Math 535
Solutions to Midterm 1

Thursday, March 7, 2024

1. Let rq, 79,73, 74 be the four roots of a quartic polynomial with rational
coefficients. Suppose that r1 +1r2 € Q and that r{ +7r9 # r3+7r4. Prove
that riry € Q.

Solution: Let E = Q(r1,72,73,74) be the splitting field of the polyno-
mial. This is a Galois extension, and we let G = Gal(E/Q) be the
Galois group. Since EC = Q, it is enough to show that g(ri7re) = 1179
for every g € G. Take any g € G. We observe that if g(r;) = r1, then
also g(r2) = ro (and vice versa), because

g(r1) +g(re) = g(r1 +r2) =11 + 12,

due to the fact that r1 + ro € Q. Moreover, there is no g € G with
g(r1) = rg (or r4): indeed, if g(r;) = 73, then necessarily g(r2) = ru,
and therefore

r1+12=g(r +1r2) =g(r1) + g(re) = rs + ra,

contradicting the information we have about the roots. So we either
have g(r1) = r; and g(re) = ro; or g(r1) = ro and g(r2) = r1. In both
cases, g(rire) = rire, and therefore ri1re € Q.

Alternatively, one can prove this without Galois theory as follows. The
coefficients of the quartic are in Q, and this gives

ri+ro+r3+ry €Q

rire + 1173 + 1114 + 1213 + 121y + 1374 € Q

r1ToT3 + r1rory + r1r3rs + 1ror3ry € Q

rirorgry € Q.
From r; + ro € Q and the first line, we deduce that r3 +r4 € Q.
Therefore rir3 + rirg + rors + rory = (r1 +12)(rs + r4) € Q. After

subtracting this from the second line, we obtain 7179 + 7374 € Q. Now
rewrite the third line as

7‘1?”2((7“3 + 7“4) — (7“1 + 7“2)) + (7“17“2 + 7“37“4)(7”1 + ?”2) € Q.

Since (r3+7r4)—(r1+7r2) # 0, we can divide and conclude that r179 € Q.



2. Let f(x) € k[z| be an irreducible polynomial of degree n. Let k C E
be a field extension such that (E : k) is relatively prime to n. Show
that f(x) remains irreducible in E[z].

Solution: We argue by contradiction. Suppose that g(z) € E[z] is an
irreducible polynomial of degree 1 < d < n — 1 such that g(z) | f(x).
Let E C F be a field extension in which g(z) has a root a € F. Being
irreducible, g(x) is the minimal polynomial of « over F, and so

(E(a): E) =d.

We also have f(a) = 0, and for the same reason, f(x) must be the
minimal polynomial of « over k, and (k:(a) : k:) = n. Since the degree
is multiplicative in field extensions, we get

d-(E:k)=(E(a): k) = (E(a) : k(a)) - (k(e) : k).

This is a contradiction because the right-hand side is divisible by n,
but the left-hand side is not.

3. Let f(z) € Q[z] be an irreducible polynomial with splitting field E.
Suppose that Gal(£/Q) is abelian. Show that £ = Q(«), where o € E
is an arbitrary root of f(x).

Solution: Let v € E be any root of the polynomial f(z). By the
Galois correspondence, the subfield Q(«) is the fixed field of a subgroup
H C Gal(E/Q). Because the Galois group is abelian, H is a normal
subgroup, and therefore Q(a) = E* is itself a Galois extension of Q.
In particular, it is normal, and therefore contains all the roots of f(z).
This gives £ = Q(«), as desired.

4. Consider the real number a = 2cos(27/7). Determine the minimal
polynomial of o over Q.

Solution: Let ¢ = e*™/7 € C be a primitive 7-th root of unity. Then
¢ = cos(2m/7) + isin(2m/7)

and therefore a = ¢ + (! = ¢ + ¢%. We know from class that Q(¢) is
a Galois extension of degree ¢(7) = 6 over Q. Consider the extensions

Q € Q(a) € Q(Q).



From a = ¢+ (71, we get (2 —a¢ +1 = 0; also, Q(a) C R, but  is
obviously not real. It follows that (Q(¢) : Q(a)) = 2; consequently,

a0y (QO:Q) 6
Q@) Q) =Gy "2~ %

The minimal polynomial of & must therefore be a cubic polynomial.
Recall that the minimal polynomial of ( is

Dr(z)=aS+ 2%+t + 23+t 4o+ 1
To find the cubic equation satisfied by «, we compute

a=C+¢=¢"+¢
o = (T =C 24T =CH P2
=+ =C+30+3C T+ =30+ + B+ 3¢

Taking a suitable linear combination, we get
P +a?—2a-1=C+¢+---+1=0.

Therefore the minimal polynomial is f(z) = 2® + 22 — 2z — 1.



