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Class 10. Sheaves and cohomology (October 1)

The Wirtinger theorem. Let (M, h) be a complex manifold with a Hermitian
metric. Locally, there always exist unitary frames for the metric h, that is, smooth
sections ⇣1, . . . , ⇣n of T

0
M whose values give a unitary basis for the holomorphic

tangent space T
0
pM at each point. For such a frame, we have

h(⇣j , ⇣k) =

(
1 if j = k,

0 if j 6= k.

One way to construct such a unitary frame is to start from an arbitrary frame
(for instance, the coordinate vector fields @/@z1, . . . , @/@zn), and then apply the
Gram-Schmidt process. If we let ✓1, . . . , ✓n be a dual basis of smooth (1, 0)-forms,
in the sense that ✓j(⇣k) = 1 if j = k, and 0 otherwise, then we have

! =
i

2

nX

j=1

✓j ^ ✓j .

From this, we compute that

!
^n = ! ^ · · · ^ ! = n! · i

n

2n
(✓1 ^ ✓1) ^ · · · ^ (✓n ^ ✓n) = n! · vol(g),

and so the volume form on the underlying oriented Riemannian manifold is given
by Wirtinger’s formula

vol(g) =
1

n!
!

^n
.

If we suppose in addition that M is compact, then we can conclude that

vol(M) =

Z

M
vol(g) =

1

n!

Z

M
!

^n
.

Since the volume of M is necessarily nonzero, it follows from Stokes’ theorem that
!

^n cannot be exact, and therefore that ! itself can never be an exact form.
Let N ✓ M be a complex submanifold, with the induced Hermitian metric. We

then have !N = i
⇤
!, and if we set m = dimN , then

vol(N) =
1

m!

Z

N
i
⇤
!

^m
.

In particular, the volume of any submanifold is given by the integral of a globally
defined di↵erential form on M , which is very special to complex manifolds.

Example 10.1. The flat metric on Cn from Example 9.6 induces a Hermitian met-
ric hM on every complex torus M = Cn

/⇤. To compute the volume of M , we
choose a fundamental domain D ✓ Cn for the lattice; then the interior of D maps
isomorphically to its image in M , and so

vol(M) =

Z

M
vol(gM ) =

Z

D
vol(g) =

Z

D
dµ

is the usual Lebesgue measure of D.
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Introduction to cohomology. Sheaves are a useful tool for relating local to
global data. We begin with a nice example, taken from “Principles of Algebraic
Geometry” by Gri�ths and Harris, that shows this passage from local to global.

Let M be a Riemann surface, not necessarily compact. Recall that a meromor-
phic function on M is a mapping f : M ! C [ {1} that can locally be written
as a quotient of two holomorphic functions, with denominator not identically zero.
(Equivalently, a meromorphic function is a holomorphic mapping from M to the
Riemann sphere P1, not identically equal to 1.) In a neighborhood of any point
p 2 M , we can choose a holomorphic coordinate z centered at p, and write f in the
form

P
j��N ajz

j . The polar part of f is the sum ⇡p(f) =
P

j<0 ajz
j ; clearly f is

holomorphic at p i↵ the polar part is zero.
A classical problem, named after Mittag-Le✏er, is whether one can find a mero-

morphic function with prescribed polar parts at a discrete set of points p1, p2, . . . .
One can approach this question from two di↵erent points of view.

For the first, let Ui be a small open neighborhood of pi not containing any of
the other points, and let ⇡i be the desired polar part at pi. Also let U0 = M \
{p1, p2, . . . }, and set ⇡0 = 0. On the intersection Ui\Uj , the di↵erence gi,j = ⇡i�⇡j

is a holomorphic function. Now if we can find a meromorphic function f with those
polar parts, then f � ⇡i is holomorphic on Ui, and so gi,j = (f � ⇡j) � (f � ⇡i)
is actually the di↵erence of two holomorphic functions. Conversely, if there are
holomorphic functions fi 2 OM (Ui) such that gi,j = fj � fi, then the individual
functions fi + ⇡i agree on overlaps, and therefore define a global meromorphic
function with the correct polar parts.

