Harmonic Maps and rigidity

2025 Summer Research Institute in Algebraic Geometry

Colorado State University

July 2025

Chikako Mese Johns Hopkins University

July 17, 2025

A B > A B

Rigidity Result

Assume:

- X is a Euclidean building.
- $\widetilde{M} = G/K$ is a symmetric space of non-compact type, excluding Euclidean space, real or complex hyperbolic space.
- $\Gamma \subset G = \text{Isom}_0(\widetilde{M})$ is a discrete subgroup acting on the left.
- *M* = Γ*M* is compact. (If rank(*M*) = 1, we can relax this asumption to finite volume.)

Theorem (Gromov–Schoen 1992; Breiner–Dees–Mese 2025)

An isometric action $\Gamma \bigcirc X$ fixes a point in the visual compactification $\overline{X} = X \cup \partial X$.

PROOF OF RIGIDITY. Harmonic maps into Euclidean buildings are regular enough to apply geometric differential methods.

Theorem (Gromov–Schoen 1992; Breiner–Dees–Mese 2025)

If $u : \Omega \to X$ is a harmonic map from a Riemannian domain into a Euclidean building, then the singular set of u is a closed set of Hausdorff codimension 2.

A smooth harmonic map $u: (M, g) \rightarrow (N, h)$ between Riemannian manifolds satisfies the harmonic map equation:

This is the Euler-Lagrange equation of the energy functional:

$$E^{u} = \int_{M} |du|^{2} d\mathrm{vol}_{g}.$$

$$du: T_p M \to T_{u(x)} N$$
 or $du \in \Gamma(T^* M \otimes u^*(TN))$

Harmonic maps between Riemannian manifolds

Example. A harmonic function $u : (M, g) \rightarrow \mathbb{R}$

$$\triangle_{M} u = \operatorname{div}(\nabla u) = 0.$$

This is the Euler-Lagrange equation of

$$\mathsf{E}^u = \int_M |\nabla u|_g^2 \, d\mathrm{vol}_g.$$

Example. A parameterized geodesic $u : S^1 \rightarrow (N, h)$ satisfies

$$\frac{d^2u^i}{dt^2} + \Gamma^i_{jk}\frac{du^j}{dt}\frac{du^k}{dt} = 0.$$

This is the Euler-Lagrange equation of

$$E^{u} = \int_{\mathbb{S}^{1}} \left| \frac{du}{dt} \right|_{h}^{2} dt.$$

Given a continuous map $f: M \to N$, find a harmonic map $u: M \to N$ homotopic to f.

Theorem (Eells-Sampson 1964)

Assume:

- M and N are compact Riemannian manifolds.
- N has non-positive sectional curvature.

If $f: M \to N$ is a continuous map, there exists a harmonic map $u: M \to N$ homotopic to f.

Given a continuous map $f: M \to N$, find a harmonic map $u: M \to N$ homotopic to f.

Theorem (Eells-Sampson 1964)

Assume:

- M and N are compact Riemannian manifolds.
- N has non-positive sectional curvature.

If $f: M \to N$ is a continuous map, there exists a harmonic map $u: M \to N$ homotopic to f.

Equivariant problem

- *M*, Riemannian manifold with universal cover \widetilde{M}
- Ñ, Hadamard manifold
- $\rho: \pi_1(M) \rightarrow \operatorname{Isom}(\tilde{N})$, homomorphism

Definition

A map $f: \widetilde{M} \to \widetilde{N}$ is said to be ρ -equivariant if

$$f(\gamma x) = \rho(\gamma)f(x) \quad \forall \gamma \in \pi_1(M), \ x \in \widetilde{M}.$$

f is ρ -equivariant $\Rightarrow |df|^2$ is ρ -invariant $\Rightarrow |df|^2$ descends to a function defined on *M*.

The energy of *f* is
$$E^f := \int_M |df|^2 d \operatorname{vol}_g$$

Definition

A ρ -equivariant map $u: \widetilde{M} \to \widetilde{N}$ is harmonic if $E^u \leq E^f$ for any ρ -equivarinat map $f: \widetilde{M} \to \widetilde{N}$.

Harmonic maps into a complete metric space X

Korevaar-Schoen 1993:

For $u: \Omega \to X$ from a Riemannian domain, define

$$e_{\varepsilon}: \Omega o \mathbb{R}, \quad e_{\varepsilon}(x) = \begin{cases} \int_{y \in \partial B_{\varepsilon}(x)} \frac{d^2(u(x), u(y))}{\varepsilon^2} \frac{d\sigma_{x, \varepsilon}}{\varepsilon^{n-1}} & x \in \Omega_{\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$E^{u}_{\epsilon}: C_{c}(\Omega) \to \mathbf{R}, \quad E^{u}_{\epsilon}(\varphi) = \int_{\Omega} \varphi e_{\epsilon} d \mathrm{vol}_{g}.$$

We say *u* has finite energy (or that $u \in W^{1,2}(\Omega, X)$) if

$$E^u := \sup_{\varphi \in \mathcal{C}_c(\Omega), 0 \leqslant \varphi \leqslant 1} \limsup_{\epsilon \to 0} E^u_\epsilon(\varphi) < \infty.$$

Harmonic maps into a complete metric space X

Korevaar-Schoen 1993:

For $u: \Omega \to X$ from a Riemannian domain, define

$$e_{\varepsilon}: \Omega o \mathbb{R}, \quad e_{\varepsilon}(x) = \begin{cases} \int_{y \in \partial B_{\varepsilon}(x)} \frac{d^2(u(x), u(y))}{\varepsilon^2} \frac{d\sigma_{x, \varepsilon}}{\varepsilon^{n-1}} & x \in \Omega_{\varepsilon} \\ 0 & \text{otherwise} \end{cases}$$

$$E^{u}_{\epsilon}: C_{c}(\Omega) \to \mathbf{R}, \quad E^{u}_{\epsilon}(\varphi) = \int_{\Omega} \varphi e_{\epsilon} d\mathrm{vol}_{g}.$$

We say *u* has finite energy (or that $u \in W^{1,2}(\Omega, X)$) if

$$E^u := \sup_{\varphi \in \mathcal{C}_{\mathcal{C}}(\Omega), 0 \leqslant \varphi \leqslant 1} \limsup_{\epsilon \to 0} E^u_{\epsilon}(\varphi) < \infty.$$

Weak limit of the measure $e_{\varepsilon}(x)d\operatorname{vol}_g$ as $\varepsilon \to 0$ is $|du|^2(x)d\operatorname{vol}_g$.

$$\mathsf{E}^{u}[\Omega] = \int_{\Omega} |du|^2 \, d\mathrm{vol}_g.$$

Definition

We say a continuous map $u : \Omega \to X$ from a smooth Riemannian domain Ω is <u>harmonic</u> if it is locally energy minimizing.

NPC spaces

NPC space is a complete geodesic metric space such that geodesic triangles are "slimmer" than corresponding one in Euclidean space \mathbb{E}^2 .

- A generalization of a Hadamard manifold.
- Important examples:
 - symmetric space of non-compact type
 - Euclidean buildings
 - hyperbolic buildings
 - Weil-Petersson completion of Teichmüller space

→ Ξ →

NPC space is a complete geodesic metric space such that geodesic triangles are "slimmer" than corresponding one in Euclidean space \mathbb{E}^2 .

