Math 534 Problem Set 3

due Thursday, September 20, 2018

- 1. Let G be a finite group, P a Sylow p-subgroup of G. If N is a normal subgroup of G, show that $P \cap N$ is a Sylow p-subgroup of N, and PN/N is a Sylow p-subgroup of G/N.
- 2. Let G be a finite group, p a prime, and H a p-subgroup of G. Show that there is a Sylow p-subgroup of G containing H.
- 3. Let P and Q be Sylow p-subgroups of a finite group G. Suppose the center Z(P) of P is contained in Q and is normal in Q. Prove that Z(P) = Z(Q).
- 4. Let G be a group of order p^2q , where p and q are distinct primes. Prove that G has a normal Sylow subgroup.
- 5. Let G be a finite group, P a Sylow p-subgroup of G. Suppose that H is a subgroup of G containing N(P). Show that $(G: H) \equiv 1 \mod p$.
- 6. Let K be a normal subgroup of a finite group G. If P is a Sylow p-subgroup of K, prove that $G = K \cdot N_G(P)$, where $N_G(P)$ is the normalizer of P in G.
- 7. Let G be a finite group of order 80. Show that G is not simple.
- 8. Suppose that the number n_p of Sylow *p*-subgroups of a finite group G satisfies $n_p \not\equiv 1 \mod p^2$. Prove that there are two distinct Sylow *p*-subgroups P and Q such that $|P \cap Q| = |P|/p$.
- 9. Let $G = N_0 \supseteq N_1 \supseteq \cdots \supseteq N_r = \{1\}$ be a composition series for a finite group G, meaning that each N_{i+1} is a normal subgroup of N_i , and that the factor groups N_i/N_{i+1} are all simple. Suppose that one of the N_i is a Sylow *p*-subgroup of G (for some prime *p*). Prove that N_i must be normal in G.
- 10. Suppose that G is a nontrivial finite p-group.
 - (a) Show that the center of G is nontrivial. (Hint: Use Problem Set 2, #4.)
 - (b) Show that G is simple if and only if |G| = p.

- (c) Let $|G| = p^n$, and let $G = N_0 \supseteq N_1 \supseteq \cdots \supseteq N_r = \{1\}$ be a composition series for G. Show that r = n and $|N_i| = p^{n-i}$ for $i = 0, 1, \ldots, n$.
- (d) Show that we can find a composition series for G such that each N_i is normal in G.