Math 535 Solutions to Midterm 1

Thursday, March 7, 2024

1. Let $r_{1}, r_{2}, r_{3}, r_{4}$ be the four roots of a quartic polynomial with rational coefficients. Suppose that $r_{1}+r_{2} \in \mathbb{Q}$ and that $r_{1}+r_{2} \neq r_{3}+r_{4}$. Prove that $r_{1} r_{2} \in \mathbb{Q}$.

Solution: Let $E=\mathbb{Q}\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ be the splitting field of the polynomial. This is a Galois extension, and we let $G=\operatorname{Gal}(E / \mathbb{Q})$ be the Galois group. Since $E^{G}=\mathbb{Q}$, it is enough to show that $g\left(r_{1} r_{2}\right)=r_{1} r_{2}$ for every $g \in G$. Take any $g \in G$. We observe that if $g\left(r_{1}\right)=r_{1}$, then also $g\left(r_{2}\right)=r_{2}$ (and vice versa), because

$$
g\left(r_{1}\right)+g\left(r_{2}\right)=g\left(r_{1}+r_{2}\right)=r_{1}+r_{2}
$$

due to the fact that $r_{1}+r_{2} \in \mathbb{Q}$. Moreover, there is no $g \in G$ with $g\left(r_{1}\right)=r_{3}\left(\right.$ or $\left.r_{4}\right)$: indeed, if $g\left(r_{1}\right)=r_{3}$, then necessarily $g\left(r_{2}\right)=r_{4}$, and therefore

$$
r_{1}+r_{2}=g\left(r_{1}+r_{2}\right)=g\left(r_{1}\right)+g\left(r_{2}\right)=r_{3}+r_{4}
$$

contradicting the information we have about the roots. So we either have $g\left(r_{1}\right)=r_{1}$ and $g\left(r_{2}\right)=r_{2}$; or $g\left(r_{1}\right)=r_{2}$ and $g\left(r_{2}\right)=r_{1}$. In both cases, $g\left(r_{1} r_{2}\right)=r_{1} r_{2}$, and therefore $r_{1} r_{2} \in \mathbb{Q}$.

Alternatively, one can prove this without Galois theory as follows. The coefficients of the quartic are in \mathbb{Q}, and this gives

$$
\begin{aligned}
r_{1}+r_{2}+r_{3}+r_{4} & \in \mathbb{Q} \\
r_{1} r_{2}+r_{1} r_{3}+r_{1} r_{4}+r_{2} r_{3}+r_{2} r_{4}+r_{3} r_{4} & \in \mathbb{Q} \\
r_{1} r_{2} r_{3}+r_{1} r_{2} r_{4}+r_{1} r_{3} r_{4}+r_{2} r_{3} r_{4} & \in \mathbb{Q} \\
r_{1} r_{2} r_{3} r_{4} & \in \mathbb{Q}
\end{aligned}
$$

From $r_{1}+r_{2} \in \mathbb{Q}$ and the first line, we deduce that $r_{3}+r_{4} \in \mathbb{Q}$. Therefore $r_{1} r_{3}+r_{1} r_{4}+r_{2} r_{3}+r_{2} r_{4}=\left(r_{1}+r_{2}\right)\left(r_{3}+r_{4}\right) \in \mathbb{Q}$. After subtracting this from the second line, we obtain $r_{1} r_{2}+r_{3} r_{4} \in \mathbb{Q}$. Now rewrite the third line as

$$
r_{1} r_{2}\left(\left(r_{3}+r_{4}\right)-\left(r_{1}+r_{2}\right)\right)+\left(r_{1} r_{2}+r_{3} r_{4}\right)\left(r_{1}+r_{2}\right) \in \mathbb{Q}
$$

