HOMEWORK 3

PROBLEMS FROM THE TEXTBOOK

Atiyah-Macdonald, Ch. 7, #5; Ch. 8, #2, #3

OTHER PROBLEMS

1. Let *I* be an ideal in a noetherian ring *A*, and let P_1, \ldots, P_n be the finitely many associated primes of A/I. For every $j = 1, \ldots, n$, define an ideal

 $I_j = \left\{ a \in A \mid \text{ there exists } s \notin P_j \text{ such that } sa \in I \right\}$

Prove that $I = I_1 \cap \cdots \cap I_n$.

2. Let k be a field. A monomial ideal is an ideal in $k[x_1, \ldots, x_n]$ that is generated by monomials in the variables x_1, \ldots, x_n . Which monomial ideals are (a) prime ideals, (b) primary ideals, (c) radical ideals?

3. Let M be a finitely generated module over the ring of integers \mathbb{Z} . Describe the set of associated primes of M in terms of the usual structure theory for finitely generated abelian groups.

4. Let A be a ring and $P \subseteq A$ a prime ideal. The *n*-th symbolic power of P is defined to be the ideal

$$P^{(n)} = \{ a \in A \mid sa \in P^n \text{ for some } s \notin P \}.$$

Prove that $P^{(n)}$ is a *P*-primary ideal.

Due on Thursday, October 1.