- A generalization of a Hadamard manifold.
- Important examples:
 - symmetric space of non-compact type
 - Euclidean buildings
 - hyperbolic buildings
 - Weil-Petersson completion of Teichmüller space

→ Ξ →

NPC space is a complete geodesic metric space such that geodesic triangles are "slimmer" than corresponding one in Euclidean space \mathbb{E}^2 .

- A generalization of a Hadamard manifold.
- Important examples:
 - symmetric space of non-compact type
 - Euclidean buildings
 - hyperbolic buildings
 - Weil-Petersson completion of Teichmüller space

Regularity Theorem

Let Ω be a Riemannian domain.

Theorem (Eells-Sampson 1964)

A harmonic map $u: \Omega \to \widetilde{N}$ into a NPC Riemannian manifold is smooth.

Theorem (Korevaar-Schoen 1993)

A harmonic map $u: \Omega \to X$ into an NPC space is locally Lipschitz continuous.

Harmonic maps into Euclidean buildings enjoy a stronger regularity property than harmonic maps into an arbitrary NPC space.

Regularity Theorem

Let Ω be a Riemannian domain.

Theorem (Eells-Sampson 1964)

A harmonic map $u: \Omega \to \widetilde{N}$ into a NPC Riemannian manifold is smooth.

Theorem (Korevaar-Schoen 1993)

A harmonic map $u : \Omega \to X$ into an NPC space is locally Lipschitz continuous.

Harmonic maps into Euclidean buildings enjoy a stronger regularity property than harmonic maps into an arbitrary NPC space.

Regularity Theorem

Let Ω be a Riemannian domain.

Theorem (Eells-Sampson 1964)

A harmonic map $u: \Omega \to \widetilde{N}$ into a NPC Riemannian manifold is smooth.

Theorem (Korevaar-Schoen 1993)

A harmonic map $u : \Omega \to X$ into an NPC space is locally Lipschitz continuous.

Harmonic maps into Euclidean buildings enjoy a stronger regularity property than harmonic maps into an arbitrary NPC space.

A Euclidean building comes with:

- Euclidean space \mathbb{E}^r ,
- Affine Weyl group W_{aff} ⊂ Isom(E^r); i.e. the rotational part of W_{aff} is finite,
- Euclidean Coxeter complex, (\mathbb{E}^r, W_{aff}) ,
- Family of charts, i.e. a collection of isometric embeddings

$$\mathcal{A} = \{\iota : \mathbb{E}^r \to \mathcal{A} := \iota(\mathbb{E}^r) \subset \mathcal{X}\}$$

where A is called an apartment of X.

- X is a union of all the apartments.
- Two charts ι_1 , $\iota_2 \in \mathcal{A}$ are compatible, i.e.

 $\iota_1^{-1} \circ \iota_2 \in W_{aff}.$

 Any two points is contained in an apartment and this defines a distance function d on X such that (X, d) is an NPC space. • Lie group over Archimedean numbers ($\mathbb R$ and $\mathbb C$) isometrically act on symmetric spaces.

Example: The group $GL(n, \mathbb{C})$ acts on a symmetric space $GL(n, \mathbb{C})/U(n)$.

• Algebraic groups over non-Archimedean numbers (\mathbb{Q}_p and $\mathcal{K} := \mathbb{F}_{p^n}((t))$) act on Bruhat-Tits buildings.

.

Example:

Q

- $\bullet \ |\cdot|_\infty$ is the usual absolute value \rightarrow metric completion is ${\mathbb R}$
- $|\cdot|_p$ is the *p*-adic absolute value \rightarrow metric completion is \mathbb{Q}_p
- $\mathbf{G} = SL_2$
 - $G = SL_2(\mathbb{R})$ acts on the upper half-plane
 - $G = SL_2(\mathbb{Q}_2)$ acts on a tree with valency 3.

https://commons.wikimedia.org/wiki/File:Bruhat-Tits-tree-for-Q-2.png, licensed under CC BY-SA 4.0. 🕨 🖌 🦛 🕨 🤘 👘

Bruhat-Tits tree for the 2-adic Lie group $SL(2, \mathbb{Q}_2)$.

https://commons.wikimedia.org/wiki/File:Bruhat-Tits-tree-for-Q-2.png, licensed under CC BY-SA 4.0, s a model is a second se

æ

Bruhat-Tits building for the 2-adic Lie group $SL(2, Q_2)$

Bruhat-Tits building for the 2-adic Lie group $SL(2, Q_2)$

• The fixed point set of $w \in W_{aff}$ are called **walls**.

• The intersection of two apartments is contained in a wall.

Walls in an apartment: locally finite case vs. locally non-finite case.

• The structure of a locally non-finite buildings is complicated:

The convex hull of 3 points may not be contained in a finite number of apartments!

Walls in an apartment: locally finite case vs. locally non-finite case.

• The structure of a locally non-finite buildings is complicated:

The convex hull of 3 points may not be contained in a finite number of apartments!

Regular sets and Singular sets

- Let *A* be the set of charts of a Euclidean building *X*.
- Let $u : \tilde{M} \to X$ be a harmonic map.

Definition

Regular set

$$\mathcal{R}(u) = \{x \in \tilde{M} : \exists r > 0, \iota \in \mathcal{A} \text{ such that } u(B_r(x)) \subset \mathcal{A} = \iota(\mathbb{R}^r)\}$$

Singular set

$$\mathcal{S}(\boldsymbol{u}) = \Omega \backslash \mathcal{R}(\boldsymbol{u})$$

A > + = + + =

Example

Vertical leaves of $q = zdz^2$, i.e. curves γ such that $q(\gamma', \gamma') < 0$

- The projection map $u : \mathbb{D} \to T$ is a harmonic map.
- $u^{-1}(vertex)$ is not the singular set
- $S(u) = \{0\}$

Theorem (Gromov-Schoen 1993)

If X is a locally finite Euclidean building, then a harmonic map $u: \Omega \to \overline{X}$ is smooth outside of a closed set S(u) of Hausdorff codimension 2.

Theorem (Breiner-Dees-Mese 2025)

Same conclusion without assuming local finiteness.

Theorem (Gromov-Schoen 1993)

If X is a locally finite Euclidean building, then a harmonic map $u: \Omega \to \overline{X}$ is smooth outside of a closed set S(u) of Hausdorff codimension 2.

Theorem (Breiner-Dees-Mese 2025)

Same conclusion without assuming local finiteness.

A (1) > A (1) > A

Tools in Gromov-Schoen's Proof

By local finiteness, we can assume the target space is $T_{x_0}X$.

• blow up maps $u_{\sigma}: B_1(0) \rightarrow T_{x_0}X$:

For $x_0 = 0 \in \Omega$ and $\sigma > 0$,

$$u_{\sigma}(\mathbf{x}) = u(\sigma \mathbf{x})$$

and rescale the target $T_{x_0}X$ by a factor of μ_{σ}^{-1} .

