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1. The general second order homogeneous linear differential equation with constant coefficients
looks like

Ay′′+By′+Cy = 0,

where y is an unknown function of the variable x, and A, B, and C are constants. If A = 0 this
becomes a first order linear equation, which we already know how to solve. So we will consider
the case A 6= 0. We can divide through by A and obtain the equivalent equation

y′′+by′+ cy = 0

where b = B/A and c =C/A.
“Linear with constant coefficients” means that each term in the equation is a constant times y

or a derivative of y. “Homogeneous” excludes equations like y′′+ by′+ cy = f (x) which can be
solved, in certain important cases, by an extension of the methods we will study here.

2. In order to solve this equation, we guess that there is a solution of the form

y = eλx,

where λ is an unknown constant. Why? Because it works!
We substitute y = eλx in our equation. This gives

λ
2eλx +bλeλx + ceλx = 0.

Since eλx is never zero, we can divide through and get the equation

λ
2 +bλ + c = 0.

Whenever λ is a solution of this equation, y = eλx will automatically be a solution of our original
differential equation, and if λ is not a solution, then y = eλx cannot solve the differential equation.
So the substitution y = eλx transforms the differential equation into an algebraic equation!

Example 1. Consider the differential equation

y′′− y = 0.

Plugging in y = eλx give us the associated equation

λ
2−1 = 0,
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which factors as
(λ +1)(λ −1) = 0;

this equation has λ = 1 and λ = −1 as solutions. Both y = ex and y = e−x are solutions to the
differential equation y′′− y = 0. (You should check this for yourself!)

Example 2. For the differential equation

y′′+ y′−2y = 0,

we look for the roots of the associated algebraic equation

λ
2 +λ −2 = 0.

Since this factors as (λ − 1)(λ + 2) = 0, we get both y = ex and y = e−2x as solutions to the
differential equation. Again, you should check that these are solutions.

3. For the general equation of the form

y′′+by′+ cy = 0,

we need to find the roots of λ 2 +bλ + c = 0, which we can do using the quadratic formula to get

λ =
−b±

√
b2−4c

2
.

If the discriminant b2− 4c is positive, then there are two solutions, one for the plus sign and one
for the minus.

This is what we saw in the two examples above.

Now here is a useful fact about linear differential equations: if y1 and y2 are solutions of the
homogeneous differential equation y′′+ by′+ cy = 0, then so is the linear combination py1 + qy2
for any numbers p and q. This fact is easy to check (just plug py1 + qy2 into the equation and
regroup terms; note that the coefficients b and c do not need to be constant for this to work. This

means that for the differential equation in Example 1 (y′′− y = 0), any function of the form

pex +qe−x where p and q are any constants

is a solution. Indeed, while we can’t justify it here, all solutions are of this form. Similarly, in
Example 2, the general solution of

y′′+ y′−2y = 0

is
y = pex +qe−2x, where p and q are constants.

4. If the discriminant b2−4c is negative, then the equation λ 2+bλ +c= 0 has no solutions, unless
we enlarge the number field to include i =

√
−1, i.e. unless we work with complex numbers. If

b2−4c < 0, then since we can write any positive number as a square k2, we let k2 = −(b2−4c).
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Then ik will be a square root of b2− 4c, since (ik)2 = i2k2 = (−1)k2 = −k2 = b2− 4c. The
solutions of the associated algebraic equation are then

λ1 =
−b+ ik

2
, λ2 =

−b− ik
2

.

Example 3. If we start with the differential equation y′′+y= 0 (so b= 0 and c= 1) the discriminant
is b2− 4c = −4, so 2i is a square root of the discriminant and the solutions of the associated
algebraic equation are λ1 = i and λ2 =−i.

Example 4. If the differential equation is y′′+ 2y′+ 2y = 0 (so b = 2 and c = 2 and b2− 4c =
4− 8 = −4). In this case the solutions of the associated algebraic equation are λ = (−2± 2i)/2,
i.e. λ1 =−1+ i and λ2 =−1− i.

