
MAT 512 Final Exam Solutions

Solutions are due by 6pm on Wednesday, May 10. You can email your solutions to me; or
leave them at my office; or have someone at the main office put them into my mailbox. Please
use a separate page for each question, so that I have space for comments.

1. Consider the cubic polynomial x3 +px+q, where p, q ∈ R are real numbers. Suppose that
this polynomial has three distinct real roots. Using examples where appropriate, explain
clearly why Cardano’s formula gives these real roots in terms of complex numbers.

Solution: Cardano’s formula for the roots of the cubic equation x3 + px+ q = 0 is
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where R = (p/3)3 + (q/2)2. Denote by r1, r2, r3 the three roots of the cubic. Recall that
the discriminant of the cubic polynomial is

∆ = (r1 − r2)2(r1 − r3)2(r2 − r3)2.

Now the point is that the quantity R in Cardano’s formula is related to the discriminant
by ∆ = −108R. If the roots of the cubic are distinct real numbers, then ∆ > 0, and
therefore R < 0. In Cardano’s formula, we therefore need to take the square root of
the negative number R, and so we end up with complex numbers in the formula, even
though the roots themselves are real numbers.

For example, consider the case r1 = 0, r2 = 1, and r3 = −1; the cubic polynomial is

x(x− 1)(x+ 1) = x3 − x

and so p = −1 and q = 0. (The sum of the three roots must be 0, in order to get a
polynomial of the form x3 + px + q.) We then have R = −1/27, and so the formula for
the roots involves the complex number

√
−3.

2. Let R be a ring. A nonempty subset I ⊆ R is called an ideal if

1. For every a, b ∈ I , one has a+ b ∈ I .

2. For every r ∈ R and every a ∈ I , one has ra ∈ I .

In words, I is closed under addition, and under multiplication by elements in R.

Let I be an ideal in the ring of integers Z. Show that there is an integer m ≥ 1 such that I
is the set of all multiples of m.

Solution: One possibility is that I = {0} contains only the zero element of the ring. In
this case, we can take m = 0. We may therefore assume from now on that I has other
elements besides 0.
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Now let us find the integer m. If we already knew that

I = {. . . ,−2m,−m, 0,m, 2m, . . . },

then m would be the smallest positive integer contained in I . The idea is to use this as
the definition. First, we note that I does contain positive integers: if a ∈ I and a < 0,
then because I is an ideal, we get−a = (−1)·a ∈ I , and−a is positive. We may therefore
define m ≥ 1 as the smallest positive integer that belongs to the ideal I . Then m ∈ I ,
and because I is an ideal, I also contains every multiple of m. In symbols,

{. . . ,−2m,−m, 0,m, 2m, . . . } ⊆ I.

It remains to prove that every element of I is a multiple of m. Let a ∈ I be an arbitrary
element. Using division with remainder, we can write

a = qm+ r

where q ∈ Z and 0 ≤ r < m. Because a ∈ I and m ∈ I , we get r = a−qm ∈ I . But r < m,
and because m was the smallest positive integer in I , it follows that r = 0. Therefore
a = qm is indeed a multiple of m.

3. Determine all the units in the ring Z18. Find the smallest number n ≥ 1 such that un = 1
for every unit in Z18. Clearly explain the process you used to find the answers.

Solution: We can think of the elements of Z18 as the congruence classes of 0, 1, . . . , 17,
modulo 18. The congruence class of a is a unit if and only if gcd(a, 18) = 1. The units
are therefore 1, 5, 7, 11, 13, 17. The number of units can also be computed using Euler’s
φ-function. We have

φ(18) = φ(2) · φ(9) = 6.

The reason is that φ(ab) = φ(a)φ(b) whenever a, b are relatively prime. This confirms
that there are 6 units.

We then compute powers of each unit and look for the smallest power that is equal to
1. Here is a table with the results:

11 ≡ 1, 56 ≡ 1, 73 ≡ 1, 116 ≡ 1, 133 ≡ 1, 172 ≡ 1

So the smallest value of n that works for all units is n = 6.

4. Let ϕ : R → S be a ring homomorphism. The kernel kerϕ is the set of elements r ∈ R
such that ϕ(r) = 0. Show that ϕ is injective if, and only if, kerϕ = {0}.

