A
p,q�1(M) H

0
�
M, Q

q
�

H
1
�
M, Q

q�1
�

H
1
�
M, A

p,q
�
.

The fourth term vanishes, and we conclude that H
p,q(M) ' H

1
�
M, Q

q�1
�
. Con-

tinuing in this manner, we then obtain a string of isomorphisms

H
p,q(M) ' H

1
�
M, Q

q�1
�

' H
2
�
M, Q

q�2
�

' · · · ' H
q�1

�
M, Q

1
�

' H
q
�
M, ⌦p

M

�
,

which is the desired result. ⇤
Applications. As an application of Dolbeault’s theorem, we will now solve a clas-
sical problem about the geometry of Cn. Let X ✓ Cn be a hypersurface; this
means that X is an analytic subset, locally defined by the vanishing of a single
holomorphic function. We would like to show that, actually, X = Z(f) for a global
f 2 O(Cn).

This in another instance of a local-to-global problem, and we should expect the
answer to come from cohomology. By assumption, X can locally be defined by
a one holomorphic equation, and so we may cover Cn by open sets Uj , with the
property that X \ Uj = Z(fj) for certain fj 2 O(Uj); if an open set Uj does not
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meet X, we simply take fj = 1. More precisely, we shall assume that each Uj is a
polybox, that is, an open set of the form

�
z 2 Cn

�� |xj � aj | < rj and |yj � bj | < sj

 
.

Since the intersection of two open intervals is again an open interval, it is clear
that every finite intersection of open sets in the cover U is again a polybox, and in
particular contractible. Moreover, if we take the defining equation fj not divisible
by the square of any nonunit, then it is unique up to multiplication by units.

Next, we observe that if D ✓ Cn is an arbitrary polybox, then H
q(D, ⌦p

D) = 0
for q > 0; indeed, this group is isomorphic to H

p,q(D), which vanishes for polyboxes
by a result analogous to Proposition 8.5. In particular, the cover U is acyclic for
the sheaf O, and we have

H
q(U, O) ' H

q(Cn
, O) ' H

0,q(Cn) ' 0

by Cartan’s lemma (Theorem 11.6) and Proposition 8.5.
Returning to the problem at hand, consider the intersection Uj \ Uk. There, we

have fj = gj,k ·fk for a nowhere vanishing holomorphic function gj,k 2 O
⇤(Uj \Uk).

Now Uj \ Uk is contractible, and so H
1(Uj \ Uk,Z) = 0. From the exponential

sequence

0 ZCn OCn O
⇤
Cn 0,

it follows that gj,k = e
2⇡ihj,k for holomorphic functions hj,k on Uj \ Uk. Observe

that we have gj,kgk,l = gj,l, and that aj,k,l = hj,l�hj,k �hk,l is therefore an integer.
These integers define a class in the Čech cohomology group

H
2(U,ZCn) ' H

2(Cn
,ZCn) ' H

2(Cn
,Z) ' 0.

The first isomorphism is because of Cartan’s lemma (Theorem 11.6), since every
intersection of open sets in the cover is contractible; the second and third isomor-
phisms are facts from algebraic topologyy. We thus have aj,k,l = bk,l � bj,l + bj,k

for integers bj,k. Replacing hj,k by hj,k + bj,k, we may thus assume from the start
that hj,k +hk,l = hj,l on Uj \Uk \Ul. This means that h defines an element of the
Čech cohomology group H

1(U, O).
But as observed above, we have H

1(U, O) ' 0; this means that hj,k = hk � hj

for holomorphic functions hj 2 O(Uj). This essentially completes the proof: By
construction, fj = e

2⇡i(hk�hj)fk, and so fje
2⇡ihj = fke

2⇡ihk on Uj \ Uk. Since O

is a sheaf, there is a holomorphic function f 2 O(Cn) with f |Uj = fje
2⇡ihj ; clearly,

we have Z(f) = X, proving that the hypersurface X is indeed defined by a single
holomorphic equation.

