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C∞ Tubular Neighborhood Theorem

Theorem
Let C ⊂ X and C̃ ⊂ X̃ be compact C∞ submanifolds in C∞
manifolds.

(i) If there exists a C∞ vector bundle isomorphism of normal
bundles

NC/X
φ
≃ NC̃/X̃ ,

then there exists a C∞-diffeomorphism of suitable
neighborhoods

X ⊃ (C ⊃ O)
Φ≃ (C̃ ⊂ Õ) ⊂ X̃ .

(ii) In fact, we can choose Φ such that φ is induced by
dΦ : TO ≃ TÕ.
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Holomorphic Tubular Neighborhood Theorem ?

Theorem (???)

Let C ⊂ X and C̃ ⊂ X̃ be compact complex submanifolds in
complex manifolds.
▶ If there exists a holomorphic vector bundle isomorphism of

holomorphic normal bundles

NC/X
φ
≃ NC̃/X̃ ,

then there exists a biholomorphic diffeomorphism of
suitable neighborhoods

X ⊃ (C ⊃ O)
Φ≃ (C̃ ⊂ Õ) ⊂ X̃ .

False: NC/X ≃ NC̃/X̃ doesn’t necessarily imply TX |C ≃ T X̃ |C̃ .

What if we replace the condition to TX |C
φ
≃ TX̃ |C̃? Still false.
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Finite/formal neighborhoods

Definition
Let I be the ideal sheaf of a complex submanifold C ⊂ X .
▶ The ℓ-th infinitesimal neighborhood (C/X )ℓ is the space C

equipped with the structure sheaf OX/Iℓ+1.
Example: (C/X )1 ∼ TX |C .

▶ The formal neighborhood of C in X is the inverse limit
(C/X )∞ := lim←(C/X )ℓ.

▶ For two submanifolds C ⊂ X and C̃ ⊂ X̃ , a formal
isomorphism

φ : (C/X )∞ → (C̃/X̃ )∞

means a compatible collection of isomorphisms

{φℓ : (C/X )ℓ → (C̃/X̃ )ℓ, ℓ ≥ 1}.
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Formal Principle

Definition
C ⊂ X satisfies the formal principle, if the answer to the above
problem (i) is yes: for any C̃ ⊂ X̃ , if there is a formal
isomorphism

φ : (C/X )∞ → (C̃/X̃ )∞,

then there exists a biholomorphic diffeomorphism of suitable
neighborhoods

X ⊃ (C ⊃ O)
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Φ≃ (C̃ ⊂ Õ) ⊂ X̃ .



Formal Principle

Definition
C ⊂ X satisfies the formal principle, if the answer to the above
problem (i) is yes: for any C̃ ⊂ X̃ , if there is a formal
isomorphism

φ : (C/X )∞ → (C̃/X̃ )∞,

then there exists a biholomorphic diffeomorphism of suitable
neighborhoods

X ⊃ (C ⊃ O)
Φ≃ (C̃ ⊂ Õ) ⊂ X̃ .
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Formal Principle vs. Formal Principle with
Convergence

▶ Formal Principle ∼ "Formal neighborhood determines the
biholomorphic germ of neighborhoods."

▶ Formal Principle with Convergence ∼ "Any formal
isomorphism of formal neighborhoods converges."

▶ Formal Principle with Convergence⇒ Formal Principle
▶ Formal Principle with Convergence ⇍ Formal Principle
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Formal Principle ⇏ Formal Principle with
Convergence

Example For 0 ∈ C with coordinate z and 0̃ ∈ C̃ with
coordinate z̃, any formal power series

z̃ = a1z + a2z2 + a3z3 + · · ·

with a1 ̸= 0 defines a formal isomorphism

(0/C)∞
φ
≃ (0̃/C̃)∞.

But φ does not necessarily converge.

⇒ 0 ∈ C satisfies the Formal Principle, but violates the
Formal Principle with Convergence.
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Formal Principle vs. Formal Principle with
Convergence

▶ It is difficult to find examples of C ⊂ X that violates the
Formal Principle.

Essentially the only known example is Arnold’s (1976): an
elliptic curve C in a complex surface X with normal bundle
of degree 0, which violates the Formal Principle.

▶ It is difficult to give examples of C ⊂ X that satisfies the
Formal Principle with Convergence.