Solution: We first prove that if ϕ is injective, then kerϕ = {0}. This is easy. Suppose
that a ∈ kerϕ. This means that ϕ(a) = 0. We also have ϕ(0) = 0, and because ϕ is
injective, it follows that a = 0. Therefore kerϕ = {0}.
Next, we prove that if kerϕ = {0}, then ϕ is injective. Suppose that we have two ele-
ments a, b ∈ R with ϕ(a) = ϕ(b). Because ϕ is a ring homomorphism, we get

ϕ(a− b) = ϕ(a)− ϕ(b) = 0,
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and therefore a− b ∈ kerϕ. But kerϕ = {0}, and so a− b = 0. This gives a = b, and so ϕ
is injective.

5. Prove that the polynomial f(x) = x5 − 2x4 + 2x3 + 2x+ 8 does not factor as a product of
lower-degree polynomials in Z[x]. Clearly explain your reasoning.

Solution: We use reduction modulo the prime p = 3. This gives us the polynomial

f̄(x) = x5 + x4 + 2x3 + 2x+ 2 ∈ Z3[x].

If f(x) factors as a product of lower-degree polynomials in Z[x], then of course f̄(x)
factors as a product of lower-degree polynomials in Z3[x]. So it is enough to prove that
f̄(x) is an irreducible polynomial.

Let us first check that f̄(x) has no roots in Z3, and therefore no linear factors. This is
easy:

f̄(0) = 2, f̄(1) = 2, f̄(2) = 1

Since f̄(x) has degree 5, the only other possibility is that it has an irreducible monic
factor of degree 2. There are three irreducible quadratic polynomials in Z3[x]:

x2 + 1, x2 + x+ 2, x2 + 2x+ 2

We can find these by listing all 9 monic polynomials of degree 2, and then eliminating
those that have a root in Z3. We then check, using division with remainder, that none of
these three polynomials divide f̄(x). Therefore f̄(x) is irreducible.

6. Let F be a finite field with q elements. Explain why every element of F is a root of the
polynomial xq − x ∈ F [x].

Solution: Every nonzero element of F is a unit (because F is a field). The number of
units in F is therefore q − 1. By Euler’s theorem, we have aq−1 = 1 for every nonzero
a ∈ F . After multiplying by a, we get aq = a. This also holds for a = 0, and so every
element of F is a root of the polynomial xq − x.

7. Let R be an integral domain with finitely many elements. Prove that every nonzero
element a ∈ R has a multiplicative inverse.

Solution: Let a ∈ R be a nonzero element. The idea is to look at what happens when
we multiply the elements of R by a. This gives us a function

f : R→ R, f(r) = ar.

The fact that R is an integral domain means that f is injective. Indeed, suppose we have
f(r) = f(s). Then

a(r − s) = ar − as = f(r)− f(s) = 0,
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and since a 6= 0, it follows that r − s = 0, hence r = s. Therefore f is injective. Now an
injective function from a finite set to itself is necessarily also surjective (for reasons of
size). In our case, R is a finite set, and so f must be surjective. In particular, there is an
element r ∈ R such that f(r) = 1. But then ra = 1, and so r is a multiplicative inverse.

8. A number p ≥ 2 is prime if it cannot be written as a product of two smaller natural
numbers. This is also true for 1, but 1 is not considered to be a prime number. How
would you explain to a student why 1 should be excluded from the definition?

Solution: We should exclude 1 from the definition of prime numbers because we want
the factorization into prime numbers to be unique. Recall that every natural number
a ≥ 2 can be uniquely written as a product of prime numbers

a = p1p2 · · · pm,

where p1 < p2 < · · · < pm are the prime factors of a in increasing order. If 1 was a
prime number, this factorization would no longer be unique, because we could add any
number of 1’s as factors. For example, the prime factorization of 6 is 6 = 2 · 3, but we
also have 6 = 1 · 2 · 3 and 6 = 1 · 1 · 2 · 3, and so on.

Rules: You may quote results from the textbook or from class in your solution, provided that
they do not make a problem trivial. (For example, “This is just Theorem 9.7 in the textbook”
is not allowed.) You are not allowed to discuss these problems with anyone, and you are not
allowed to look up facts or solutions online. On the first page of your exam, please include a
statement (dated and signed) that you have followed these rules faithfully.
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