On the geometry of log Calabi-Yau manifolds

Henri Guenancia (CNRS & Univ. Bordeaux) joint work with Tristan Collins

Analytic methods in algebraic geometry

July 14-18, 2025 – Fort Collins, CSU

An afternoon session of the 2025 SRI in algebraic geometry

Yau's theorem and applications

X compact Kähler manifold s.t. $c_1(X) = 0 \in H^2(X, \mathbb{R})$.

Theorem (Yau '78)

Given a Kähler class $\alpha \in H^2(X,\mathbb{R})$, $\exists ! \omega \in \alpha$ such that $\operatorname{Ric} \omega = 0$.

Some applications

- $Alb_X : X \to Alb(X)$ is a holomorphic submersion, étale trivial.
- 2 T_X is polystable wrt any Kähler class.
- 3 Any tensor $\sigma \in H^0(X, T_X^{\otimes p} \otimes \Omega_X^{\otimes q})$ is parallel wrt ω (i.e. $\nabla \sigma = 0$).
- $\widetilde{X} \simeq \mathbb{C}^r \times Y$ with Y compact $(\Rightarrow \widetilde{X}$ can be compactified)

Question

Vague question

What are larger classes of Calabi-Yau varieties where all or some of these properties still hold?

Log terminal CY varieties

If X is compact Kähler with log terminal singularities s.t. $c_1(X) = 0$, then :

- **I** X_{reg} admits an incomplete Ricci-flat Kähler metric (EGZ'06)
- 2 T_X is polystable with respect to any Kähler class (GKP'11, G'14)
- 3 Alb_X : $X \to \text{Alb}(X)$ is étale trivial* (K'81, CGGN'20)
- 4 Bochner principle holds for holomorphic tensors on X_{reg} (GGK'17, CGGN'20)

Log canonical varieties

If X is compact Kähler with \log canonical singularities s.t. $c_1(X) = 0$ then

$$T_X$$
 is still semistable (G'14)

but there are examples (Bernasconi, Filipazzi, Tsakanikas, Patakfalvi + Müller '25) s.t

- I T_X is not polystable with respect to any Kähler class.
- 2 $Alb_X : X \to Alb(X)$ is not isotrivial (not even birationally).

Log Calabi-Yau manifolds

Definition of a log CY manifold

A log smooth pair (X, D) with X compact Kähler of dimension n, $D = \sum_{i=1}^k D_i$ snc reduced such that $K_X + D \sim \mathcal{O}_X$.

Questions

- **1** Existence a complete CY metric on $X \setminus D$?
- Validity of Bochner principle? What is the holonomy?
- 3 Is $Alb_{(X,D)}$ locally trivial?
- 4 Structure of $\widetilde{X \setminus D}$?

Today's goal

Focus on two examples of log CY pairs :

- 1 X Fano, D smooth
- 2 X Fano, $D = D_1 + D_2$ with D_i mutually proportional.

Upshot

In both cases, $X \setminus D$ admits a complete CY metric but the geometry of (X, D) is vastly different in each case.

D smooth, first observations

If X is Fano and $D \in |-K_X|$ is smooth, then

- $H^0(X, \Omega^1_X(\log D)) = 0$ (\Leftarrow residue theorem)
- $\pi_1(X \backslash D)$ finite (\leftarrow Nori theorem)
- \rightsquigarrow $\mathrm{Alb}_{(X,D)}$ is trivial, $\widetilde{X\backslash D}$ is quasi-projective.

Next: Existence of CY metric, holonomy, Bochner principle, stability of $T_X(-\log D)$?

The Tian-Yau metric

Assume X Fano and $D \in |-K_X|$ smooth.

Theorem (Tian-Yau '90)

There exists a complete Ricci flat Kähler metric ω_{TY} on $X \setminus D$.

Asymptotics. Near $D = (z_1 = 0)$, we have

$$\omega_{\mathrm{TY}} \simeq \frac{idz_1 \wedge d\bar{z}_1}{|z_1|^2 (-\log|z_1|)^{1-\frac{1}{n}}} + (-\log|z_1|)^{\frac{1}{n}} \omega_D$$

Volume growth : $\operatorname{vol}(B(R)) \simeq R^{\frac{2n}{n+1}}$ ($\ll R^2$) as $R \to +\infty$. Asymptotic tangent cone : (\mathbb{R}, dt^2)

Holonomy

- 1. Asymptotics $\Rightarrow \nexists$ non-zero parallel p-form on $X \setminus D$ for $p \neq 0, n$. [alternatively use vanishing $H^0(X, \Omega_X^p(\log D)) = 0$]
- 2. $\pi_1(X \backslash D)$ finite + Berger-Simons classification \Rightarrow

$$\operatorname{Hol}_{\mathsf{X}}(\mathsf{X} \backslash \mathsf{D}, \omega_{\mathrm{TY}}) \simeq \operatorname{SU}(\mathsf{n})$$

for any fixed point $x \in X \backslash D$.

Bochner principle and stability

X Fano, $D \in |-K_X|$ smooth, ω_{TY} complete CY metric with holonomy $G := \mathrm{SU}(n)$. Pick $p, q \in \mathbb{N}$ and set $E := T_X(-\log D)^{\otimes p} \otimes \Omega_X(\log D)^{\otimes q}$, $V := (\mathbb{C}^n)^{\otimes p} \otimes ((\mathbb{C}^n)^*)^{\otimes q}$.

Theorem (Collins-G. '25)

[Bochner] There is a 1:1 correspondence

$$H^0(X,E) \xrightarrow[\operatorname{rest}_{X \setminus D}]{\operatorname{ev}_X} V^G$$

$$\{\sigma \in \mathcal{C}^\infty(X \setminus D, E); \nabla \sigma = 0\}$$

2 [Stability] $T_X(-\log D)$ is stable wrt $-K_X$.