Even 0 ∈ C violates the Formal Principle with
Convergence.

What are examples satisfying the Formal Principle with
Convergence?
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Smooth rational curves

▶ From now on, we consider only the case C ∼= P1.
▶ Essential difficulties appear already in this case.

Definition
For a smooth rational curve P1 ∼= C ⊂ X , the normal bundle
NC/X is of the form O(k1)⊕ · · · ⊕ O(kn−1),n = dimX .

We say
▶ NC/X > 0 if k1, . . . , kn−1 > 0;
▶ NC/X ≥ 0 if k1, . . . , kn−1 ≥ 0 (⇔ deformations of C in X

cover a neighborhood of C);
▶ C is unbendable if k1, . . . , kn−1 = 0 or 1 (⇒ no

deformations fixing two points of C).
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Fibered neighborhood

Definition
A neighborhood C ⊂ U ⊂ X is a fibered neighborhood, if there
is a holomorphic submersion f : U → B, dimB > 0 such that C
is contained in a fiber of f .

Example X = C × C with the submersion f : X = C × C→ C is
a fibered neighborhood of

C ≃ (C × 0) ⊂ (C × C) = X .

NC/X ≥ 0, but any deformation of C in X violates the Formal
Principle with Convergence because so does 0 ∈ C.

⇒ A fibered neighborhood is likely to be an obstruction to the
Formal Principle with Convergence.
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Theorem 1

Theorem (Hong-H.)

Let X be a complex manifold and let K be an irreducible
component of the space of smooth rational curves C ⊂ X with
NC/X ≥ 0. Assume

(i) a general member of K is unbendable; and
(ii) a general member of K has no fibered neighborhood.

Then a general member of K satisfies the Formal Principle
with Convergence.
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Examples of Theorem 1

There are many examples of "minimal rational curves" on Fano
X of Picard number 1 satisfying the conditions (i) and (ii) of
Theorem 1.

Example A line in Grassmannian satisfies the Formal Principle
with Convergence.

Example A general line on a hypersurface X ⊂ Pn+1 of degree
≤ n − 1 satisfies the Formal Principle with Convergence.

Remark A general line on a hypersurface X ⊂ Pn+1 of degree
= n is unbendable, but has fibered neighborhood. It satisfies
the Formal principle (by [H.2019]), but violates the Formal
Principle with Convergence.
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How to prove the convergence of a formal
isomorphism?

Lemma (Kobayashi-Nomizu (1963) vol 1)

Let y ∈ Y and ỹ ∈ Ỹ be points on complex manifolds and let

(y/Y )∞
φ
≃ (ỹ/Ỹ )∞

be a formal isomorphism between formal neighborhoods of
points.

Suppose there exist holomorphic affine connections ∇ on Y
and ∇̃ on Ỹ such that φ∗∇ = ∇̃.

Then φ converges.

Question: Where are affine connections in the setting of
Theorem 1??
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and ∇̃ on Ỹ such that φ∗∇ = ∇̃.

Then φ converges.

Question: Where are affine connections in the setting of
Theorem 1??



How to prove the convergence of a formal
isomorphism?

Lemma (Kobayashi-Nomizu (1963) vol 1)
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Universal family of rational curves with NC/X ≥ 0

Let X be a complex manifold and let K be an irreducible
component of the Douady space (= Hilbert scheme) of smooth
rational curves C ⊂ X with NC/X ≥ 0.

Then K is a complex manifold and we have the universal
family

K α← UnivK
β→ X ,

such that
▶ α : UnivK → K is a P1-bundle; and
▶ each member C ⊂ X of K and the corresponding point

[C] ∈ K satisfies
C = β(α−1([C])).
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Theorem 2

Theorem (Hong-H.)

Let X be a complex manifold and let K be an irreducible
component of the Douady space of smooth rational curves
C ⊂ X with NC/X ≥ 0. Assume

(i) a general member of K is unbendable; and
(ii) a general member of K has no fibered neighborhood.

For the universal family

K α← UnivK
β→ X ,

there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ UnivK;
▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.
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An example of Theorem 2

▶ Let X be the Grassmannian of k(< n)-dimensional
subspaces in Cn and let K be the space of lines on X .