Note that gi,j + gj,k = gi,k on Ui \ Uj \ Uk. If we let U denote the given open
cover, and g the collection of holomorphic functions gi,j 2 OM (Ui\Uj), then we can
summarize our observations as follows: Whether or not the Mittag-Le✏er problem
has a solution is measured by the class of g in the vector space

H
1(U, OM ) = Z

1(U, OM )/B
1(U, OM );

here Z
1(U, OM ) =

�
g
�� gi,j + gj,k = gi,k on Ui \ Uj \ Uk

 
is the space of so-called

1-cocycles, and B
1(U, OM ) =

�
g
�� gi,j = fj � fi for suitable fi 2 OM (Ui)

 
the

space of 1-coboundaries. The quotient is the first Čech cohomology group for the
sheaf OM and the given open cover.

The second point of view is more analytic in nature. With the same notation as
above, let ⇢i be a smooth function with compact support inside Ui, and identically
equal to 1 in a neighorhood of the point pi. Then

! =
1X

i=0

@̄(⇢i⇡i) =
1X

i=0

⇡i · @̄⇢i

is a smooth (0, 1)-form on M , identically equal to zero in a neighborhood of each
point pi. Suppose now that ! = @̄� for some smooth function � on M . Then �

is holomorphic in a neighborhood of each pi, and the di↵erence f =
P

i ⇢i⇡i � �

is holomorphic on U0, and clearly has the correct polar part ⇡i at each point pi.
Since the converse is easily shown to be true as well, we arrive at the following
conclusion: Whether or not the Mittag-Le✏er problem has a solution is measured
by the first Dolbeault cohomology group

H
0,1(M) =

�
! 2 A

0,1(M)
�� @̄! = 0

 
�

@̄�
�� � 2 A0,0(M)

 .
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Since we already know that H
0,1(C) = 0 (by Proposition 8.5), we deduce the well-

known fact that the Mittag-Le✏er problem can always be solved on C.
To summarize: Since the problem can always be solved locally, the only issue is

the existence of a global solution. In either approach, the obstruction to finding
a global solution lies in a certain cohomology group. In fact, as we will later see,
H

1(U, OM ) ' H
0,1(M).

Sheaves. We now introduce the useful concept of sheaves.

Definition 10.2. Let X be a topological space. A sheaf (of abelian groups) on X

assigns to every open set U ✓ X a group F (U), called the sections of the sheaf,
and to every inclusion V ✓ U a restriction homomorphism ⇢

U
V : F (U) ! F (V ),

subject to the following two conditions:

(1) If W ✓ V ✓ U are open sets, then ⇢
V
W � ⇢

U
V = ⇢

U
W . One can therefore write

s|V in place of ⇢
U
V (s) without loss of information.

(2) If si 2 F (Ui) is a collection of sections satisfying si|Ui\Uj = sj |Ui\Uj for
all i, j 2 I, then there is a unique s 2 F (U) such that s|Ui = si, where
U =

S
i2I Ui.

In practice, a sheaf often has additional structure: for instance, we say that F

is a sheaf of rings if every F (U) is a (commutative) ring, and if the restriction
maps are ring homomorphisms. Similarly, there are sheaves of vector spaces, etc.
For clarity, we sometimes denote the set of sections of F by the symbol �(U, F )
instead of the F (U) in the definition.

Example 10.3. A geometric structure O on a topological space X is a sheaf of rings:
each O(U) is a subring of the ring of continuous functions on U , and the conditions
in the two definitions are more or less identical.

Example 10.4. Let ⇡ : E ! X be a vector bundle on X. Then assigning to every
open set U ✓ X the space of continuous sections of the vector bundle over U defines
a sheaf of vector spaces on X. When E is smooth (or holomorphic), we usually
consider smooth (or holomorphic) sections instead.

On a complex manifold M , there are by and large three interesting classes of
sheaves. The first are the so-called locally constant sheaves; for example, assigning
to every open set U the set of locally constant maps from U into Z defines a sheaf
ZM ; one similarly defines RM and CM . Such sheaves contain information about M

as a topological space: for instance, �(M,CM ) is a C-vector space whose dimension
equals the number of connected components of M (since a locally constant functions
has to be constant on each connected component).