Elements of proof

1. Take $\sigma \in H^0(X, E)$, then $\Delta |\sigma|^2 = |\nabla \sigma|^2$. Then $f := \log |\sigma|^2$ satisfies

$$\Delta f \geqslant 0$$
, and $f = O(\log R)$.

Choose χ_R cutoff function supported on B(R); $\Delta \chi_R = O(R^{-2})$.

$$0 \le \int_X \chi_R \Delta f = \int_X f \Delta \chi_R$$
$$= O\left(\operatorname{vol}(B(R)) \cdot \log R \cdot R^{-2}\right) \to 0$$

$$\Delta f \equiv 0 \stackrel{Yau}{\Longrightarrow} f \equiv ct \text{ (as } f \text{ grows sublinearly)} \Rightarrow |\sigma|^2 \equiv ct$$

 $\Rightarrow 0 = \Delta |\sigma|^2 = |\nabla \sigma|^2.$

Elements of proof II

2. More involved (cf related work by Junsheng Zhang).

 $T_X(-\log D)$ semistable \Rightarrow only need to show $\nexists F \subset T_X(-\log D)$ proper s.t. $c_1(F) \cdot D^{n-1} = 0$. By contradiction, consider such an F (say $\operatorname{rk}(F) = 1$).

Step 1. $T_X(-\log D)|_D$ is polystable.

 \rightsquigarrow WLOG F is a subbundle near D.

Step 2. Use $\omega_{\rm TY}$ and Griffiths formula.

 ω_{TY} induces a singular metric h_F on $F|_{X\setminus D}$.

$$i\Theta_{h_F}(F) \wedge \omega_{\mathrm{TY}}^{n-1} = -i\beta \wedge \beta^* \wedge \omega_{\mathrm{TY}}^{n-1} \leq 0$$

with $\beta \in C^{\infty}(X \backslash D, \Omega_X^{1,0} \otimes \operatorname{Hom}(F^{\perp}, F))$.

Elements of proof III

Step 3. Show that
$$\int_{X\setminus D} i\Theta_{h_F}(F) \wedge \omega_{\mathrm{TY}}^{n-1} = 0$$
.

The integral diverges a priori. One uses cutoff functions and

- Vanishing of *D*-slope of *F*
- Step 1
- Closeness of ω_{TY} to its model on N_D

Given Step 2:

$$\int_{X\setminus D} i\beta \wedge \beta^* \wedge \omega_{\mathrm{TY}}^{n-1} = 0$$

i.e. $F|_{X\setminus D}$ is parallel, which reduces the holonomy of $\omega_{\mathrm{TY}}.$

The two component case, first observations

X Fano of dimension $n \ge 3$, $D = D_1 + D_2$ snc s.t. $K_X + D \sim \mathcal{O}_X$. Assume $d_1 D_1 \sim d_2 D_2$ for some $d_i \in \mathbb{N}^*$.

ullet The meromorphic function $a:=s_{D_1}^{d_1}/s_{D_2}^{d_2}$ induces

$$a: X \backslash D \longrightarrow \mathbb{C}^* \simeq \mathbb{C}/\mathbb{Z}$$

which is the quasi-Albanese $Alb_{(X,D)}$ of the pair (X,D).

- The logarithmic 1-form $d \log a$ generates $H^0(X, \Omega^1_X(\log D))$.
- $\pi_1(X \setminus D)$ is a finite extension of \mathbb{Z} .

Albanese has moduli + No polystability

 $X = \mathbb{P}^n$ with $n \geqslant 9$ odd and D_1, D_2 general of degree $\frac{n+1}{2}$.

Proposition (Collins-G.)

- **I** Two general fibers of $Alb_{(X,D)}$ are not birationally equivalent.
- **2** $T_X(-\log D)$ is not polystable.

Compare [BFTP+M].

The complete Calabi-Yau metric

X Fano of dimension $n \geqslant 3$, $D = D_1 + D_2$ snc s.t. $K_X + D \sim \mathcal{O}_X$. (still assume $d_1D_1 \sim d_2D_2$ for some $d_i \in \mathbb{N}^*$)

Theorem (Collins-Li '24)

There exists a complete Ricci flat Kähler metric ω_{CL} on $X \setminus D$.

Volume growth : $R^{\frac{4n}{n+2}}$ ($\gg R^2$)

Asymptotic tangent cone : $((\mathbb{R}_{>0})^2$, explicit warped metric)

Bochner principle fails

The logarithmic 1-form $d \log a$ is not parallel wrt $\omega_{\rm CL}$!

Holonomy of ω_{CL} and universal cover

Theorem (Collins-G. '25)

- 1 $\operatorname{Hol}(X \setminus D, \omega_{\operatorname{CL}}) = \operatorname{SU}(n).$
- 2 The universal cover $(\widetilde{X \setminus D}, \widetilde{\omega}_{\mathrm{CL}})$ has volume growth $R^{\frac{on}{n+2}}$ and asymptotic tangent cone $(\mathbb{R}_{>0})^2 \times \mathbb{R}$.
- There exist examples (X, D) such that $X \setminus D$ cannot be compactified analytically.

Summary

Table – Properties of log CY pairs (X, D)

	∃? CY	$Alb_{(X,D)}$	$T_X(-\log D)$	Bochner	$\widetilde{X \backslash D}$
	metric	loc. trivial	polystable		q. proj
X smooth, $D=0$	✓	√	✓	√	✓
X klt, D = 0	✓	✓	✓	√	?
X lc, D = 0	?	×	×	NA	?
X Fano, D smooth	✓	√	✓	√	✓
X Fano, D singular	√	×	imes (s-stable)	×	×