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Thursday, March 7, 2024

1. Let r1, r2, r3, r4 be the four roots of a quartic polynomial with rational
coefficients. Suppose that r1+r2 ∈ Q and that r1+r2 ̸= r3+r4. Prove
that r1r2 ∈ Q.

Solution: Let E = Q(r1, r2, r3, r4) be the splitting field of the polyno-
mial. This is a Galois extension, and we let G = Gal(E/Q) be the
Galois group. Since EG = Q, it is enough to show that g(r1r2) = r1r2
for every g ∈ G. Take any g ∈ G. We observe that if g(r1) = r1, then
also g(r2) = r2 (and vice versa), because

g(r1) + g(r2) = g(r1 + r2) = r1 + r2,

due to the fact that r1 + r2 ∈ Q. Moreover, there is no g ∈ G with
g(r1) = r3 (or r4): indeed, if g(r1) = r3, then necessarily g(r2) = r4,
and therefore

r1 + r2 = g(r1 + r2) = g(r1) + g(r2) = r3 + r4,

contradicting the information we have about the roots. So we either
have g(r1) = r1 and g(r2) = r2; or g(r1) = r2 and g(r2) = r1. In both
cases, g(r1r2) = r1r2, and therefore r1r2 ∈ Q.

Alternatively, one can prove this without Galois theory as follows. The
coefficients of the quartic are in Q, and this gives

r1 + r2 + r3 + r4 ∈ Q
r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 ∈ Q

r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4 ∈ Q
r1r2r3r4 ∈ Q.

From r1 + r2 ∈ Q and the first line, we deduce that r3 + r4 ∈ Q.
Therefore r1r3 + r1r4 + r2r3 + r2r4 = (r1 + r2)(r3 + r4) ∈ Q. After
subtracting this from the second line, we obtain r1r2+ r3r4 ∈ Q. Now
rewrite the third line as

r1r2
(
(r3 + r4)− (r1 + r2)

)
+ (r1r2 + r3r4)(r1 + r2) ∈ Q.

Since (r3+r4)−(r1+r2) ̸= 0, we can divide and conclude that r1r2 ∈ Q.



2. Let f(x) ∈ k[x] be an irreducible polynomial of degree n. Let k ⊆ E
be a field extension such that (E : k) is relatively prime to n. Show
that f(x) remains irreducible in E[x].

Solution: We argue by contradiction. Suppose that g(x) ∈ E[x] is an
irreducible polynomial of degree 1 ≤ d ≤ n − 1 such that g(x) | f(x).
Let E ⊆ F be a field extension in which g(x) has a root α ∈ F . Being
irreducible, g(x) is the minimal polynomial of α over E, and so(

E(α) : E
)
= d.

We also have f(α) = 0, and for the same reason, f(x) must be the
minimal polynomial of α over k, and

(
k(α) : k

)
= n. Since the degree

is multiplicative in field extensions, we get

d · (E : k) =
(
E(α) : k

)
=

(
E(α) : k(α)

)
·
(
k(α) : k

)
.

This is a contradiction because the right-hand side is divisible by n,
but the left-hand side is not.

3. Let f(x) ∈ Q[x] be an irreducible polynomial with splitting field E.
Suppose that Gal(E/Q) is abelian. Show that E = Q(α), where α ∈ E
is an arbitrary root of f(x).

Solution: Let α ∈ E be any root of the polynomial f(x). By the
Galois correspondence, the subfieldQ(α) is the fixed field of a subgroup
H ⊆ Gal(E/Q). Because the Galois group is abelian, H is a normal
subgroup, and therefore Q(α) = EH is itself a Galois extension of Q.
In particular, it is normal, and therefore contains all the roots of f(x).
This gives E = Q(α), as desired.

4. Consider the real number α = 2 cos(2π/7). Determine the minimal
polynomial of α over Q.

Solution: Let ζ = e2πi/7 ∈ C be a primitive 7-th root of unity. Then

ζ = cos(2π/7) + i sin(2π/7)

and therefore α = ζ + ζ−1 = ζ + ζ6. We know from class that Q(ζ) is
a Galois extension of degree φ(7) = 6 over Q. Consider the extensions

Q ⊆ Q(α) ⊆ Q(ζ).
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From α = ζ + ζ−1, we get ζ2 − αζ + 1 = 0; also, Q(α) ⊆ R, but ζ is
obviously not real. It follows that

(
Q(ζ) : Q(α)

)
= 2; consequently,

(
Q(α) : Q

)
=

(
Q(ζ) : Q

)(
Q(ζ) : Q(α)

) =
6

2
= 3.

The minimal polynomial of α must therefore be a cubic polynomial.
Recall that the minimal polynomial of ζ is

Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1.

To find the cubic equation satisfied by α, we compute

α = ζ + ζ−1 = ζ6 + ζ

α2 = (ζ + ζ−1)2 = ζ2 + 2 + ζ−2 = ζ5 + ζ2 + 2

α3 = (ζ + ζ−1)3 = ζ3 + 3ζ + 3ζ−1 + ζ−3 = 3ζ6 + ζ4 + ζ3 + 3ζ.

Taking a suitable linear combination, we get

α3 + α2 − 2α− 1 = ζ6 + ζ5 + · · ·+ 1 = 0.

Therefore the minimal polynomial is f(x) = x3 + x2 − 2x− 1.
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