▶ We have parabolic subgroups P1,P2 of G = PGL(n) such
that the universal family

K α← UnivK
β→ X

is given by

G/P1
α← G/(P1 ∩ P2)

β→ G/P2.

▶ In Theorem 2 for this case,
▶ the Zariski-open subsetW ⊂ UnivK is the whole

G/(P1 ∩ P2);
▶ the smooth fiber bundle P → W is the quotient

G→ G/(P1 ∩ P2); and
▶ the affine connection ∇ on P = G is the Maurer-Cartan

form ωMC on G.

Theorem 2 is a generalization of this example!
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Theorem 2⇒ Theorem 1

(1) Assume that C ⊂ X is a general member of K such that
the corresponding fiber C♭ of UnivK → K intersects the
Zariski-openW ⊂ UnivK.

(2) A formal isomorphism (C/X )∞
φ
≃ (C̃/X̃ )∞ can be lifted to

a formal isomorphism (w/W)∞
φ♭

≃ (w̃/W̃)∞ for any point
w ∈ C♭ ∩W, by the functoriality of Douady space (=
Hilbert scheme).

(3) It can be lifted to a formal isomorphism (y/P)∞
φ♯

≃ (ỹ/P̃)∞
at any point y ∈ P over w ∈ W by the canonicality of
P → W and P̃ → W̃ and it satisfies φ♯

∗∇ = ∇̃ by the
canonicality of ∇ and ∇̃.

(4) By Kobayashi-Nomizu Lemma, φ♯ converges. Hence, so
does φ♭. We conclude φ converges at a general point of C.
Then it converges at all points of C by maximum principle.



Theorem 2⇒ Theorem 1

(1) Assume that C ⊂ X is a general member of K such that
the corresponding fiber C♭ of UnivK → K intersects the
Zariski-openW ⊂ UnivK.

(2) A formal isomorphism (C/X )∞
φ
≃ (C̃/X̃ )∞ can be lifted to

a formal isomorphism (w/W)∞
φ♭

≃ (w̃/W̃)∞ for any point
w ∈ C♭ ∩W, by the functoriality of Douady space (=
Hilbert scheme).

(3) It can be lifted to a formal isomorphism (y/P)∞
φ♯

≃ (ỹ/P̃)∞
at any point y ∈ P over w ∈ W by the canonicality of
P → W and P̃ → W̃ and it satisfies φ♯

∗∇ = ∇̃ by the
canonicality of ∇ and ∇̃.

(4) By Kobayashi-Nomizu Lemma, φ♯ converges. Hence, so
does φ♭. We conclude φ converges at a general point of C.
Then it converges at all points of C by maximum principle.



Theorem 2⇒ Theorem 1

(1) Assume that C ⊂ X is a general member of K such that
the corresponding fiber C♭ of UnivK → K intersects the
Zariski-openW ⊂ UnivK.

(2) A formal isomorphism (C/X )∞
φ
≃ (C̃/X̃ )∞ can be lifted to

a formal isomorphism (w/W)∞
φ♭

≃ (w̃/W̃)∞ for any point
w ∈ C♭ ∩W, by the functoriality of Douady space (=
Hilbert scheme).

(3) It can be lifted to a formal isomorphism (y/P)∞
φ♯
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≃ (C̃/X̃ )∞ can be lifted to

a formal isomorphism (w/W)∞
φ♭

≃ (w̃/W̃)∞ for any point
w ∈ C♭ ∩W, by the functoriality of Douady space (=
Hilbert scheme).

(3) It can be lifted to a formal isomorphism (y/P)∞
φ♯

≃ (ỹ/P̃)∞
at any point y ∈ P over w ∈ W by the canonicality of
P → W and P̃ → W̃ and it satisfies φ♯

∗∇ = ∇̃ by the
canonicality of ∇ and ∇̃.

(4) By Kobayashi-Nomizu Lemma, φ♯ converges. Hence, so
does φ♭. We conclude φ converges at a general point of C.
Then it converges at all points of C by maximum principle.



