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LetC c X and C c X be compact C> submanifolds in C*°
manifolds.
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C> Tubular Neighborhood Theorem

Theorem
LetC c X and C c X be compact C> submanifolds in C*°
manifolds.
() If there exists a C> vector bundle isomorphism of normal
bundles .
NC /X = Na. /)~(,
then there exists a C* -diffeomorphism of suitable
neighborhoods

X> (C>0)2(CcO) cX

(ii) In fact, we can choose ® such that ¢ is induced by
do: TO~TO.
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LetC c X and C C X be compact complex submanifolds in
complex manifolds.
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Holomorphic Tubular Neighborhood Theorem ?

Theorem (?77)

LetC c X and C C X be compact complex submanifolds in
complex manifolds.

» [f there exists a holomorphic vector bundle isomorphism of
holomorphic normal bundles
Nex = N e
then there exists a biholomorphic diffeomorphism of
suitable neighborhoods

X5 (C>0)2(CcO) cX.
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Holomorphic Tubular Neighborhood Theorem ?

Theorem (?77)
LetC c X and C C X be compact complex submanifolds in
complex manifolds.

» [f there exists a holomorphic vector bundle isomorphism of
holomorphic normal bundles

Nex = N e
then there exists a biholomorphic diffeomorphism of
suitable neighborhoods

X5 (C>0)2(CcO) cX.

False: N,x ~ Nj 5 doesn't necessarily imply TX|¢ ~ TX|z.

What if we replace the condition to TX|¢ = TX|3? Still false.
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Let Z be the ideal sheaf of a complex submanifold C C X.
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Finite/formal neighborhoods

Definition
Let Z be the ideal sheaf of a complex submanifold C C X.

» The ¢-th infinitesimal neighborhood (C/X), is the space C
equipped with the structure sheaf Oy /Z¢*1.
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Finite/formal neighborhoods

Definition
Let Z be the ideal sheaf of a complex submanifold C C X.

» The ¢-th infinitesimal neighborhood (C/X), is the space C
equipped with the structure sheaf Oy /Z¢*1.
Example: (C/X)1 ~ TX|c.

» The formal neighborhood of C in X is the inverse limit
(C/X)oo :=lim_(C/X),.

> For two submanifolds C ¢ X and C ¢ )~(, a formal
isomorphism o

©:(C/X)oo = (C/X)ox

means a compatible collection of isomorphisms

{e: (C/X)e — (C/X)e, £2 1}
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LetC c X and C c X be compact complex submanifolds in
complex manifolds.
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Holomorphic Tubular Neighborhood Theorem ?

Problem
LetC c X and C c X be compact complex submanifolds in
complex manifolds.
(i) If there exists a formal isomorphism of formal
neighborhoods
D o
(C/X)oo = (C/X)oo,
does there exist a biholomorphic diffeomorphism of
suitable neighborhoods

XD (CDO)g(éca) C X?
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Holomorphic Tubular Neighborhood Theorem ?

Problem

LetC c X and C c X be compact complex submanifolds in
complex manifolds.

(i) If there exists a formal isomorphism of formal
neighborhoods

(C/X)oo £ (C/X)o0,

does there exist a biholomorphic diffeomorphism of
suitable neighborhoods

X5 (Co0)2(CcO) cX?
(i) Furthermore, can we choose ® such that ¢ is the
restriction q)‘(c/x)oo ?

False!!
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C C X satisfies the formal principle, if the answer to the above
problem (i) is yes:

«O» «FHr «=>»
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Formal Principle

Definition
C C X satisfies the formal principle, if the answer to the above
problem (i) is yes: for any C C X, if there is a formal
isomorphism

©:(C/X)oo = (C/X)oo:

then there exists a biholomorphic diffeomorphism of suitable
neighborhoods

X5 (C>0)2(CcO) cX.
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C C X satisfies the formal principle with convergence, if the
answer to the above problem (ii) is yes:
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Formal Principle with Convergence

Definition
C C X satisfies the formal principle with convergence, if the

answer to the above problem (ii) is yes: for any C C X, if there
is a formal isomorphism

¢ :(C/X)oo = (C/X)oos

then there exists a biholomorphic diffeomorphism of suitable
neighborhoods

XD (CDO)g(ECE)) cX

such that o = q)’(c/x)oo.
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» Formal Principle ~ "Formal neighborhood determines the
biholomorphic germ of neighborhoods."
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Formal Principle vs. Formal Principle with
Convergence

» Formal Principle ~ "Formal neighborhood determines the
biholomorphic germ of neighborhoods."