- Blow up maps generalize the difference quotients of functions.
- tangent map $u_* : B_1(0) \rightarrow T_{x_0}X$:

Arzela-Ascoli says that a subsequence of blow up maps $u_{\sigma}: B_1(0) \to T_{x_0}X$ converges uniformly to a tangent map $u_*: B_1(0) \to T_{x_0}X$ in any compact subset of $B_1(0)$.

Tools in Gromov-Schoen's Proof

크

- E

Review of the Gromov-Schoen's Proof

The two key components of Gromov and Schoen's proof are:

(1) A tangent map $u_* : B_1(0) \to T_{x_0}X$ is a homogeneous degree 1 map; i.e. the restriction of u_* to a radial ray is a constant speed geodesic.

The image of u_* is a flat = image of a isometric, totally geodesic map $\phi : \mathbb{R}^m \to T_{x_0}X$.

(2) The tangent map u_{*} at an order 1 point is effectively contained in a subbuilding R^m × Y where Y is a lower dimensional Euclidean building.

KEY: Gromov-Schoen show that *u* must be contained in $\mathbb{R}^m \times Y$.

Using an inductive argument on the dimension of the Euclidean building, prove u is "well-approximated" by u_* ; i.e. u is instrinsically differentiable.

< ロ > < 同 > < 回 > < 回 >

Review of the Gromov-Schoen's Proof

The two key components of Gromov and Schoen's proof are:

(1) A tangent map $u_* : B_1(0) \to T_{x_0}X$ is a homogeneous degree 1 map; i.e. the restriction of u_* to a radial ray is a constant speed geodesic.

The image of u_* is a flat = image of a isometric, totally geodesic map $\phi : \mathbb{R}^m \to T_{x_0}X$.

(2) The tangent map u_{*} at an order 1 point is effectively contained in a subbuilding R^m × Y where Y is a lower dimensional Euclidean building.

KEY: Gromov-Schoen show that *u* must be contained in $\mathbb{R}^m \times Y$.

Using an inductive argument on the dimension of the Euclidean building, prove u is "well-approximated" by u_* ; i.e. u is instrinsically differentiable.
Review of the Gromov-Schoen's Proof

"Effectively contained"

In this diagram, the set of points on the thick line close to the complement of an apartment is small.

For the non-simplicial case, the situation is much more complicated.

Review of the Gromov-Schoen's Proof

"Effectively contained"

In this diagram, the set of points on the thick line close to the complement of an apartment is small.

For the non-simplicial case, the situation is much more complicated.

Why we need to modify Gromov-Schoen's proof

Gromov-Schoen assumes the buildings are:

- Iocally finite
- simplicial

For a general Euclidean building:

- **Issue 1** not locally finite \Rightarrow the blow up maps u_{σ} and tangent map u_* do not have the same target as u.
- **Issue 2** not simplicial $\Rightarrow u_*$ is not effectively contained in a subbuilding.

• ω finitely additive probability measure on $\mathbb N$

• $\omega(S) = 0$ or 1 for all $S \subset \mathbb{N}$

• $\omega(S) = 0$ for every finite set

• For a sequence $s = (s_1, s_2, ...),$

 ω -lim $s = s_*$

means that $\omega(s^{-1}(U)) = 1$ for all neighborhoods $U \subset \mathbb{R}$ of s_* .

• ω finitely additive probability measure on $\mathbb N$

• $\omega(S) = 0$ or 1 for all $S \subset \mathbb{N}$

• $\omega(S) = 0$ for every finite set

• For a sequence $s = (s_1, s_2, ...)$,

 ω -lim $s = s_*$

means that $\omega(s^{-1}(U)) = 1$ for all neighborhoods $U \subset \mathbb{R}$ of s_* .

• ω finitely additive probability measure on $\mathbb N$

•
$$\omega(\mathcal{S}) =$$
 0 or 1 for all $\mathcal{S} \subset \mathbb{N}$

• $\omega(S) = 0$ for every finite set

• For a sequence $s = (s_1, s_2, \dots)$,

 ω -lim $s = s_*$

means that $\omega(s^{-1}(U)) = 1$ for all neighborhoods $U \subset \mathbb{R}$ of s_* .

• ω finitely additive probability measure on $\mathbb N$

•
$$\omega(\mathcal{S}) =$$
 0 or 1 for all $\mathcal{S} \subset \mathbb{N}$

• $\omega(S) = 0$ for every finite set

• For a sequence
$$s = (s_1, s_2, ...)$$
,

 ω -lim $s = s_*$

means that $\omega(s^{-1}(U)) = 1$ for all neighborhoods $U \subset \mathbb{R}$ of s_* .

• • • • • • • • • •

*x*₀ ∈ X

• scale factors μ_k , ω -lim $\mu_k = 0$

•
$$d_k(\cdot, \cdot) := \mu_k d(\cdot, \cdot), \quad k \in \mathbb{N}$$

•
$$(X_{\omega}, d_{\omega}) = \omega$$
-lim (X, d_k) where

•
$$X_{\omega} = \{x = (x_1, x_2, \dots) : d_k(x_k, x_0) < \infty\}$$

•
$$d_{\omega}(x, y) := \omega$$
-lim $d_k(x_k, y_k)$ where $x = (x_1, x_2...), y = (y_1, y_2, ...)$

• $X_{\omega} := X_{\omega} / d_{\omega}$ is the quotient with respect to d_{ω}

P

*x*₀ ∈ X

• scale factors μ_k , ω -lim $\mu_k = 0$

•
$$d_k(\cdot, \cdot) := \mu_k d(\cdot, \cdot), \quad k \in \mathbb{N}$$

•
$$(X_{\omega}, d_{\omega}) = \omega$$
-lim (X, d_k) where

•
$$X_{\omega} = \{x = (x_1, x_2, \dots) : d_k(x_k, x_0) < \infty\}$$

•
$$d_{\omega}(x, y) := \omega$$
-lim $d_k(x_k, y_k)$ where $x = (x_1, x_2...), y = (y_1, y_2, ...)$

• $X_{\omega} := X_{\omega} / d_{\omega}$ is the quotient with respect to d_{ω}

P

● *x*₀ ∈ *X*

• scale factors μ_k , ω -lim $\mu_k = 0$

•
$$d_k(\cdot, \cdot) := \mu_k d(\cdot, \cdot), \quad k \in \mathbb{N}$$

•
$$(X_{\omega}, d_{\omega}) = \omega$$
-lim (X, d_k) where

•
$$X_{\omega} = \{x = (x_1, x_2, \dots) : d_k(x_k, x_0) < \infty\}$$

•
$$d_{\omega}(x, y) := \omega$$
-lim $d_k(x_k, y_k)$ where $x = (x_1, x_2...), y = (y_1, y_2, ...)$

• $X_{\omega} := X_{\omega} / d_{\omega}$ is the quotient with respect to d_{ω}

Fix $x_0 \in \Omega$ and choose normal coordinates centered at $x_0 = 0$.

Let $\sigma_k \to 0$.