The second class of sheaves are sections of smooth vector bundles, as in Ex-
ample 10.4 above. The most important examples are the sheaf of sections of the
tangent bundle, which assigns to every open set U ✓ M the space of smooth vector
fields on U , and sheaves of di↵erential forms. We let A

k be the sheaf that assigns
to an open set U the space of smooth k-forms on U (these are sections of the vector

bundle
Vk

T
⇤
RM). Likewise, the sections of the sheaf A

p,q are the (p, q)-forms on
U . Such sheaves contain information about M as a smooth manifold, and are very
useful for doing calculus.

The third class are those sheaves that are connected to the complex structure
on M . Examples are the structure sheaf OM , whose sections are the holomorphic



4 CH. SCHNELL

functions; the sheaves ⌦p
M , where ⌦p

M (U) is the space of holomorphic forms of
type (p, 0) on U ; the sheaf of units O

⇤
M , defined by letting O

⇤
M (U) be the set of

nowhere vanishing holomorphic functions on U ; and, more generally, the sheaf of
holomorphic sections of any holomorphic vector bundle on M .

Stalks and operations. Let F be a sheaf on a topological space X, and let x 2 X

be a point. The stalk of the sheaf is the direct limit

Fx = lim
U3x

F (U),

taken over all open neighborhoods of the point. The stalk is again an abelian group;
it is a ring (or vector space) if F is a sheaf of rings (or vector spaces). We think of
elements of the stalk as germs of sections at x.

Example 10.5. On a complex manifold M , the local ring OM,p is the stalk of the
sheaf OM at the point p.

A morphism of sheaves f : F ! G is a collection of group homomorphisms
fU : F (U) ! G (U), compatible with restriction maps in the sense that ⇢

U
V � fU =

fV � ⇢
U
V for every inclusion V ✓ U . If each fU is the inclusion of a subgroup, we

say that F is a subsheaf of G .
The kernel of a morphism of sheaves is the subsheaf of F defined by setting

�(U, ker f) =
�

s 2 F (U)
�� fU (s) = 0

 
;

it is not hard to verify that ker f is indeed a sheaf. A morphism of sheaves also
has an image im f , which is a subsheaf of G ; but the definition is more complicated
since the groups im fU do not form a sheaf. To ensure that the second condition in
Definition 10.2 is satisfied, we are forced instead to set

�(U, im f) =
�

s 2 G (U)
�� s|Ui 2 im fUi for some open cover U =

[

i2I

Ui

 
.

We say that f is injective if ker f = 0, and that f is surjective if im f = G . Finally,
we say that a sequence of sheaves

F
0

F
1

F
2 · · · F

k�1
F

kf0 f1 fk�1

is a complex if fi+1 � fi = 0 for every i, and that it is exact if ker fi+1 = im fi at
all places.

Example 10.6. If F is a subsheaf of G , one can also define a quotient sheaf G /F ,
in such a way that there is an exact sequence 0 ! F ! G ! G /F ! 0. It is a
good exercise to work out the correct definition.

The following example illustrates these notions; it is one of the most important
exact sequences of sheaves on a complex manifold M .

Example 10.7. On a complex manifold M , the so-called exponential sequence

0 ZM OM O
⇤
M 0

exp

is an exact sequence of sheaves. (The group operation on O
⇤
M (U) is multiplication.)

The first map is given by the inclusion ZM (U) ✓ OM (U), using that locally constant
functions are holomorphic. The second map takes a holomorphic function f 2
OM (U) to the nowhere vanishing holomorphic function expU (f) = e

2⇡if . It is easy
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to see that the sequence is exact at ZM and at OM ; in fact, if e
2⇡if = 1 for some

holomorphic function f , then f is integer-valued, and hence locally constant.
Exactness at O

⇤
M means the surjectivity of exp; according to the definition above,

this amounts to saying that a nowhere vanishing holomorphic function g can locally
be written in the form e

2⇡if . After choosing local coordinates, we can reduce to
the case g 2 O(D), where D ✓ Cn is a small polydisk. After choosing a suitable
branch of the logarithm, we can then take f = log g on D.

Note that the individual maps expU : OM (U) ! O
⇤
M (U) need not be surjective;

with M = C and U = C \ {0}, for example, the holomorphic function z cannot be
written in the form e

2⇡if with f holomorphic on U .