» Formal Principle with Convergence ~ "Any formal
isomorphism of formal neighborhoods converges."

» Formal Principle with Convergence = Formal Principle
» Formal Principle with Convergence < Formal Principle
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Formal Principle = Formal Principle with
Convergence

Example For 0 € C with coordinate z and 0 € C with
coordinate z, any formal power series

228124—32224-33234—"'

with a; # 0 defines a formal isomorphism

(0/C)oo £ (0/C)cx.
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Example For 0 € C with coordinate z and 0 € C with
coordinate z, any formal power series

228124-32224-33234—"'
with a; # 0 defines a formal isomorphism
(0/C)oc = (0/C)ec

But ¢ does not necessarily converge.



Formal Principle = Formal Principle with
Convergence

Example For 0 € C with coordinate z and 0 € C with
coordinate z, any formal power series

223124—82224-33234-"'
with a; # 0 defines a formal isomorphism
(0/C)oc = (0/C)ec

But ¢ does not necessarily converge.

= 0 € C satisfies the Formal Principle, but violates the
Formal Principle with Convergence.
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Formal Principle.

» It is difficult to find examples of C C X that violates the
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Convergence

» It is difficult to find examples of C C X that violates the
Formal Principle.

Essentially the only known example is Arnold’s (1976): an
elliptic curve C in a complex surface X with normal bundle
of degree 0, which violates the Formal Principle.
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Formal Principle vs. Formal Principle with
Convergence

» It is difficult to find examples of C C X that violates the
Formal Principle.

Essentially the only known example is Arnold’s (1976): an
elliptic curve C in a complex surface X with normal bundle
of degree 0, which violates the Formal Principle.

» It is difficult to give examples of C C X that satisfies the
Formal Principle with Convergence.

Even 0 € C violates the Formal Principle with
Convergence.

What are examples satisfying the Formal Principle with
Convergence?
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» From now on, we consider only the case C = P'.
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» Essential difficulties appear already in this case.
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Smooth rational curves

» From now on, we consider only the case C = P'.
» Essential difficulties appear already in this case.

Definition

For a smooth rational curve P! = C ¢ X, the normal bundle
Nc/x is of the form O(ky) @ - - - © O(kp_1), n = dim X.
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cover a neighborhood of C);



Smooth rational curves

» From now on, we consider only the case C = P'.
» Essential difficulties appear already in this case.

Definition

For a smooth rational curve P! = C ¢ X, the normal bundle
Nc/x is of the form O(ky) @ - - - © O(kp_1), n = dim X.

We say
> Ng/x >0if ky,...,Kkn1 > 0;
> Ng/x > 0if ky,...,kn—1 > 0 (< deformations of C in X
cover a neighborhood of C);
» Cis unbendable if ky,...,k,_1 =0o0r1 (= no

deformations fixing two points of C).
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If N¢,x > 0, then C C X satisfies the Formal Principle with
Convergence.
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Previous Results

Theorem (Commichau-Grauert, Hirschowitz 1981)

If Nc,x > 0, then C C X satisfies the Formal Principle with
Convergence.

Example A line in P" satisfies the Formal Principle with
Convergence.
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Previous Results

Theorem (Commichau-Grauert, Hirschowitz 1981)

If Nc,x > 0, then C C X satisfies the Formal Principle with
Convergence.

Example A line in P" satisfies the Formal Principle with
Convergence.

Theorem (H. 2019)

If Nc,x > 0, then a general deformation of C in X satisfies the
Formal Principle.

Example A line in a Grassmannian satisfies the Formal
Principle.

