Math 535
Solutions to the Final Exam

Tuesday, May 7, 2024

Part I (30 minutes)

Briefly define the following six terms:

1.

splitting field of a polynomial

Solution: If f(x) € k[z| is a polynomial, an extension field E of k is
called a splitting field for f(z) if f(x) factors into linear factors over
E, but not over any proper subfield of F.

character of a representation

Solution: The character of a representation p: G — Endg(V) is the
function xy: G — k defined by xv(g) = try p(g).

degree of a field extension

Solution: The degree of a field extension k C F is the dimension of F
as a k-vector space.

. complex of A-modules

Solution: A complex of A-modules is a collection of A-modules M,,,
indexed by n € Z, and a collection of homomorphisms d,: M, —
My, 1, such that d, od,+1 =0 for all n € Z.

minimal polynomial of an endomorphism

Solution: The minimal polynomial of an endomorphism 7: V — V is
the monic polynomial m(z) € k[z] of least degree for which m(T") = 0.
Galois extension

Solution: A field extension k C E is a Galois extension if EAutk(E) — k.

Give examples for the following four phenomena:

1.

A finite field extension that is not Galois

Solution: Q C @(\?/5)



2. A 2 x 2-matrix with entries in Q that is not diagonalizable

Solution: <8 (1)>

3. A module over the ring Z that is flat but not free
Solution: Q

4. An irreducible representation of the group S3 of dimension > 2

Solution: The subrepresentation V = {a e C? ‘ a1 +as +az = O}
inside the permutation representation of S3 on C3.

It is enough to describe each example very briefly; you do not need to prove
that your example works.

Part IT (135 minutes)

1. Determine whether or not i = y/—1 belongs to the field Q(«), where
o + a +1 = 0. Justify your answer.

Solution: The polynomial z3 + x + 1 has no roots in Q, and so it is
irreducible (for degree reasons). This means that Q(«) is an extension
of degree 3 over Q. Therefore it cannot contain the field Q(7), which
has degree 2 over Q, because 2 does not divide 3.

2. Let f(z) = 2* — 522 + 6. Determine the Galois group G of f(x)
over Q. List all subgroups of G and the intermediate fields that they
correspond to under the Galois correspondence.

Solution: We have
J(@) = (@ = 2)(@® = 3) = (x = V2) (2 + V2) (& — VB)(z + V3),

and so the splitting field of f(z) is E = Q(v/2,v/3). We know that
this has degree 4 over Q. Being the splitting field of a polynomial over
Q, the field extension QQ C F is normal and separable, and therefore
a Galois extension. It follws that G = Gal(E/Q) is a group of order
4. Because every element of the Galois group has to permute the two
roots £+/2 of the polynomial 22 — 2 (and the two roots /3 of the
polynomial x? — 3), the four elements of G must be e, g, h, and gh,
where g is the automorphism that swaps ++v/2 and leaves v/3 fixed, and
where h is the automorphism that swaps ++v/3 and leaves /2 fixed. So
G= ZQ X ZQ.



There are five subgroups of G, namely

{e}, G, {e,g}, {eh}, A{e,gh}.
Their fixed fields are the five subfields

E, Q Q[V3], Qv2, Q[V6l.

. Consider the matrix

o O =
O O = O
S = O =
_ O = =

0

Determine the characteristic polynomial, the minimal polynomial, and
the Jordan canonical form of A.

Solution: The characteristic polynomial is
fa(x) = det(zly — A) = (z — 1),
due to A being upper triangular. We have ker(A — I) = (e1, e2) and
(A—1I4)(e3) =e1 and (A —1Iy)(eq) = €1 + €2,
and so (A — I)? = 0; this shows that the minimal polynomial is
ma(z) = (z —1)%

Since ker(A—I4) has dimension 2, there are exactly two Jordan blocks,
so both must be of size 2. So the Jordan canonical form is

1 00

o O o=

10
01
0 0

— = O

. Determine the degree of the field extension K = Q(v/3,v/2) over Q,
and find an element o € K such that K = Q(«).