The example shows that a morphism f : F ! G can be surjective, even though
the individual maps fU : F (U) ! G (U) are not.

We note that a morphism f : F ! G always induces homomorphisms fx : Fx !
Gx between stalks. The following proposition shows that injectivity, surjectivity,
and so forth, can be verified at the level of stalks; this means that they are local
properties.

Proposition 10.8. Let f : F ! G be a morphism of sheaves. Then f is surjective
(resp., injective) i↵ for every point x 2 X, the induced map on stalks fx : Fx ! Gx

is injective (resp., surjective). Likewise, a sequence of sheaves

F
0

F
1

F
2 · · · F

k�1
F

kf0 f1 fk�1

is exact i↵ the induced sequence of abelian groups

F
0
x F

1
x F

2
x · · · F

k�1
x F

k
x

f0
x f1

x fk�1
x

is exact for every point x 2 X.

Sheaf cohomology. The following lemma is easy to prove from the definitions.

Lemma 10.9. If 0 ! F
0 ! F ! F

00 ! 0 is a short exact sequence of sheaves on
a topological space X, then 0 ! F

0(X) ! F (X) ! F
00(X) is an exact sequence

of abelian groups.

In general, the map F (X) ! F
00(X) need not be surjective; we have already

seen an example of this above. But in practice, one often needs to know whether or
not a given section of F

00 can be lifted to a section of F . Sheaf cohomology solves
this problem by giving us a long exact sequence of abelian groups

0 H
0(X, F

0) H
0(X, F ) H

0(X, F
00)

H
1(X, F

0) H
1(X, F ) H

1(X, F
00)

H
2(X, F

0) H
2(X, F ) H

2(X, F
00) · · ·

1

Here H
0(X, F ) = F (X), and so the higher cohomology groups H

i(X, F ) extend
the sequence in Lemma 10.9. This means that a section in F

00(X) can be lifted to
a section in F (X) i↵ its image in the first cohomology group H

1(X, F
0) is zero.

To define the cohomology groups of a sheaf, we introduce the following notion: A
sheaf F on a topological space is called flabby if the restriction map F (X) ! F (U)
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is surjective for every open set U ✓ X. With flabby sheaves, taking global sections
preserves exactness.

Lemma 10.10. If 0 ! F
0 ! F ! F

00 ! 0 is a short exact sequence of sheaves
on a topological space X, and if F

0 is flabby, then

0 ! F
0(X) ! F (X) ! F

00(X) ! 0

is an exact sequence of abelian groups.

Proof. Let ↵ : F
0 ! F and � : F ! F

00 denote the maps. By virtue of Lemma 10.9,
it su�ces to show that �X : F (X) ! F

00(X) is surjective. This is most easily done
by using Zorn’s lemma. Fix a global section s

00 2 F
00(X), and consider the set of

all pairs (U, s), where U ✓ X is open and s 2 F (U) satisfies �U (s) = s
00|U . It is

clear that this set is nonempty, because � is surjective on stalks.
We put a partial order on our set of pairs by declaring that (U1, s1)  (U2, s2)

if U1 ✓ U2 and s2|U1 = s1. Since F is a sheaf, every chain {(Ui, si)}i2I has an
upper bound (U, s): take U =

S
i2I Ui and let s 2 F (U) be the unique section with

s|Ui = si for all i 2 I. By Zorn’s lemma, there is a maximal element (Umax , smax ).
To complete the proof, we need to show that Umax = X.

To that end, let x 2 X be any point. Then �x : Fx ! F
00
x is onto, and so we

can find a pair (U, s) with x 2 U . On V = U \ Umax , we now have two sections
lifting s

00, and so by Lemma 10.9, there is a unique section s
0 2 F

0(U \Umax ) with
↵V (s0) = (smax � s)|V . But now F

0 is flabby, and so we can find t
0 2 F

0(U) with
t
0|V = s

0; then smax 2 F (Umax ) and s + ↵U (t0) 2 F (U) agree on V , and therefore
define a section in F (U [ Umax ) that still maps to s

00. By maximality, we have
U [Umax = Umax , and therefore x 2 Umax . This proves that Umax = X, and shows
that smax 2 F (X) satisfies �X(smax ) = s

00. ⇤

Next, we show that any sheaf has a canonical resolution by flabby sheaves. Given
any sheaf F , let T (F ) =

F
x2X Fx be the disjoint union of its stalks; we can then

define the sheaf of discontinuous sections ds F by setting

�(U, ds F ) =
�

s : U ! T (F )
�� s(x) 2 Fx for all x 2 X

 
.