Question: Can we strengthen [H.2019] to Formal Principle
with Convergence?
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A neighborhood C C U c X is a fibered neighborhood, if there
is a holomorphic submersion f : U — B,dim B > 0 such that C
is contained in a fiber of f.
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Fibered neighborhood

Definition

A neighborhood C C U C X is a fibered neighborhood, if there
is @ holomorphic submersion f : U — B,dim B > 0 such that C
is contained in a fiber of f.

Example X = C x C with the submersion f: X =C xC — Ciis
a fibered neighborhood of

C~(Cx0) cCc (CxC)=X.
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is contained in a fiber of f.

Example X = C x C with the submersion f: X =C xC — Ciis
a fibered neighborhood of

C~(Cx0) cCc (CxC)=X.

Nc,x > 0, but any deformation of C in X violates the Formal
Principle with Convergence because so does 0 € C.



Fibered neighborhood

Definition
A neighborhood C C U C X is a fibered neighborhood, if there

is @ holomorphic submersion f : U — B,dim B > 0 such that C
is contained in a fiber of f.

Example X = C x C with the submersion f: X =C xC — Ciis
a fibered neighborhood of

C~(Cx0) cCc (CxC)=X.

Nc,x > 0, but any deformation of C in X violates the Formal
Principle with Convergence because so does 0 € C.

= A fibered neighborhood is likely to be an obstruction to the
Formal Principle with Convergence.
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component of the space of smooth rational curves C C X with
NC /X > 0.

Let X be a complex manifold and let IKC be an irreducible
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Theorem 1

Theorem (Hong-H.)

Let X be a complex manifold and let IC be an irreducible
component of the space of smooth rational curves C C X with
NC/X > 0. Assume

(i) a general member of KC is unbendable; and
(i) a general member of IC has no fibered neighborhood.



Theorem 1

Theorem (Hong-H.)

Let X be a complex manifold and let IC be an irreducible
component of the space of smooth rational curves C C X with
NC/X > 0. Assume

(i) a general member of KC is unbendable; and
(i) a general member of IC has no fibered neighborhood.

Then a general member of K satisfies the Formal Principle
with Convergence.
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Examples of Theorem 1

There are many examples of "minimal rational curves" on Fano
X of Picard number 1 satisfying the conditions (i) and (ii) of
Theorem 1.



Examples of Theorem 1

There are many examples of "minimal rational curves" on Fano
X of Picard number 1 satisfying the conditions (i) and (ii) of
Theorem 1.

Example A line in Grassmannian satisfies the Formal Principle
with Convergence.



Examples of Theorem 1

There are many examples of "minimal rational curves" on Fano
X of Picard number 1 satisfying the conditions (i) and (ii) of
Theorem 1.

Example A line in Grassmannian satisfies the Formal Principle
with Convergence.

Example A general line on a hypersurface X c P"t1 of degree
< n — 1 satisfies the Formal Principle with Convergence.



Examples of Theorem 1

There are many examples of "minimal rational curves" on Fano
X of Picard number 1 satisfying the conditions (i) and (ii) of
Theorem 1.

Example A line in Grassmannian satisfies the Formal Principle
with Convergence.

Example A general line on a hypersurface X c P"t1 of degree
< n — 1 satisfies the Formal Principle with Convergence.

Remark A general line on a hypersurface X ¢ P"*' of degree
= nis unbendable, but has fibered neighborhood. It satisfies
the Formal principle (by [H.2019]), but violates the Formal
Principle with Convergence.
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How to prove the convergence of a formal
isomorphism?

Lemma (Kobayashi-Nomizu (1963) vol 1)
Lety € Y andy € Y be points on complex manifolds and let

<

/Yoo £ (7/Y)oo

be a formal isomorphism between formal neighborhoods of
points.
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How to prove the convergence of a formal
isomorphism?

Lemma (Kobayashi-Nomizu (1963) vol 1)

Lety € Y andy € Y be points on complex manifolds and let

/Yoo £ (7/Y)oo

be a formal isomorphism between formal neighborhoods of
points.

Suppose there exist holomorphic affine connections V on'Y
andV on'Y such that ¢,V = V.

Then ¢ converges.