For simplicity of notation, let

$$d_k(x_1, x_2) = \mu_k^{-1} d(\sigma_k x_1, \sigma_k x_2)$$

and

$$u_k: B_1(0) \rightarrow (X, d_k) \quad u_k(x):=u(\sigma_k x).$$

•
$$(X_{\omega}, d_{\omega}) = \omega$$
-lim (X, d_k)

Recall the X_{ω} is an equivalence class of bounded sequences $x = (x_1, x_2, ...)$

• $u_{\omega} = \omega$ -lim u_k is defined as the map

 $u_{\omega}: B_1(0) \rightarrow (X_{\omega}, d_{\omega}), \quad u_{\omega}(p) = [(u_1(p), u_2(p), \dots)]$

DAC E VEN B

Fix $x_0 \in \Omega$ and choose normal coordinates centered at $x_0 = 0$.

Let $\sigma_k \to 0$.

For simplicity of notation, let

$$d_k(x_1, x_2) = \mu_k^{-1} d(\sigma_k x_1, \sigma_k x_2)$$

and

$$u_k: B_1(0) \rightarrow (X, d_k) \ u_k(x) := u(\sigma_k x).$$

•
$$(X_{\omega}, d_{\omega}) = \omega$$
-lim (X, d_k)

Recall the X_{ω} is an equivalence class of bounded sequences $x = (x_1, x_2, ...)$

• $u_{\omega} = \omega$ -lim u_k is defined as the map

 $u_{\omega}: B_1(0) \rightarrow (X_{\omega}, d_{\omega}), \quad u_{\omega}(p) = [(u_1(p), u_2(p), \dots)]$

▲ヨ▶ ▲ヨ▶ ヨーのへで

• Regarding the ultralimit (X_{ω} , d_{ω}) (Kleiner-Leeb, '97):

- The ultralimit (X_ω, d_ω) is a Euclidean building with rotational part of the affine Weyl group the same as that of (X, d_k).
- A chart $\iota : \mathbb{E}^r \to A$ for X_ω is

$$\iota = (\iota_1, \iota_2, \dots)$$

where $\iota_k : \mathbb{E}^r \to A_k$ is a chart for $X_k = (X, d_k)$.

• Regarding the ultralimit $u_{\omega}: B_1(0) \to X_{\omega}$ (Korevaar-Schoen '97):

$$d_k(u_k(p), u_k(q)) \rightarrow d_\omega(u_\omega(p), u_\omega(q)),$$

$$|\nabla u_k|^2 d\mu_{g_k} \rightharpoonup |\nabla u_{\omega}|^2 d\mu_{0,k}$$

and

$$\left|\frac{\partial u_k}{\partial x_i}\right|^2 d\mu_{g_k} \rightharpoonup \left|\frac{\partial u_\omega}{\partial x_i}\right|^2 d\mu_0$$

イロン イ団 とく ヨン ト ヨン・

• Regarding the ultralimit (X_{ω} , d_{ω}) (Kleiner-Leeb, '97):

- The ultralimit (X_ω, d_ω) is a Euclidean building with rotational part of the affine Weyl group the same as that of (X, d_k).
- A chart $\iota : \mathbb{E}^r \to A$ for X_ω is

$$\iota = (\iota_1, \iota_2, \dots)$$

where $\iota_k : \mathbb{E}^r \to A_k$ is a chart for $X_k = (X, d_k)$.

• Regarding the ultralimit $u_{\omega}: B_1(0) \rightarrow X_{\omega}$ (Korevaar-Schoen '97):

$$d_{k}(u_{k}(p), u_{k}(q)) \rightarrow d_{\omega}(u_{\omega}(p), u_{\omega}(q)),$$
$$|\nabla u_{k}|^{2} d\mu_{g_{k}} \rightarrow |\nabla u_{\omega}|^{2} d\mu_{0},$$

and

$$\left|\frac{\partial u_k}{\partial x_i}\right|^2 d\mu_{g_k} \rightharpoonup \left|\frac{\partial u_\omega}{\partial x_i}\right|^2 d\mu_0.$$

く 同 ト く ヨ ト く ヨ ト

Assume $Ord^u(0) = 1$.

- $u_{\omega} : \mathbb{E}^n \to X_{\omega}$ is a homogeneous degree 1 harmonic map.
- u_{ω} is "linear", i.e. \exists a linear map $L : \mathbb{E}^n \to \mathbb{E}^N = A \subset X_{\omega}$ such that

$$d_{\omega}(u_{\omega}(x), u_{\omega}(y)) = |L(x) - L(y)|$$

Here, $A = \iota(\mathbb{R}^r)$ and $\iota = (\iota_1, \iota_2, \dots)$.

• u_{ω} and u_k have different target spaces. But using the chart,

$$\iota_k:\mathbb{E}^N=A_k\subset X_k,$$

we construct a homogenous degree 1 map into X_k

$$L_k := \iota_k \circ L : \mathbb{R}^n \to A_k \subset X_k$$

which is close to u_k ; i.e. $\lim_{k\to\infty} d_k(u_k, L_k) = 0$

Assume $Ord^{u}(0) = 1$.

- $u_{\omega}: \mathbb{E}^n \to X_{\omega}$ is a homogeneous degree 1 harmonic map.
- u_{ω} is "linear", i.e. \exists a linear map $L : \mathbb{E}^n \to \mathbb{E}^N = A \subset X_{\omega}$ such that

$$d_{\omega}(u_{\omega}(x), u_{\omega}(y)) = |L(x) - L(y)|$$

Here, $A = \iota(\mathbb{R}^r)$ and $\iota = (\iota_1, \iota_2, \dots)$.

• u_{ω} and u_k have different target spaces. But using the chart,

$$\iota_k:\mathbb{E}^N=A_k\subset X_k,$$

we construct a homogenous degree 1 map into X_k

$$L_k := \iota_k \circ L : \mathbb{R}^n \to A_k \subset X_k$$

which is close to u_k ; i.e. $\lim_{k\to\infty} d_k(u_k, L_k) = 0$

Assume $Ord^{u}(0) = 1$.

- $u_{\omega}: \mathbb{E}^n \to X_{\omega}$ is a homogeneous degree 1 harmonic map.
- u_{ω} is "linear", i.e. \exists a linear map $L : \mathbb{E}^n \to \mathbb{E}^N = A \subset X_{\omega}$ such that

$$d_{\omega}(u_{\omega}(x), u_{\omega}(y)) = |L(x) - L(y)|$$

Here, $A = \iota(\mathbb{R}^r)$ and $\iota = (\iota_1, \iota_2, \dots)$.

• u_{ω} and u_k have different target spaces. But using the chart,

$$\iota_k:\mathbb{E}^N=A_k\subset X_k,$$

we construct a homogenous degree 1 map into X_k

$$L_k := \iota_k \circ L : \mathbb{R}^n \to A_k \subset X_k$$

イロト 不得 トイヨト イヨト 二日

which is close to u_k ; i.e. $\lim_{k\to\infty} d_k(u_k, L_k) = 0$

Assume $Ord^u(0) = 1$.

- $u_{\omega}: \mathbb{E}^n \to X_{\omega}$ is a homogeneous degree 1 harmonic map.
- u_{ω} is "linear", i.e. \exists a linear map $L : \mathbb{E}^n \to \mathbb{E}^N = A \subset X_{\omega}$ such that

$$d_{\omega}(u_{\omega}(x), u_{\omega}(y)) = |L(x) - L(y)|$$

Here, $A = \iota(\mathbb{R}^r)$ and $\iota = (\iota_1, \iota_2, \dots)$.