Basic notions on Distributions

Definition
Let M be a complex manifold.
▶ A vector subbundle D ⊂ TM of the tangent bundle is a

distribution on M.
▶ D is Levi-nondegenerate if the anti-symmetric bilinear map

[·, ·]x : ∧2Dx → TxM/Dx

is nondegenerate for a general point x ∈ M.
▶ D is bracket-generating if the successive Lie brackets

D ⊂ [D,D] ⊂ [[D,D],D] ⊂ · · ·
generates TxM at a general point x ∈ M.
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Symbol Algebras of a Distribution

Definition
Let D ⊂ TM be a distribution.
▶ For each point x ∈ M, the successive brackets

D ⊂ [D,D] ⊂ [[D,D],D] ⊂ · · ·
determine a nilpotent graded Lie algebra symbx(D), called
the symbol algebra of D at x .

▶ D has isotrivial symbol algebras if symbx(D) ∼= symby (D)
isomorphic as graded Lie algebras for all x , y in a
Zariski-open subset of M.

Example If D ⊂ TM is a contact distribution, symbxD is
isomorphic to the Heisenberg algebra for all x ∈ M.
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Tanaka Prolongation Theorem

Theorem (Tanaka 1970)

Given a transversal pair of holomorphic submersions of a
complex manifold M

A α← M
β→ B,

define the distribution D := Ker(dα)⊕ Ker(dβ) on M. If
(I) D is Levi-nondegenerate;
(II) D is bracket-generating; and

(III) D has isotrivial symbol algebras,
then there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ M;

▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Tanaka Prolongation Theorem

Theorem (Tanaka 1970)

Given a transversal pair of holomorphic submersions of a
complex manifold M

A α← M
β→ B,

define the distribution D := Ker(dα)⊕ Ker(dβ) on M. If
(I) D is Levi-nondegenerate;
(II) D is bracket-generating; and

(III) D has isotrivial symbol algebras,
then there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ M;

▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Tanaka Prolongation Theorem

Theorem (Tanaka 1970)

Given a transversal pair of holomorphic submersions of a
complex manifold M

A α← M
β→ B,

define the distribution D := Ker(dα)⊕ Ker(dβ) on M.

If
(I) D is Levi-nondegenerate;
(II) D is bracket-generating; and

(III) D has isotrivial symbol algebras,
then there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ M;

▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Tanaka Prolongation Theorem

Theorem (Tanaka 1970)

Given a transversal pair of holomorphic submersions of a
complex manifold M

A α← M
β→ B,

define the distribution D := Ker(dα)⊕ Ker(dβ) on M. If
(I) D is Levi-nondegenerate;
(II) D is bracket-generating; and

(III) D has isotrivial symbol algebras,

then there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ M;

▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Tanaka Prolongation Theorem

Theorem (Tanaka 1970)

Given a transversal pair of holomorphic submersions of a
complex manifold M

A α← M
β→ B,

define the distribution D := Ker(dα)⊕ Ker(dβ) on M. If
(I) D is Levi-nondegenerate;
(II) D is bracket-generating; and

(III) D has isotrivial symbol algebras,
then there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ M;

▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Remarks on Tanaka Prolongation Theorem (1970)

▶ Tanaka Prolongation Theorem is a far-reaching
generalization of Tanaka’s construction (1962) of the
canonical Cartan connection for Levi-nondegenerate
CR-structures.

▶ The canonical fiber bundle P → W is a tower
P = Pk → Pk−1 → · · · → P1 → P0 →W

of principal bundles with suitable structure groups
Gk ,Gk−1, . . . ,G1,G0.

▶ This is the generalization of G→ G/(P1 ∩ P2) in the
Grassmannian case for the double fibration

G/P1
α← G/(P1 ∩ P2)

β→ G/P2 :

the homogeneity is generalized to (iii) D has isotrivial
symbol algebras.
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Proving Theorem 2 using Tanaka Prolongation
Theorem

Theorem (Hong-H.)

Let X be a complex manifold and let K be an irreducible
component of the space of smooth rational curves C ⊂ X with
NC/X ≥ 0. Assume

(i) a general member of K is unbendable; and
(ii) a general member of K has no fibered neighborhood.

For the universal family

K α← UnivK
β→ X ,

there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ UnivK;
▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Proving Theorem 2 using Tanaka Prolongation
Theorem

Theorem (Hong-H.)

Let X be a complex manifold and let K be an irreducible
component of the space of smooth rational curves C ⊂ X with
NC/X ≥ 0. Assume

(i) a general member of K is unbendable; and
(ii) a general member of K has no fibered neighborhood.