Question: Where are affine connections in the setting of
Theorem 1?7
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Universal family of rational curves with N¢/x > 0

Let X be a complex manifold and let K be an irreducible
component of the Douady space (= Hilbert scheme) of smooth
rational curves C C X with N¢,x > 0.
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Universal family of rational curves with N¢/x > 0

Let X be a complex manifold and let K be an irreducible
component of the Douady space (= Hilbert scheme) of smooth
rational curves C C X with N¢,x > 0.

Then K is a complex manifold and we have the universal
family

K & Unive 3 X,

such that
» o : Univk — K is a P'-bundle; and
» each member C C X of K and the corresponding point
[C] € K satisfies

C = Bla='([C]))
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Theorem 2

Theorem (Hong-H.)

Let X be a complex manifold and let IC be an irreducible

component of the Douady space of smooth rational curves
C C X with Ng/x > 0. Assume

(i) a general member of K is unbendable; and
(il) a general member of KC has no fibered neighborhood.
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Theorem 2

Theorem (Hong-H.)

Let X be a complex manifold and let IC be an irreducible

component of the Douady space of smooth rational curves
C C X with Ng/x > 0. Assume

(i) a general member of K is unbendable; and

(il) a general member of KC has no fibered neighborhood.
For the universal family

K & Univg 2 x ,
there exist
» a canonical nonempty Zariski-open subset VV C Univg;

» a canonical smooth fiber bundle P — W over W; and
» a canonical affine connection V on P.
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» Let X be the Grassmannian of k(< n)-dimensional
subspaces in C" and let K be the space of lines on X.
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An example of Theorem 2

> Let X be the Grassmannian of k(< n)-dimensional
subspaces in C" and let K be the space of lines on X.

» We have parabolic subgroups P;, P> of G = PGL(n) such
that the universal family

K & Unive & X
is given by
G/P; & G/(PinP) 2 G/P,.



An example of Theorem 2

> Let X be the Grassmannian of k(< n)-dimensional
subspaces in C" and let K be the space of lines on X.

» We have parabolic subgroups P;, P> of G = PGL(n) such
that the universal family

K & Unive 5 X
is given by

G/P, & G/(PinPy) & G/P..
» In Theorem 2 for this case,

» the Zariski-open subset VW C Univi is the whole
G/(P1 N Py);

» the smooth fiber bundle P — W is the quotient
G— G/(PinPy);and

» the affine connection V on P = G is the Maurer-Cartan
form wyc on G.



An example of Theorem 2

> Let X be the Grassmannian of k(< n)-dimensional
subspaces in C" and let K be the space of lines on X.

» We have parabolic subgroups P;, P> of G = PGL(n) such
that the universal family

K & Unive 5 X
is given by

G/P, & G/(PinPy) & G/P..
» In Theorem 2 for this case,

» the Zariski-open subset VW C Univi is the whole
G/(P1 N Py);

» the smooth fiber bundle P — W is the quotient
G— G/(PinPy);and

» the affine connection V on P = G is the Maurer-Cartan
form wyc on G.

Theorem 2 is a generalization of this example!
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(1) Assume that C C X is a general member of K such that
the corresponding fiber C* of Univik — K intersects the
Zariski-open W C Univg.
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Theorem 2 = Theorem 1

(1) Assume that C C X is a general member of K such that
the corresponding fiber C” of Univi — K intersects the
Zariski-open W C Univg.

(2) A formal isomorphism (C/X)o £ (6/)~()OO can be lifted to

b —~
a formal isomorphism (w/W) £ (W/W)w for any point
w € C’ N W, by the functoriality of Douady space (=
Hilbert scheme).
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(1)

(@)

Assume that C c X is a general member of K such that
the corresponding fiber C” of Univi — K intersects the
Zariski-open W C Univg.

A formal isomorphism (C/X)oo £ (C/X) can be lifted to

a formal isomorphism (W/W)C>O i~ (W/W) for any point
w € C’ N W, by the functoriality of Douady space (=
Hilbert scheme).

# ~
It can be lifted to a formal isomorphism (y/P)ec % (¥/P)oc
at any point y € P over w € W by the canonlcallty of
PoWandP - W and it satisfies go*V V by the
canonicality of V and V.



Theorem 2 = Theorem 1

(1)

(@)

Assume that C c X is a general member of K such that
the corresponding fiber C” of Univi — K intersects the
Zariski-open W C Univg.