• u_{ω} and u_k have different target spaces. But using the chart,

$$\iota_k:\mathbb{E}^N=A_k\subset X_k,$$

we construct a homogenous degree 1 map into X_k

$$L_k := \iota_k \circ L : \mathbb{R}^n \to A_k \subset X_k$$

イロト 不得 トイヨト イヨト 二日

which is close to u_k ; i.e. $\lim_{k\to\infty} d_k(u_k, L_k) = 0$

Proof of the Regularity Theorem: Tangent Map

 (Kleiner-Leeb, '97) For F := L(Eⁿ) ≃ E^m, the set of all parallel flats to F is a subbuilding isometric to

 $P_F := \mathbb{E}^m \times Y$

where *Y* is a Euclidean building of dimension N - m.

Proof of the Regularity Theorem: Tangent Maps

KEY STEP: We show u maps into P_F so that we can induct on the dimension of the building.

That is, we want to show:

If $\operatorname{Ord}^{u}(0) = 1$, then there exists a splitting:

$$u|B_r(0) := (u_1, u_2) : B_r(0) \rightarrow \mathbb{E}^m \times Y$$

where

- $u_1 : B_r(0) \to \mathbb{E}^m$ is smooth, and
- $u_2: B_r(0) \rightarrow Y$ has the property that $\operatorname{Ord}^{u_2}(0) > 1$.

Gromov-Schoen uses "effectively contained".

Proof of the Regularity Theorem: Tangent Maps

KEY STEP: We show u maps into P_F so that we can induct on the dimension of the building.

That is, we want to show:

If $\operatorname{Ord}^{u}(0) = 1$, then there exists a splitting:

$$u|B_r(0) := (u_1, u_2) : B_r(0) \rightarrow \mathbb{E}^m \times Y$$

where

- $u_1 : B_r(0) \to \mathbb{E}^m$ is smooth, and
- $u_2: B_r(0) \rightarrow Y$ has the property that $\operatorname{Ord}^{u_2}(0) > 1$.

Gromov-Schoen uses "effectively contained".

Proof of the Regularity Theorem: Loss of Energy

u maps into P_F

THE KEY IDEA: Too much energy at points not mapping into P_F .

The key lemma is the following:

Lemma

 $\mathcal{B}_{k} := \{ x \in B_{1}(0) : u_{k}(x) \notin P_{F} \} \quad \Rightarrow \quad \lim_{k \to \infty} \mu(\mathcal{B}_{k}) = 0.$

To illustrate the idea of the proof of the lemma, we will first consider the easiest case when the target is an \mathbb{R} -tree T.

Loss of energy argument for harmonic maps into an \mathbb{R} -tree.

Assume

• $u: \Omega \to T$ is a harmonic map into an \mathbb{R} -tree.

•
$$x_0 = 0 \in \Omega$$
.

• $u_k : B_1(0) \rightarrow X_k$ and $L_k : B_1(0) \rightarrow A_k$ as before.

Lemma (X. Sun, 2003)

Assume dim X = 1.

$$\mathcal{B}_k := \{ x \in B_1(0) : u_k(x) \notin A_k \} \Rightarrow \lim_{k \to \infty} \mu(\mathcal{B}_k) = 0.$$

く 同 と く ヨ と く ヨ と

Nearest point projection map.

$$\pi_k: X_k \to A_k$$

Chikako Mese, Johns Hopkins University Harmonic maps into Euclidean Buildings

Nearest point projection map.

$$\pi_k: X_k \to A_k$$

Chikako Mese, Johns Hopkins University Harmonic maps into Euclidean Buildings

Harmonic replacement map:

$$h_k: B_1(0) \to X_k$$
$$h_k|_{\partial B_1(0)} = \pi_k \circ u_k|_{\partial B_1(0)}$$

Lemma

The tangent map u_{ω} is also the ω -limit of the sequence h_k .

PROOF

$$\sup_{B_{1}(0)} d_{k}(h_{k}, u_{k}) \leq C \sup_{\partial B_{1}(0)} d_{k}(h_{k}, u_{k}) \qquad \text{(subharmonicity)}$$

$$= C \sup_{\partial B_{1}(0)} d_{k}(\pi_{k} \circ u_{k}, u_{k}) \qquad (h_{k} = \pi_{k} \circ u_{k} \text{ on } \partial B_{1}(0))$$

$$\leq C \sup_{\partial B_{1}(0)} d_{k}(L_{k}, u_{k}). \qquad (L_{k} \text{ maps into } A_{k})$$

$$\Rightarrow \omega$$
-lim $h_k = u_\omega$

Proof of that $\mu(\mathcal{B}_k) \to \mathbf{0}$.

On the contrary, assume $m(\mathcal{B}_{k'}) \ge \epsilon . \Rightarrow \int_{\mathcal{B}_{k'}} |\nabla u_{k'}|^2 d\mu \ge \delta.$

$$E^{h_{k}} \leq E^{\pi_{k} \circ u_{k}} \qquad (h_{k} \text{ is minimizing})$$

$$= \int_{B_{1}(0)} |\nabla(\pi_{k} \circ u_{k})|^{2} d\mu$$

$$= \int_{B_{1}(0) \setminus \mathcal{B}_{k}} |\nabla(\pi_{k} \circ u_{k})|^{2} d\mu \quad (|\nabla(\pi_{k} \circ u_{k})|^{2}(x) = 0 \text{ for } x \in \mathcal{B}_{k})$$

$$\leq \int_{B_{1}(0) \setminus \mathcal{B}_{k}} |\nabla u_{k}|^{2} d\mu \qquad (u_{k} = \pi_{k} \circ u_{k} \text{ for } x \notin \mathcal{B}_{k})$$

$$= E^{u_{k}} - \int_{\mathcal{B}_{k}} |\nabla u_{k}|^{2} d\mu$$

$$\leq E^{u_{k}} - \delta$$

 ω -lim $h_k = u_\omega = \omega$ -lim $u_k \Rightarrow E^{u_\omega} \leq E^{u_\omega} - \delta$, a contradiction!

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の へ ()

Generalizing the Gromov-Schoen argument boils down to finding a way to prove $\lim_{k\to\infty} \mu(\mathcal{B}_k) = 0$ for higher dimensional buildings.

KEY STEPS IN THE PROOF:

- If u(x) ∉ P_F then π ∘ u(x) ∈ A lands in a wall of A which has at least one direction not parallel to F.
- Let $\pi_F^i : P_F \to \mathbb{R}$ denote the projection onto the *i*-th component function of $\mathbb{R}^m \simeq F$.

There exists $\theta_0 \in (0, \pi/2]$ depending on *F* and W_{aff} such that for every *x* such that $u(x) \notin P_F$, there exists at least one $i \in \{1, ..., m\}$ such that

$$\frac{\partial(\pi_F^i \circ \pi \circ u)}{\partial x^i} \bigg|^2 (x) \le \cos^2 \theta_0 \left| \frac{\partial u}{\partial x^i} \right|^2 (x).$$

Generalizing the Gromov-Schoen argument boils down to finding a way to prove $\lim_{k\to\infty} \mu(\mathcal{B}_k) = 0$ for higher dimensional buildings.