Since $\left(r_{3}+r_{4}\right)-\left(r_{1}+r_{2}\right) \neq 0$, we can divide and conclude that $r_{1} r_{2} \in \mathbb{Q}$.
2. Let $f(x) \in k[x]$ be an irreducible polynomial of degree n. Let $k \subseteq E$ be a field extension such that $(E: k)$ is relatively prime to n. Show that $f(x)$ remains irreducible in $E[x]$.
Solution: We argue by contradiction. Suppose that $g(x) \in E[x]$ is an irreducible polynomial of degree $1 \leq d \leq n-1$ such that $g(x) \mid f(x)$. Let $E \subseteq F$ be a field extension in which $g(x)$ has a root $\alpha \in F$. Being irreducible, $g(x)$ is the minimal polynomial of α over E, and so

$$
(E(\alpha): E)=d .
$$

We also have $f(\alpha)=0$, and for the same reason, $f(x)$ must be the minimal polynomial of α over k, and $(k(\alpha): k)=n$. Since the degree is multiplicative in field extensions, we get

$$
d \cdot(E: k)=(E(\alpha): k)=(E(\alpha): k(\alpha)) \cdot(k(\alpha): k) .
$$

This is a contradiction because the right-hand side is divisible by n, but the left-hand side is not.
3. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial with splitting field E. Suppose that $\operatorname{Gal}(E / \mathbb{Q})$ is abelian. Show that $E=\mathbb{Q}(\alpha)$, where $\alpha \in E$ is an arbitrary root of $f(x)$.
Solution: Let $\alpha \in E$ be any root of the polynomial $f(x)$. By the Galois correspondence, the subfield $\mathbb{Q}(\alpha)$ is the fixed field of a subgroup $H \subseteq \operatorname{Gal}(E / \mathbb{Q})$. Because the Galois group is abelian, H is a normal subgroup, and therefore $\mathbb{Q}(\alpha)=E^{H}$ is itself a Galois extension of \mathbb{Q}. In particular, it is normal, and therefore contains all the roots of $f(x)$. This gives $E=\mathbb{Q}(\alpha)$, as desired.
4. Consider the real number $\alpha=2 \cos (2 \pi / 7)$. Determine the minimal polynomial of α over \mathbb{Q}.
Solution: Let $\zeta=e^{2 \pi i / 7} \in \mathbb{C}$ be a primitive 7 -th root of unity. Then

$$
\zeta=\cos (2 \pi / 7)+i \sin (2 \pi / 7)
$$

and therefore $\alpha=\zeta+\zeta^{-1}=\zeta+\zeta^{6}$. We know from class that $\mathbb{Q}(\zeta)$ is a Galois extension of degree $\varphi(7)=6$ over \mathbb{Q}. Consider the extensions

$$
\mathbb{Q} \subseteq \mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\zeta) .
$$

From $\alpha=\zeta+\zeta^{-1}$, we get $\zeta^{2}-\alpha \zeta+1=0$; also, $\mathbb{Q}(\alpha) \subseteq \mathbb{R}$, but ζ is obviously not real. It follows that $(\mathbb{Q}(\zeta): \mathbb{Q}(\alpha))=2$; consequently,

$$
(\mathbb{Q}(\alpha): \mathbb{Q})=\frac{(\mathbb{Q}(\zeta): \mathbb{Q})}{(\mathbb{Q}(\zeta): \mathbb{Q}(\alpha))}=\frac{6}{2}=3 .
$$

The minimal polynomial of α must therefore be a cubic polynomial. Recall that the minimal polynomial of ζ is

$$
\Phi_{7}(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 .
$$

To find the cubic equation satisfied by α, we compute

$$
\begin{aligned}
\alpha & =\zeta+\zeta^{-1}=\zeta^{6}+\zeta \\
\alpha^{2} & =\left(\zeta+\zeta^{-1}\right)^{2}=\zeta^{2}+2+\zeta^{-2}=\zeta^{5}+\zeta^{2}+2 \\
\alpha^{3} & =\left(\zeta+\zeta^{-1}\right)^{3}=\zeta^{3}+3 \zeta+3 \zeta^{-1}+\zeta^{-3}=3 \zeta^{6}+\zeta^{4}+\zeta^{3}+3 \zeta .
\end{aligned}
$$

Taking a suitable linear combination, we get

$$
\alpha^{3}+\alpha^{2}-2 \alpha-1=\zeta^{6}+\zeta^{5}+\cdots+1=0 .
$$

Therefore the minimal polynomial is $f(x)=x^{3}+x^{2}-2 x-1$.