A formal isomorphism (C/X)oo £ (6/)~()OO can be lifted to

b —~
a formal isomorphism (w/W) £ (W/W)w for any point
w € C’ N W, by the functoriality of Douady space (=
Hilbert scheme).

# ~
It can be lifted to a formal isomorphism (y/P)eo ~ (V/P)sc
at any point y € P over w € W by the canonlcallty of
PoWandP - W and it satisfies go*V V by the
canonicality of V and V.

By Kobayashi-Nomizu Lemma, (" converges. Hence, so
does . We conclude ¢ converges at a general point of C.
Then it converges at all points of C by maximum principle.
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Let M be a complex manifold.
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Let M be a complex manifold.

» A vector subbundle D ¢ TM of the tangent bundle is a
distribution on M.
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Basic notions on Distributions

Definition
Let M be a complex manifold.

» A vector subbundle D C TM of the tangent bundle is a
distribution on M.

» D is Levi-nondegenerate if the anti-symmetric bilinear map
['7.]X . /\2DX % TxM/DX
is nondegenerate for a general point x € M.



Basic notions on Distributions

Definition
Let M be a complex manifold.

» A vector subbundle D C TM of the tangent bundle is a
distribution on M.

» D is Levi-nondegenerate if the anti-symmetric bilinear map
[-,]x: A2Dy — TxM/Dy
is nondegenerate for a general point x € M.
» D is bracket-generating if the successive Lie brackets
Dc[D,D]c|[D,D],D]C---
generates TyM at a general point x € M.
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Let D ¢ TM be a distribution.
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Symbol Algebras of a Distribution

Definition
Let D C TM be a distribution.
» For each point x € M, the successive brackets
Dc[D,D)c|[D,D,D]cC---
determine a nilpotent graded Lie algebra symb, (D), called
the symbol algebra of D at x.



Symbol Algebras of a Distribution

Definition
Let D C TM be a distribution.
» For each point x € M, the successive brackets
Dc[D,D)c|[D,D,D]cC---
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> D has isotrivial symbol algebras if symb, (D) = symb, (D)
isomorphic as graded Lie algebras for all x, y in a
Zariski-open subset of M.



Symbol Algebras of a Distribution

Definition
Let D C TM be a distribution.
» For each point x € M, the successive brackets
Dc[D,D)c|[D,D,D]cC---
determine a nilpotent graded Lie algebra symb, (D), called
the symbol algebra of D at x.

> D has isotrivial symbol algebras if symb, (D) = symb, (D)
isomorphic as graded Lie algebras for all x, y in a
Zariski-open subset of M.

Example If D C TM is a contact distribution, symb, D is
isomorphic to the Heisenberg algebra for all x € M.
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Tanaka Prolongation Theorem

Theorem (Tanaka 1970)

Given a transversal pair of holomorphic submersions of a
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Tanaka Prolongation Theorem

Theorem (Tanaka 1970)

Given a transversal pair of holomorphic submersions of a
complex manifold M

A& m2E B,
define the distribution D := Ker(d«) & Ker(d3) on M. If
() D is Levi-nondegenerate;
(I) D is bracket-generating; and
(1) D has isotrivial symbol algebras,
then there exist
» a canonical nonempty Zariski-open subset W C M,

» a canonical smooth fiber bundle P — W over W; and
» a canonical affine connection V on P.



Q>




Remarks on Tanaka Prolongation Theorem (1970)

» Tanaka Prolongation Theorem is a far-reaching
generalization of Tanaka’s construction (1962) of the
canonical Cartan connection for Levi-nondegenerate
CR-structures.



Remarks on Tanaka Prolongation Theorem (1970)

» Tanaka Prolongation Theorem is a far-reaching
generalization of Tanaka’s construction (1962) of the
canonical Cartan connection for Levi-nondegenerate
CR-structures.

» The canonical fiber bundle P — W is a tower

P=Px = Pxq4 =+ =-P1 = Py =>W

of principal bundles with suitable structure groups
Gk, Gk-1,---, G1, Go-



Remarks on Tanaka Prolongation Theorem (1970)

» Tanaka Prolongation Theorem is a far-reaching
generalization of Tanaka’s construction (1962) of the
canonical Cartan connection for Levi-nondegenerate
CR-structures.