KEY STEPS IN THE PROOF:

- If u(x) ∉ P_F then π ∘ u(x) ∈ A lands in a wall of A which has at least one direction not parallel to F.
- Let $\pi_F^i : P_F \to \mathbb{R}$ denote the projection onto the *i*-th component function of $\mathbb{R}^m \simeq F$.

There exists $\theta_0 \in (0, \pi/2]$ depending on *F* and W_{aff} such that for every *x* such that $u(x) \notin P_F$, there exists at least one $i \in \{1, ..., m\}$ such that

$$\left|\frac{\partial(\pi_F^i\circ\pi\circ u)}{\partial x^i}\right|^2(x)\leqslant\cos^2\theta_0\left|\frac{\partial u}{\partial x^i}\right|^2(x).$$

- 4 回 ト 4 ヨ ト

Generalizing the Gromov-Schoen argument boils down to finding a way to prove $\lim_{k\to\infty} \mu(\mathcal{B}_k) = 0$ for higher dimensional buildings.

KEY STEPS IN THE PROOF:

- If u(x) ∉ P_F then π ∘ u(x) ∈ A lands in a wall of A which has at least one direction not parallel to F.
- Let πⁱ_F : P_F → ℝ denote the projection onto the *i*-th component function of ℝ^m ≃ F.

There exists $\theta_0 \in (0, \pi/2]$ depending on *F* and W_{aff} such that for every *x* such that $u(x) \notin P_F$, there exists at least one $i \in \{1, ..., m\}$ such that

$$\frac{\partial(\pi_F^i \circ \pi \circ u)}{\partial x^i} \bigg|^2 (x) \le \cos^2 \theta_0 \left| \frac{\partial u}{\partial x^i} \right|^2 (x).$$

一日

Generalizing the Gromov-Schoen argument boils down to finding a way to prove $\lim_{k\to\infty} \mu(\mathcal{B}_k) = 0$ for higher dimensional buildings.

KEY STEPS IN THE PROOF:

- If u(x) ∉ P_F then π ∘ u(x) ∈ A lands in a wall of A which has at least one direction not parallel to F.
- Let πⁱ_F : P_F → ℝ denote the projection onto the *i*-th component function of ℝ^m ≃ F.

There exists $\theta_0 \in (0, \pi/2]$ depending on *F* and W_{aff} such that for every *x* such that $u(x) \notin P_F$, there exists at least one $i \in \{1, ..., m\}$ such that

$$\frac{\partial(\pi_{F}^{i}\circ\pi\circ u)}{\partial x^{i}}\Big|^{2}(x)\leqslant\cos^{2}\theta_{0}\left|\frac{\partial u}{\partial x^{i}}\right|^{2}(x).$$

Proof that $u(\Omega) \subset P_F$.

- On the contrary, suppose there exists $y \notin u^{-1}(P_F)$.
- Choose r > 0 so that $B_r(y) \subset \mathcal{B}_k = \mathcal{B}_k$ and there exists $x_0 \in \partial B_r(y) \cap B_1(0) \setminus \mathcal{B}_k$.
- Consider blow up maps $u_k : B_1(0) \to X_k$ at x_0 . About half of $B_1(0)$ should lie in \mathcal{B}_k .
- This is a contradiction because $\mu\{x \in B_1(0) : u_k(x) \notin P_F\} \rightarrow 0$.

< ロ > < 同 > < 三 > < 三 > -

Proof that $u(\Omega) \subset P_F$.

- On the contrary, suppose there exists $y \notin u^{-1}(P_F)$.
- Choose r > 0 so that $B_r(y) \subset \mathcal{B}_k = \mathcal{B}_k$ and there exists $x_0 \in \partial B_r(y) \cap B_1(0) \setminus \mathcal{B}_k$.
- Consider blow up maps $u_k : B_1(0) \to X_k$ at x_0 . About half of $B_1(0)$ should lie in \mathcal{B}_k .
- This is a contradiction because $\mu\{x \in B_1(0) : u_k(x) \notin P_F\} \rightarrow 0$.

A (10) A (10)

Proof that $u(\Omega) \subset P_F$.

- On the contrary, suppose there exists $y \notin u^{-1}(P_F)$.
- Choose r > 0 so that $B_r(y) \subset \mathcal{B}_k = \mathcal{B}_k$ and there exists $x_0 \in \partial B_r(y) \cap B_1(0) \setminus \mathcal{B}_k$.
- Consider blow up maps $u_k : B_1(0) \to X_k$ at x_0 . About half of $B_1(0)$ should lie in \mathcal{B}_k .
- This is a contradiction because $\mu\{x \in B_1(0) : u_k(x) \notin P_F\} \rightarrow 0$.

A (10) A (10)

Proof that $u(\Omega) \subset P_F$.

- On the contrary, suppose there exists $y \notin u^{-1}(P_F)$.
- Choose r > 0 so that $B_r(y) \subset \mathcal{B}_k = \mathcal{B}_k$ and there exists $x_0 \in \partial B_r(y) \cap B_1(0) \setminus \mathcal{B}_k$.
- Consider blow up maps $u_k : B_1(0) \to X_k$ at x_0 . About half of $B_1(0)$ should lie in \mathcal{B}_k .

• This is a contradiction because μ { $x \in B_1(0) : u_k(x) \notin P_F$ } $\rightarrow 0$.

Proof that $u(\Omega) \subset P_F$.

- On the contrary, suppose there exists $y \notin u^{-1}(P_F)$.
- Choose r > 0 so that $B_r(y) \subset \mathcal{B}_k = \mathcal{B}_k$ and there exists $x_0 \in \partial B_r(y) \cap B_1(0) \setminus \mathcal{B}_k$.
- Consider blow up maps $u_k : B_1(0) \to X_k$ at x_0 . About half of $B_1(0)$ should lie in \mathcal{B}_k .
- This is a contradiction because μ { $x \in B_1(0) : u_k(x) \notin P_F$ } $\rightarrow 0$.

伺 ト イ ヨ ト イ ヨ ト ー
• If x_0 is an order 1 point, then $\exists r > 0$ such that $u = (u_1, u_2)$ where

 $u_1: B_r(0) \to \mathbb{R}^m$ $u_2: B_r(0) \to Y.$

• By an induction on the dimension, the singular set $S(u_2)$ is of Hausdorff codimension 2.

The set of higher order points is of Hausdorff codimension 2.
 Q.E.D.

A (10) A (10)

• If x_0 is an order 1 point, then $\exists r > 0$ such that $u = (u_1, u_2)$ where

 $u_1: B_r(0) \to \mathbb{R}^m$ $u_2: B_r(0) \to Y.$

 By an induction on the dimension, the singular set S(u₂) is of Hausdorff codimension 2.

The set of higher order points is of Hausdorff codimension 2.
 Q.E.D.

