HOMEWORK 4

PROBLEMS FROM THE TEXTBOOK

Atiyah-Macdonald, Ch. 5, #1, #4, #12, #13

OTHER PROBLEMS

1. Let A be an artinian ring, $P \subseteq A$ a prime ideal. Prove that the homomorphism

 $A \to A_P, \quad a \mapsto a/1,$

is surjective. (Hint: First show that if $s \notin P$, there is an element $a \notin P$ such that $as - 1 \in P$. Then argue that, for some $n \ge 1$, the element $(as - 1)^n$ maps to 0 in the localization A_P . Deduce that 1/s is the image of an element in A.)

2. Let A be an artinian ring, and let P_1, \ldots, P_n be the finitely many distinct prime ideals of A. The purpose of this problem is to show that the homomorphism

$$\phi \colon A \to \prod_{i=1}^{n} A_{P_i}, \quad \phi(a) = (a/1, \dots, a/1),$$

is an isomorphism, and hence that A is a finite product of *local* artinian rings.

- (a) Prove that ϕ is injective.
- (b) Show that there are elements $a_1, \ldots, a_n \in A$ with the property that $a_i \in P_i$ and $a_i \notin P_j$ for $i \neq j$. (Hint: Use prime avoidance.)
- (c) Show that there are elements $b_1, \ldots, b_n \in A$ with the property that $b_i \notin P_i$ and $b_i \in P_j$ for $i \neq j$.
- (d) Prove that ϕ is surjective. (Hint: Use #1.)

Due on Tuesday, October 13.