Solution: Consider the two subfields Q(v/3) and Q(+/2). They have
degree 2 respectively 3 over Q, and so (K: Q) must be divisible by
both 2 and 3. This gives (K: Q) > 6. From the chain of extensions

QCQ(V3) CQ(V3,V2) =K,



we see that (K: Q) <6, and so (K: Q) = 6.
For the second part, we can use o = V3 - /2. With this choice,

o =6v3 and o' =18V2
and therefore v/3 and /2 belong to Q(«). This gives K = Q(a).

. Let V be a finite-dimensional QQ-vector space. Let T: V — V be a
nonzero endomorphism. Suppose that the only linear subspaces W C
V with T(W) C W are the trivial ones W =V and W = {0}. Prove
that the characteristic polynomial of T" must be irreducible.

Solution: Suppose by contradiction that fr(x) has a nontrivial factor-
ization fr(x) = g(z)h(x). According to the Cayley-Hamilton theorem,
we have g(T)h(T) = fr(T) = 0, which means that im h(T") C ker g(7).
The subspace ker g(7T') is invariant under 7', and so either ker g(T) = V'
or ker g(T") = {0}. In the first case, we get g(T') = 0; in the second
case, g(7T) is invertible, and so we get h(T) = 0. After swapping the
two factors, if necessary, we may therefore assume that g(7") = 0.

Write g(2) = apz® 4 - -+ a1z +ag, with ag # 0. Because T is nonzero,
there is a vector v € V' such that Tv # 0. Now consider the subspace

W = (v,Tv,T?v,..., T" ) # {0}.

It is invariant under T because apT*v 4 - -+ ayTv + agv = g(T)v = 0
shows that T%v € W. Since dim W < k < deg fr(x) = dim V, we have
W # V', which is a contradiction.

. Let £ C FE be a Galois extension of degree n, let p be a prime number
that divides n, and write n = p®m, where (m,p) = 1.

(a) Show that there is an intermediate field &k C F C FE that has
degree m over k.

(b) Show that if F' is Galois over k, then F' is the unique subfield of
E of degree m.

Solution: Let G = Gal(F/k) be the Galois group of the extension.
According to the Galois correspondence, subfields of E of degree m
over k are in bijection with subgroups of G of index m. Any subgroup
of this kind has order m/n = p, hence is exactly a Sylow p-subgroup
of G. In (a), we can therefore choose any Sylow p-subgroup S C G and
let F = E°. In (b), F is Galois if and only if S is a normal subgroup of
G according to the Sylow theorems, this happens exactly when there
is a unique Sylow p-subgroup, hence a unique subfield of degree m.



7. Let G be a finite group, and let p: G — C* be a linear character. Find
a 1-dimensional subrepresentation of the regular representation C[G]
whose character is the given p.

Solution: The (unique) 1-dimensional subrepresentation of this kind is
spanned by the vector

1
v, = %p(h)[h] e C[G].

Indeed, for any g € G, we have

1 1 plg

heG heG heG

~—

due to the fact that p: G — C* is a group homomorphism. Since the
trace of multiplication by p(g) on a 1-dimensional vector space is the
number p(g), the character of this representation is exactly p.

8. Let A be a commutative ring with 1, and let

0 s M — s N P, F 0

be a short exact sequence of A-modules. Show that if F' is free, then
N=MGeaF.

Solution: By the mapping property of free modules, there is a mor-
phism of A-modules s: F' — N such that po s =id.

s 7.
e id
v

N2 F_ 0

Now consider the morphism of A-modules

ftMe&F =N, f(xy)=il)+sy).
It is easy to see that f is injective: if f(x,y) = i(x) + s(y) = 0, then
y =p(s(y)) = p(i(x) + s(y)) = 0, and because i is injective, it follows

that x = 0. To show that f is also surjective, let z € N be an arbitrary
element. Set y = p(z) € F. Then

p(z=s(y) =y—y=0,
and since ker p = im i, there is an element x € M such that z — s(y) =

i(z). But then f(z,y) = i(x) + s(y) = z, as needed. This proves that
f is bijective, hence an isomorphism of A-modules.