伺 ト イヨ ト イヨ ト

• If x_0 is an order 1 point, then $\exists r > 0$ such that $u = (u_1, u_2)$ where

 $u_1: B_r(0) \to \mathbb{R}^m$ $u_2: B_r(0) \to Y.$

- By an induction on the dimension, the singular set $S(u_2)$ is of Hausdorff codimension 2.
- The set of higher order points is of Hausdorff codimension 2.
 Q.E.D.

伺 と く ヨ と く ヨ と

Rigidity in group theory means that a homomorphism

$$\rho: G' \to G$$

is determined by its restriction to a discrete subgroup $\Gamma \subset G'$.

In other words, rigidity means:

 $\Gamma \rightarrow G$ uniquely extends to $\rho: G' \rightarrow G$.

Application: Rigidity Problems

Given a lattice $\Gamma \subset G'$ and a representation $\rho : \Gamma \rightarrow G$:

Strong rigidity (Mostow 1960's)

- G' = G are semi-simple Lie group with no compact factors.
- $G, G' \neq PSL(2, \mathbb{R})$

If ρ is **faithful**, then ρ is **rigid**.

Superrigidity (Margulis 1970's)

- G, G' are reductive algebraic groups in GL_n
- The Lie group of its real points has real rank at least 2 and no compact factors.

If $\rho(\Gamma)$ is **Zariski dense**, then ρ is **rigid**.

< 回 > < 三 > < 三 >

Observation: G acts isometrically on a geometric space.

Mostow's original strong rigidity:

$$G' = G = PO(n, 1) \subset Isom(\mathbb{H}^n), n \ge 3$$

Geometric interpretation

The geometry of a compact hyperbolic manifold of dim \ge 3 is uniquely determined by its fundamental group.

- *M*, Riemannian manifold with universal cover \widetilde{M}
- X, NPC space
- $\rho: \pi_1(M) \to \operatorname{Isom}(X)$

Definition

 ρ is *geodesically rigid* if there exists a ρ -equivariant totally geodesic map $u: \widetilde{M} \to X$.

Pioneered by Siu in the 1980's:

Step 1. Show \exists a ρ -equivariant harmonic map $u : \widetilde{M} \to X$.

Step 2. Use the geometry of *M* and *X* to prove that *u* is totally geodesic.

Theorem (Siu 1980)

- M, compact Kähler manifold
- N, compact K\u00e4hler manifolds with strongly negative in the sense of Siu

If $u : M \to N$ is a harmonic map and the rank_R $du \ge 4$ at some point, then u is either holomorphic or conjugate holomorphic.

Remark: If *M*, *N* are also locally symmetric, then *u* is isometric.

Bochner method

Proof.

• Kähler form ω on *M* is parallel \Rightarrow Siu's Bochner formula:

$$\partial\bar{\partial}\{\bar{\partial}u,\bar{\partial}u\}\omega^{n-2}=2(|\partial_E\bar{\partial}u|^2+Q_0)\omega^n$$

where

$$\{\bar{\partial}u,\bar{\partial}u\}=\left\langle\frac{\partial u}{\partial\bar{z}^{\alpha}},\frac{\partial u}{\partial z^{\beta}}\right\rangle d\bar{z}^{\alpha}\wedge dz^{\beta}$$

• Integrate:

$$0 = \int_{M} \partial \bar{\partial} \{ \bar{\partial} u, \bar{\partial} u \} = 2 \int_{M} (|\partial_E \bar{\partial} u|^2 + Q_0) \omega^2$$

• Assuming $Q_0 \ge 0$, conclude:

$$|\partial_E \bar{\partial} u|^2 = 0 = Q_0.$$

A D A D A D A

 $|\partial_E \overline{\partial} u|^2 = 0$ means *u* is pluriharmonic, i.e. *u* is harmonic restricted to any complex curve of *M*.

Bochner method

Proof.

• Kähler form ω on *M* is parallel \Rightarrow Siu's Bochner formula:

$$\partial\bar{\partial}\{\bar{\partial}u,\bar{\partial}u\}\omega^{n-2}=2(|\partial_E\bar{\partial}u|^2+Q_0)\omega^n$$

where

$$\{\bar{\partial}u,\bar{\partial}u\}=\left\langle\frac{\partial u}{\partial\bar{z}^{\alpha}},\frac{\partial u}{\partial z^{\beta}}\right\rangle d\bar{z}^{\alpha}\wedge dz^{\beta}$$

Integrate:

$$0 = \int_{\mathcal{M}} \partial \bar{\partial} \{ \bar{\partial} u, \bar{\partial} u \} = 2 \int_{\mathcal{M}} (|\partial_E \bar{\partial} u|^2 + Q_0) \omega^2$$

• Assuming $Q_0 \ge 0$, conclude:

$$|\partial_E \bar{\partial} u|^2 = 0 = Q_0.$$

A B F A B F

 $|\partial_E \overline{\partial} u|^2 = 0$ means *u* is pluriharmonic, i.e. *u* is harmonic restricted to any complex curve of *M*.

Bochner method

Proof.

• Kähler form ω on *M* is parallel \Rightarrow Siu's Bochner formula:

$$\partial\bar{\partial}\{\bar{\partial} u, \bar{\partial} u\}\omega^{n-2} = 2(|\partial_E\bar{\partial} u|^2 + Q_0)\omega^n$$

where

$$\{\bar{\partial}u,\bar{\partial}u\}=\left\langle\frac{\partial u}{\partial\bar{z}^{\alpha}},\frac{\partial u}{\partial z^{\beta}}\right\rangle d\bar{z}^{\alpha}\wedge dz^{\beta}$$

Integrate:

$$0 = \int_{\mathcal{M}} \partial \bar{\partial} \{ \bar{\partial} u, \bar{\partial} u \} = 2 \int_{\mathcal{M}} (|\partial_{E} \bar{\partial} u|^{2} + Q_{0}) \omega^{2}$$

• Assuming $Q_0 \ge 0$, conclude:

$$|\partial_E \bar{\partial} u|^2 = 0 = Q_0.$$

伺 ト イヨ ト イヨ ト

 $|\partial_E \bar{\partial} u|^2 = 0$ means *u* is pluriharmonic, i.e. *u* is harmonic restricted to any complex curve of *M*.

Other variations of the Bochner formula:

- J.H. Sampson 1986
- K. Corlette 1992
- N. Mok, S.-T. Siu, S.-K. Yeung 1993
- J. Jost, S.-T.-Yau 1993

Geometric interpretation of superrigidity

Archimedian superrigidity:

- *M*, locally symmetric space
- $\widetilde{N} = G/K$, symmetric space of non-compact type
- $\rho: \pi_1(M) \to G$ does not fix a point at infinity
- $\Rightarrow \exists \rho$ -equivariant totally geodesic map $u: \widetilde{M} \to \widetilde{N}$.

Non-Archimedian superrigidity:

- M, locally symmetric space
- *X*, Bruhat-Tits building for a reductive algebraic *G* groups over a local non-Archimedean field.
- $\rho: \pi_1(M) \to G$ does not fix a point at infinity
- $\Rightarrow \exists \rho$ -equivariant constant map.

< 回 > < 回 > < 回 > -

Archimedian and *p*-adic superrigidity

Rank \ge 2

Theorem (Margulis 1970's)

If $rank(\widetilde{M}) \ge 2$, then Archimedian superrigidity and p-adic superrigidity hold.