5. Going from the solutions of the associated algebraic equation to the solutions of the differential
equation involves interpreting eλx as a function of x when λ is a complex number. Suppose λ has
real part a and imaginary part ib, so that λ = a+ ib with a and b real numbers. Then

eλx = e(a+ib)x = eaxeibx

assuming for the moment that complex numbers can be exponentiated so as to satisfy the law of
exponents. The factor eax does not cause a problem, but what is eibx? Everything will work out if
we take

eibx = cos(bx)+ isin(bx),

and we will see later that this formula is a necessary consequence of the elementary properties of
the exponential, sine and cosine functions.

6. Let us try this formula with our examples.

Example 3. For y′′+y = 0 we found λ1 = i and λ2 =−i, so the solutions are y1 = eix and y2 = e−ix.
The formula gives us y1 = cosx+ isinx and y2 = cosx− isinx.

Our earlier observation that if y1 and y2 are solutions of the linear differential equation, then so
is the combination py1+qy2 for any numbers p and q holds even if p and q are complex constants.

Using this fact with the solutions from our example, we notice that 1
2(y1 + y2) = cosx and

1
2i(y1− y2) = sinx are both solutions. When we are given a problem with real coefficients it is
customary, and always possible, to exhibit real solutions. Using the fact about linear combinations
again, we can say that y = pcosx+qsinx is a solution for any p and q. This is the general solution.
(It is also correct to call y = peix + qe−ix the general solution; which one you use depends on the
context.)

Example 4. y′′+2y′+2y = 0. We found λ1 =−1+ i and λ2 =−1− i. Using the formula we have

y1 = eλ1x = e(−1+i)x = e−xeix = e−x(cosx+ isinx),

y2 = eλ2x = e(−1−i)x = e−xe−ix = e−x(cosx− isinx).
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Exactly as before we can take 1
2(y1 + y2) and 1

2i(y1− y2) to get the real solutions e−x cosx and
e−x sinx. (Check that these functions both satisfy the differential equation!) The general solution
will be y = pe−x cosx+qe−x sinx.

7. Repeated roots. Suppose the discriminant is zero: b2− 4c = 0. Then the “characteristic equa-
tion” λ 2 +bλ + c = 0 has one root. In this case both eλx and xeλx are solutions of the differential
equation.

Example 5. Consider the equation y′′+4y′+4y = 0. Here b = c = 4. The discriminant is b2−4c =
42−4×4= 0. The only root is λ =−2. Check that both e−2x and xe−2x are solutions. The general
solution is then y = pe−2x +qxe−2x.

8. Initial Conditions. For a first-order differential equation the undetermined constant can be
adjusted to make the solution satisfy the initial condition y(0) = y0; in the same way the p and the
q in the general solution of a second order differential equation can be adjusted to satisfy initial
conditions. Now there are two: we can specify both the value and the first derivative of the solution
for some “initial” value of x.

Example 5. Suppose that for the differential equation of Example 2, y′′+ y′− 2y = 0, we want a
solution with y(0) = 1 and y′(0) =−1. The general solution is y = pex+qe−2x, since the two roots
of the characteristic equation are 1 and−2. The method is to write down what the initial conditions
mean in terms of the general solution, and then to solve for p and q. In this case we have

1 = y(0) = pe0 +qe−2×0 = p+q

−1 = y′(0) = pe0−2qe−2×0 = p−2q.

This leads to the set of linear equations p+ q = 1, p− 2q = −1 with solution q = 2/3, p = 1/3.
You should check that the solution

y =
1
3

ex +
2
3

e−2x

satisfies the initial conditions.

Example 6. For the differential equation of Example 4, y′′+ 2y′+ 2y = 0, we found the general
solution y = pe−x cosx+ qe−x sinx. To find a solution satisfying the initial conditions y(0) = −2
and y′(0) = 1 we proceed as in the last example:

−2 = y(0) = pe−0 cos0+qe−0 sin0 = p

1 = y′(0) =−pe−0 cos0− pe−0 sin0−qe−0 sin0+qe−0 cos0 =−p+q.

So p =−2 and q =−1. Again check that the solution

y =−2e−x cosx− e−x sinx

satisfies the initial conditions.