» The canonical fiber bundle P — W is a tower
P=Px = Pxq4 =+ =-P1 = Py =>W
of principal bundles with suitable structure groups
Gk,Gk_1,...,G1,Go.
» This is the generalization of G — G/(P; N P») in the
Grassmannian case for the double fibration

G/Py & G/(PinP) B G/P,:



Remarks on Tanaka Prolongation Theorem (1970)

» Tanaka Prolongation Theorem is a far-reaching
generalization of Tanaka’s construction (1962) of the
canonical Cartan connection for Levi-nondegenerate
CR-structures.

» The canonical fiber bundle P — W is a tower

P=Px = Pxq4 =+ =-P1 = Py =>W
of principal bundles with suitable structure groups
Gk,Gk_1,...,G1,Go.

» This is the generalization of G — G/(P; N Ps) in the

Grassmannian case for the double fibration

G/Py & G/(PinPy) & G/P;:
the homogeneity is generalized to (iii) D has isotrivial
symbol algebras.
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Proving Theorem 2 using Tanaka Prolongation
Theorem

Theorem (Hong-H.)

Let X be a complex manifold and let IC be an irreducible
component of the space of smooth rational curves C C X with
Nc,x > 0. Assume

(i) a general member of K is unbendable; and

(i) a general member of K has no fibered neighborhood.
For the universal family

K & Unive 3 X,
there exist
» a canonical nonempty Zariski-open subset VW C Univg;

» a canonical smooth fiber bundle P — VW over W; and
» a canonical affine connection V on P.
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Theorem (Tanaka 1970 = Theorem 2 ?)

Given a transversal pair of holomorphic submersions
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define the distribution D := Ker(d«) & Ker(dg) on Univi. Check
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Proving Theorem 2 using Tanaka Prolongation
Theorem

Theorem (Tanaka 1970 = Theorem 2 ?)

Given a transversal pair of holomorphic submersions

, . B
K & Univk 5 X,

define the distribution D := Ker(d«) & Ker(dg) on Univi. Check
(I) D is Levi-nondegenerate < (i) C C X unbendable;
() D is bracket-generating < (ii) no fibered nbd of C C X;
() D has isotrivial symbol algebras, = Not always true!!
then there exist
» a canonical nonempty Zariski-open subset W C M,
» a canonical smooth fiber bundle P — W over W; and
» a canonical affine connection V on P.
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Generalized Tanaka Prolongation Theorem

We can remove the assumption (lll) in [Tanaka 1970]:
Theorem (Hong-H.)

Given a transversal pair of holomorphic submersions of M
AL ML B
define the distribution D := Ker(d«) @ Ker(d3) on M. If
(I) D is Levi-nondegenerate; and
(I) D is bracket-generating,
then there exist
» a canonical nonempty Zariski-open subset VW C M,

» a canonical smooth fiber bundle P — VW over ; and
» a canonical affine connection V on P.
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» Generalized Tanaka Prolongation Theorem proves
Theorem 2, hence Theorem 1.
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Remarks on Generalized Tanaka Prolongation
Theorem

» Generalized Tanaka Prolongation Theorem proves
Theorem 2, hence Theorem 1.

» The canonical fiber bundle P — W is a tower
P=Px = P4 =+ =P = Py =W

of generalized principal bundles with suitable structure
group scheme Gy, Gx_1, ..., Gy, Gp.
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Proof of Generalized Tanaka Prolongation Theorem

» The proof of [Tanaka 70] is an extremely complicated
induction argument of 70 pages, even under the
assumption of isotrivial symbol algebras. = We wouldn’t
have been able to generalize it when the symbol algebras
vary.

» Fortunately, [Alekseevsky-David, 2017] simplified Tanaka’s
proof to about 30 pages. = We could generalize their
proof (less than 40 pages)!

» Key technical point: The concept of a principal
connection on a principal bundle does not make sense
when the structure group is not constant. = We need to
introduce a generalized notion of connection and show
that certain components of the torsion tensor has invariant
meaning.



Thank you very much !!