Rank 1

Theorem (Corlette 1991)

If \tilde{M} is a quaternionic hyperbolic space or a Caley hyperbolic space, then Archimedian superrigidity holds.

Theorem (Gromov-Schoen 1992)

If \tilde{M} is a quaternionic hyperbolic space or a Caley hyperbolic space, then *p*-adic superrigidity hold.

• • • • • • • • • • • •

Rank \ge 2

Theorem (Margulis 1970's, Bader-Furman 2018)

If $rank(\widetilde{M}) \ge 2$, then non-Archimedian superrigidity holds.

Rank 1

Theorem (Gromov-Schoen 1993, Breiner-Dees-M– 2025)

If \widetilde{M} is a quaternionic hyperbolic space or a Caley hyperbolic space, then non-Archimedian superrigidity holds.

A (10) A (10) A (10)

ρ -equivariant harmonic map - Existence

Existence Theorem: Donaldson 1987, Corlette 1992, Labourie 1991, Gromov-Schoen 1992, Korevaar-Schoen 1993

Theorem (Korevaar-Schoen 1990's)

- M, Riemannian manifold of finite volume
- X, finite rank NPC space

• $\rho: \pi(M) \rightarrow Isom(X)$ does not fix a point on the visual boundary

If there exists a ρ -equivariant finite energy map, then $\exists \rho$ -equivariant harmonic map $\tilde{u} : \widetilde{M} \to X$.

For geodesic rays $c, c' : [0, \infty) \rightarrow X$,

 $\boldsymbol{c} \simeq \boldsymbol{c}' \iff \exists \kappa > 0 \text{ such that } \boldsymbol{d}(\boldsymbol{c}(t), \boldsymbol{c}'(t)) < \kappa, \ \forall t \in [0, \infty).$

The visual boundary ∂X is the equivalent class of geodesic rays.

▲ □ ▶ ▲ □ ▶ ▲ □

Key to the proof of the rigidity results:

Harmonic maps are regular enough to apply Bochner methods.

< 3 > < 3</p>

Regularity implies rigidity

Example (Generalization of Siu): Harmonic map $u: M \to X$ from a compact Kähler manifold into a Euclidean building is pluriharmonic.

- Define cut-off functions {φ_i} with support contained in the regular set R(u) and with lim_{i→∞} φ_i(x) = 1 for all x ∈ R(u)
- Multiply the Bochner formula by φ_i

$$\varphi_i \partial \bar{\partial} \{ \bar{\partial} u, \bar{\partial} u \} \omega^{n-2} = 2\varphi_i (|\partial_E \bar{\partial} u|^2 + Q_0) \omega^n$$

• Justfy integration by parts and take limit:

$$0 = \lim_{i \to \infty} \int_{M} d(\varphi_{i}\bar{\partial}\{\bar{\partial}u, \bar{\partial}u\}\omega^{n-2})$$

$$= \lim_{i \to \infty} \int_{M} \varphi_{i}\partial\bar{\partial}\{\bar{\partial}u, \bar{\partial}u\}\omega^{n-2} + \lim_{i \to \infty} \int_{M} \partial\varphi_{i} \wedge \bar{\partial}\{\bar{\partial}u, \bar{\partial}u\}\omega^{n-2}$$

$$= 2\lim_{i \to \infty} \int_{M} \varphi_{i}(|\partial_{E}\bar{\partial}u|^{2} + Q_{0})\omega^{n} = \int_{M} (|\partial_{E}\bar{\partial}u|^{2} + Q_{0})\omega^{n}$$

• Conclude $|\partial_E \bar{\partial} u|^2 = 0$; i.e. *u* is pluriharmonic

Regularity implies rigidity

Example (Generalization of Siu): Harmonic map $u: M \to X$ from a compact Kähler manifold into a Euclidean building is pluriharmonic.

- Define cut-off functions {φ_i} with support contained in the regular set R(u) and with lim_{i→∞} φ_i(x) = 1 for all x ∈ R(u)
- Multiply the Bochner formula by φ_i

$$\varphi_i \partial \bar{\partial} \{ \bar{\partial} u, \bar{\partial} u \} \omega^{n-2} = 2\varphi_i (|\partial_E \bar{\partial} u|^2 + Q_0) \omega^n$$

• Justfy integration by parts and take limit:

$$0 = \lim_{i \to \infty} \int_{M} d(\varphi_{i}\bar{\partial}\{\bar{\partial}u, \bar{\partial}u\}\omega^{n-2})$$

$$= \lim_{i \to \infty} \int_{M} \varphi_{i}\partial\bar{\partial}\{\bar{\partial}u, \bar{\partial}u\}\omega^{n-2} + \lim_{i \to \infty} \int_{M} \partial\varphi_{i} \wedge \bar{\partial}\{\bar{\partial}u, \bar{\partial}u\}\omega^{n-2}$$

$$= 2\lim_{i \to \infty} \int_{M} \varphi_{i}(|\partial_{E}\bar{\partial}u|^{2} + Q_{0})\omega^{n} = \int_{M} (|\partial_{E}\bar{\partial}u|^{2} + Q_{0})\omega^{n}$$

• Conclude $|\partial_E \bar{\partial} u|^2 = 0$; i.e. u is pluriharmonic

Non-Archimedean geometric rigidity

Theorem (Gromov-Schoen 1992, Breiner-Dees-M- 2025)

- $\tilde{M} = G/K$, irreducible symmetric space of noncompact type other than the real and complex hyperbolic space
- Γ , discrete subgroup of G such that $M = \widetilde{M}/\Gamma$ is compact.
- X, Bruhat-Tits building of an algebraic group G
- $\rho: \Gamma \to G$, representation such that $\rho(\Gamma)$ is Zariski dense

Any ρ -equivariant harmonic map $u : \widetilde{M} \to X$ is a constant map.

- $\rho(\Gamma)$ Zariski dense $\Rightarrow \rho$ -equivariant harmonic map u.
- Apply regularity theorem and Bochner formula to prove $u \equiv x \in X$.
 - Mok-Siu-Yeung or Jost-Yau Bochner formula for $rank(\widetilde{M}) \ge 2$
 - Corlette Bochner formula for $rank(\widetilde{M}) = 1$

Let $u : \Omega \to X$ be a harmonic map into a Euclidean building.

We showed that if $Ord^{u}(x) = 1$, then there exists a neighborhood U of x such that $u(U) \subset A$.

Conjecture. For $x \in \Omega$ with $\operatorname{Ord}^{u}(x) > 1$, there exist a neighborhood U of x and a finite number of apartments A_1, \ldots, A_k of X such that $u(U) \subset A_1 \cup \cdots \cup A_k$.

Let $u : \Omega \to X$ be a harmonic map into a Euclidean building.

We showed that if $Ord^{u}(x) = 1$, then there exists a neighborhood U of x such that $u(U) \subset A$.

Conjecture. For $x \in \Omega$ with $\operatorname{Ord}^{u}(x) > 1$, there exist a neighborhood U of x and a finite number of apartments A_1, \ldots, A_k of X such that $u(U) \subset A_1 \cup \cdots \cup A_k$.