Note. We proved the vanishing of the Dolbeault cohomology groups by purely ana-
lytic means in Proposition 8.5. To deduce from it the vanishing of Čech cohomology,
we first go from Dolbeault cohomology to sheaf cohomology (Dolbeault’s theorem),
and then from sheaf cohomology to Čech cohomology (Cartan’s lemma).

Fine and soft sheaves. We now have to explain why the higher cohomology
groups of A

p,q vanish. This is due to the fact that sections of this sheaf are smooth
forms, and that we have partitions of unity.

A few basic definitions first. An open covering X =
S

i2I Ui of a topological
space is locally finite if every point is contained in at most finitely many Ui. A
topological space is called paracompact if every open cover can be refined to a
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locally finite open cover. It is not hard to see that a locally compact Hausdor↵
space with a countable basis is paracompact; in particular, every complex manifold
is paracompact.

Definition 11.12. A sheaf F on a paracompact space X is fine if for every locally
finite open cover X =

S
i2I Ui, there are sheaf homomorphisms ⌘i : F ! F , with

the following two properties:

(1) There are open sets Vi ◆ X \ Ui, such that ⌘i : Fx ! Fx is the zero map
for every x 2 Vi.

(2) As morphisms of sheaves,
P

i2I ⌘i = idF .

The first condition is saying that the support of ⌘i(s) lies inside Ui; the second
condition means that s =

P
i2I ⌘i(s), which makes sense since the sum is locally

finite. Note that if s 2 F (Ui), then ⇢i(s) may be considered as an element of
F (X): by assumption, ⇢i(s) is zero near the boundary of Ui, and can therefore be
extended by zero using the sheaf axioms.

Example 11.13. On a complex manifold M , each A
p,q is a fine sheaf. Indeed,

given any locally finite open covering M =
S

i2I Ui, we can find a partition of
unity 1 =

P
i2I ⇢i subordinate to that cover; this means that each ⇢i is a smooth

function with values in [0, 1], and zero on an open neighborhood Vi ◆ M \ Ui. We
can now define ⌘i : A

p,q ! A
p,q as multiplication by ⇢i; then both conditions in

the definition are clearly satisfied.

Example 11.14. One can also show that the sheaf of discontinuous sections ds F is
always a fine sheaf.

We would like to show that fine sheaves have vanishing higher cohomology. But
unfortunately, being fine does not propagate very well along the Godement reso-
lution of a sheaf; this leads us to introduce a weaker property that does behave
well in exact sequences of sheaves. We first observe that, just as in the case of
geometric spaces, a sheaf F can be restricted to any closed subset Z ✓ X; at each
point x 2 Z, the stalk of the restriction F |Z is equal to Fx. The precise definition
is as follows: for U ✓ Z, we let �

�
U, F |Z

�
be the set of maps s : U ! T (F ) with

s(x) 2 Fx for every x 2 Z, such that s is locally the restriction of a section of F .
(Here T (F ) is the disjoint union of all the stalks of F .) We sometimes write F (Z)
in place of the more correct �(Z, F |Z).

Definition 11.15. A sheaf F on a paracompact topological space is called soft
if, for every closed subset Z ✓ X, the restriction map �(X, F ) ! �(Z, F |Z) is
surjective.

It is clear that the sheaf of discontinuous sections ds F is soft for every sheaf F .
Let us now see why fine sheaves are soft. Fix an arbitrary section t 2 �(Z, F |Z); we
need to show that it can be extended to a section of F on all of X. By definition,
there certainly exist local extensions, and so we can find open sets Ui ✓ X whose
union covers Z, and sections si 2 �(Ui, F ) with si(x) = t(x) for every x 2 Z. We
will assume that U0 = X \ Z is one of the open sets, with s0 = 0. Since X is
paracompact, we can assume after suitable refinement that the open cover of X by
the Ui is locally finite; as F is fine, we can then find morphisms ⇢i : F ! F as in
Definition 11.12. After extending by zero, we may again consider ⇢i(si) 2 F (X).
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Now let
s =

X

i2I

⇢i(si) 2 �(X, F ),

which makes sense since the sum is locally finite. For x 2 Z, we have si(x) = t(x)
for every i 6= 0, and thus s(x) = t(x). This proves the surjectivity of the map
�(X, F ) ! �(Z, F |Z), and shows that fine sheaves are soft.