It is obvious from the definition that ds F is a flabby sheaf; moreover, we have
an injective map of sheaves " : F ! ds F , taking a section s 2 F (U) to the map
x 7! sx. This construction gives us an exact sequence

(10.11) 0 F F
0

F
1

F
2 · · · ,

" d0 d1 d2

in which the F
i are flabby sheaves, as follows: Define F

0 = ds F , and let " : F !
F

0 be the map from above. Next, form the quotient sheaf G
0 = F

0
/ im ", let

F
1 = ds G

0, and let d
1 : F

0 ! F
1 be the composition of the two natural maps.

Continuing in this way, we obtain a commutative diagram of the type

(10.12)

F G
1

G
3

F
0

F
1

F
2

F
3 · · ·

G
0

G
2

"

d0 d1 d2
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continuing to the right; at each stage, F
k = ds G

k�1, and G
k is the quotient of

F
k by its subsheaf G

k�1. Since the diagonal sequences are all exact, it is not hard
to prove (by looking at stalks) that (10.11) is itself exact. We refer to it as the
Godement resolution of the sheaf F .

Definition 10.13. For a sheaf F on a topological space X, we define H
i(X, F )

to be the i-th cohomology group of the complex of abelian groups

0 F
0(X) F

1(X) F
2(X) · · · .

It follows from Lemma 10.9 that the sequence 0 ! F (X) ! F
0(X) ! F

1(X)
is exact, and therefore that H

0(X, F ) ' F (X). Note also that when F is a sheaf
of vector spaces, each H

i(X, F ) is again a vector space. As promised, we always
have a long exact sequence in cohomology.

Proposition 10.14. A short exact sequence 0 ! F
0 ! F ! F

00 ! 0 of sheaves
gives rise to a long exact sequence of cohomology groups.

Proof. A morphism f : F ! G induces maps on stalks, and hence a morphism
ds F ! ds G between the sheaves of discontinuous sections. Using this fact, one
can easily show that the Godement resolutions for the three sheaves fit into a
commutative diagram

F
00

F
01

F
02 · · ·

F
0

F
1

F
2 · · ·

F
000

F
001

F
002 · · ·

with exact columns. Since each F
0k is flabby, it follows from Lemma 10.10 that,

even after taking global sections, the columns in

0 F
00(X) F

01(X) F
02(X) · · ·

0 F
0(X) F

1(X) F
2(X) · · ·

0 F
000(X) F

001(X) F
002(X) · · ·

are short exact sequences of abelian groups. The long exact sequence of cohomology
groups is then obtained by applying a form of the Snake Lemma, which is a basic
result in homological algebra. ⇤

To conclude our discussion of flabby sheaves, we would like to show that the
higher cohomology groups of flabby sheaves are zero. We begin with a small lemma.

Lemma 10.15. If 0 ! F
0 ! F ! F

00 ! 0 is an exact sequence with F
0 and F

flabby, then F
00 is also flabby.
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Proof. For any open subset U ✓ X, we have a commutative diagram

F (X) F
00(X)

F (U) F
00(U).

The surjectivity of the two horizontal maps is due to Lemma 10.10, and that of
the vertical restriction map comes from the flabbiness of F . We conclude that
F

00(X) ! F
00(U) is also surjective, proving that F

00 is flabby. ⇤
We can now prove that flabby sheaves have trivial cohomology.

Proposition 10.16. If F is a flabby sheaf, then H
i(X, F ) = 0 for i > 0.

Proof. According to the preceding lemma, the quotient of a flabby sheaf by a flabby
subsheaf is again flabby. This fact implies that in (10.12), all the the sheaves G

j are
also flabby sheaves. Consequently, the entire diagram remains exact after taking
global sections, which shows that 0 ! F (X) ! F

0(X) ! F
1(X) ! · · · is an

exact sequence of abelian groups. But this means that H
i(X, F ) = 0 for i > 0. ⇤