For the universal family

K α← UnivK
β→ X ,

there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ UnivK;
▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Proving Theorem 2 using Tanaka Prolongation
Theorem

Theorem (Tanaka 1970)

Given a transversal pair of holomorphic submersions of M

A α← M
β→ B,

define the distribution D := Ker(dα)⊕ Ker(dβ) on M. If
(I) D is Levi-nondegenerate;

(II) D is bracket-generating;
(III) D has isotrivial symbol algebras,
then there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ M;

▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Proving Theorem 2 using Tanaka Prolongation
Theorem

Theorem (Tanaka 1970)

Given a transversal pair of holomorphic submersions of M

A α← M
β→ B,

define the distribution D := Ker(dα)⊕ Ker(dβ) on M. If
(I) D is Levi-nondegenerate;

(II) D is bracket-generating;
(III) D has isotrivial symbol algebras,
then there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ M;

▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Proving Theorem 2 using Tanaka Prolongation
Theorem

Theorem (Tanaka 1970⇒ Theorem 2 ?)

Given a transversal pair of holomorphic submersions of M

A α← M
β→ B,

define the distribution D := Ker(dα)⊕ Ker(dβ) on M. If
(I) D is Levi-nondegenerate;

(II) D is bracket-generating;
(III) D has isotrivial symbol algebras,
then there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ M;

▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Proving Theorem 2 using Tanaka Prolongation
Theorem

Theorem (Tanaka 1970⇒ Theorem 2 ?)

Given a transversal pair of holomorphic submersions

K α← UnivK
β→ X ,

define the distribution D := Ker(dα)⊕ Ker(dβ) on UnivK. If
(I) D is Levi-nondegenerate;
(II) D is bracket-generating;

(III) D has isotrivial symbol algebras,
then there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ M;

▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Proving Theorem 2 using Tanaka Prolongation
Theorem

Theorem (Tanaka 1970⇒ Theorem 2 ?)

Given a transversal pair of holomorphic submersions

K α← UnivK
β→ X ,

define the distribution D := Ker(dα)⊕Ker(dβ) on UnivK. Check
(I) D is Levi-nondegenerate⇐ (i) C ⊂ X unbendable;
(II) D is bracket-generating⇐ (ii) no fibered nbd of C ⊂ X ;

(III) D has isotrivial symbol algebras,
then there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ M;

▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.



Proving Theorem 2 using Tanaka Prolongation
Theorem

Theorem (Tanaka 1970⇒ Theorem 2 ?)

Given a transversal pair of holomorphic submersions

K α← UnivK
β→ X ,

define the distribution D := Ker(dα)⊕Ker(dβ) on UnivK. Check
(I) D is Levi-nondegenerate⇐ (i) C ⊂ X unbendable;
(II) D is bracket-generating⇐ (ii) no fibered nbd of C ⊂ X;

(III) D has isotrivial symbol algebras, ⇒ Not always true!!
then there exist
▶ a canonical nonempty Zariski-open subsetW ⊂ M;

▶ a canonical smooth fiber bundle P → W overW; and
▶ a canonical affine connection ∇ on P.
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Remarks on Generalized Tanaka Prolongation
Theorem

▶ Generalized Tanaka Prolongation Theorem proves
Theorem 2, hence Theorem 1.

▶ The canonical fiber bundle P → W is a tower
P = Pk → Pk−1 → · · · → P1 → P0 →W

of generalized principal bundles with suitable structure
group scheme Gk ,Gk−1, . . . ,G1,G0.
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Proof of Generalized Tanaka Prolongation Theorem

▶ The proof of [Tanaka 70] is an extremely complicated
induction argument of 70 pages, even under the
assumption of isotrivial symbol algebras. ⇒We wouldn’t
have been able to generalize it when the symbol algebras
vary.

▶ Fortunately, [Alekseevsky-David, 2017] simplified Tanaka’s
proof to about 30 pages. ⇒We could generalize their
proof (less than 40 pages)!

▶ Key technical point: The concept of a principal
connection on a principal bundle does not make sense
when the structure group is not constant. ⇒We need to
introduce a generalized notion of connection and show
that certain components of the torsion tensor has invariant
meaning.
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Thank you very much !!