Proposition 11.16. Let F be a fine sheaf on a paracompact Hausdor↵ space X.
Then H

i(X, F ) = 0 for every i > 0.

We will show that the statement is true for the larger class of soft sheaves. The
proof is very similar to that of Proposition 10.16; the first step is to study short
exact sequences.

Lemma 11.17. If 0 ! F
0 ! F ! F

00 ! 0 is a short exact sequence of sheaves on
a paracompact space X, and if F

0 is soft, then 0 ! F
0(X) ! F (X) ! F

00(X) !
0 is an exact sequence of abelian groups.

Proof. Again, we let ↵ : F
0 ! F and � : F ! F

00 denote the maps. By Lemma 10.9,
it su�ces to show that � : F (X) ! F

00(X) is surjective, and so we fix a global
section s

00 2 F
00(X). The map being surjective locally, and X being paracompact,

we can find a locally finite cover X =
S

i2I Ui and sections si 2 F (Ui) such that
�(si) = s

00|Ui . Now paracompact spaces are automatically normal, and so we can
find closed sets Ki ✓ Ui whose interiors still cover X. Note that the union of any
number of Ki is always closed; this is a straightforward consequence of the local
finiteness of the cover.

We now consider the set of all pairs (K, s), where K is a union of certain Ki

(and hence closed), and s 2 �(K) satisfies �(s) = s
00|K . As before, every chain has

a maximal element, and so Zorn’s lemma guarantees the existence of a maximal
element (Kmax , smax ). We claim that Kmax = X; in other words, that Ki ✓ Kmax

for every i 2 I. In any case, the two sections si and smax both map to s
00 on the

intersection Ki \ Kmax , and we can therefore find s
0 2 F

0(Ki \ Kmax ) with the
property that ↵(s0) = (smax � si)|Ki\Kmax . But F

0 is soft by assumption, and so
there exists t

0 2 F
0(Ki) with t

0|Ki\Kmax = s
0. Then smax and si + ↵(t0) agree on

the overlap Ki \Kmax , and thus define a section of F on Ki [ Kmax lifting s
00. By

maximality, we have Ki [ Kmax = Kmax , and hence Ki ✓ Kmax as claimed. ⇤
Secondly, we need to know that the quotient of soft sheaves is soft.

Lemma 11.18. If 0 ! F
0 ! F ! F

00 ! 0 is an exact sequence with F
0 and F

soft, then F
00 is also soft.

Proof. For any closed subset Z ✓ X, we have a commutative diagram

F (X) F
00(X)

F (Z) F
00(Z).

The surjectivity of the two horizontal maps is due to Lemma 11.17, and that of the
vertical restriction map comes from the softness of F . We conclude that F

00(X) !
F

00(Z) is also surjective, proving that F
00 is soft. ⇤

We are now ready to prove Proposition 11.16.
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Proof. According to the preceding lemma, the quotient of a soft sheaf by a soft
subsheaf is again soft. This fact implies that in (10.12), all the the sheaves G

j

are also soft sheaves. Consequently, the entire diagram remains exact after taking
global sections, which shows that 0 ! F (X) ! F

0(X) ! F
1(X) ! · · · is an

exact sequence of abelian groups. But this means that H
i(X, F ) = 0 for i > 0. ⇤

Since the sheaves A
p,q admit partitions of unity, they are fine, and hence soft.

Proposition 11.16 now puts the last piece into place for the proof of Theorem 11.8.

Corollary 11.19. On a complex manifold M , we have H
i
�
M, A

p,q
�

= 0 for every
i > 0.

Note. Underlying the proof of Theorem 11.8 is a more general principle, which you
should try to prove by yourself: If 0 ! F ! E

0 ! E
1 ! · · · is a resolution of F

by acyclic sheaves (meaning that H
i(X, E

k) = 0 for all i > 0), then the complex
0 ! E

0(X) ! E
1(X) ! · · · computes the cohomology groups of F . This can be

seen either by breaking up the long exact sequence into short exact sequences as in
(10.12), or by a spectral sequence argument.


