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Rigidity Result

Assume:
X is a Euclidean building.

rM = G/K is a symmetric space of non-compact type, excluding
Euclidean space, real or complex hyperbolic space.

Γ Ă G = Isom0( rM) is a discrete subgroup acting on the left.

M = Γz rM is compact. (If rank( rM) = 1, we can relax this
asumption to finite volume.)

Theorem (Gromov–Schoen 1992; Breiner–Dees–Mese 2025)

An isometric action Γ ö X fixes a point in the visual
compactification X = X Y BX.
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Regularity Result

PROOF OF RIGIDITY. Harmonic maps into Euclidean buildings are
regular enough to apply geometric differential methods.

Theorem (Gromov–Schoen 1992; Breiner–Dees–Mese 2025)

If u : Ω Ñ X is a harmonic map from a Riemannian domain into a
Euclidean building, then the singular set of u is a closed set of
Hausdorff codimension 2.
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Harmonic maps between Riemannian manifolds

A smooth harmonic map u : (M,g) Ñ (N,h) between Riemannian
manifolds satisfies the harmonic map equation:

△Mui + gαβΓi
jk

Buj

Bxα

Buk

Bx β
= 0.

This is the Euler-Lagrange equation of the energy functional:

Eu =

ż

M
|du|2dvolg .

du : TpM Ñ Tu(x)N or du P Γ(T ˚M b u˚(TN))
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Harmonic maps between Riemannian manifolds

Example. A harmonic function u : (M,g) Ñ R

△Mu = div(∇u) = 0.

This is the Euler-Lagrange equation of

Eu =

ż

M
|∇u|

2
g dvolg .

Example. A parameterized geodesic u : S1 Ñ (N,h) satisfies

d2ui

dt2 + Γi
jk

duj

dt
duk

dt
= 0.

This is the Euler-Lagrange equation of

Eu =

ż

S1

ˇ

ˇ

ˇ

ˇ

du
dt

ˇ

ˇ

ˇ

ˇ

2

h
dt .
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Homotopy Problem

Given a continuous map f : M Ñ N, find a harmonic map u : M Ñ N
homotopic to f .

Theorem (Eells-Sampson 1964)

Assume:
M and N are compact Riemannian manifolds.
N has non-positive sectional curvature.

If f : M Ñ N is a continuous map, there exists a harmonic map
u : M Ñ N homotopic to f .
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Equivariant problem
M, Riemannian manifold with universal cover rM
Ñ, Hadamard manifold
ρ : π1(M) Ñ Isom(Ñ), homomorphism

Definition

A map f : rM Ñ rN is said to be ρ-equivariant if

f (γx) = ρ(γ)f (x) @γ P π1(M), x P rM.

f is ρ-equivariant ñ |df |2 is ρ-invariant ñ |df |2 descends to a
function defined on M.

The energy of f is E f :=
ż

M
|df |2dvolg

Definition

A ρ-equivariant map u : rM Ñ rN is harmonic if Eu ď E f for any
ρ-equivarinat map f : rM Ñ rN.
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Harmonic maps into a complete metric space X

Korevaar-Schoen 1993:

For u : Ω Ñ X from a Riemannian domain, define

eε : Ω Ñ R, eε(x) =

$

&

%

ż

yPBBε(x)

d2(u(x),u(y))
ε2

dσx ,ε
εn´1 x P Ωε

0 otherwise

Eu
ϵ : Cc(Ω) Ñ R, Eu

ϵ (φ) =

ż

Ω
φeϵdvolg .

We say u has finite energy (or that u P W 1,2(Ω,X )) if

Eu := sup
φPCc(Ω),0ďφď1

lim sup
ϵÑ0

Eu
ϵ (φ) ă 8.
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Harmonic maps into a complete metric space X

Weak limit of the measure eε(x)dvolg as ε Ñ 0 is |du|2(x)dvolg .

Eu [Ω] =

ż

Ω
|du|2 dvolg .

Definition
We say a continuous map u : Ω Ñ X from a smooth Riemannian
domain Ω is harmonic if it is locally energy minimizing.
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NPC spaces

NPC space is a complete geodesic metric space such that geodesic
triangles are “slimmer" than corresponding one in Euclidean space
E2.

A generalization of a Hadamard manifold.

Important examples:
symmetric space of non-compact type
Euclidean buildings
hyperbolic buildings
Weil-Petersson completion of Teichmüller space
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Regularity Theorem

Let Ω be a Riemannian domain.

Theorem (Eells-Sampson 1964)

A harmonic map u : Ω Ñ rN into a NPC Riemannian manifold is
smooth.

Theorem (Korevaar-Schoen 1993)

A harmonic map u : Ω Ñ X into an NPC space is locally Lipschitz
continuous.

Harmonic maps into Euclidean buildings enjoy a stronger regularity
property than harmonic maps into an arbitrary NPC space.
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Euclidean buildings

A Euclidean building comes with:
Euclidean space Er ,

Affine Weyl group Waff Ă Isom(Er ); i.e. the rotational part of
Waff is finite,

Euclidean Coxeter complex, (Er ,Waff ),

Family of charts, i.e. a collection of isometric embeddings

A = tι : Er Ñ A := ι(Er ) Ă Xu

where A is called an apartment of X .
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Euclidean buildings
(Er ,Waff ) and A satisfy:

X is a union of all the apartments.

Two charts ι1, ι2 P A are compatible, i.e.

ι´1
1 ˝ ι2 P Waff .

Any two points is contained in an apartment and this defines a
distance function d on X such that (X ,d) is an NPC space.
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Symmetric spaces vs. Euclidean buildings

Lie group over Archimedean numbers ( R and C ) isometrically
act on symmetric spaces.

Example: The group GL(n,C) acts on a symmetric space
GL(n,C)/U(n).

Algebraic groups over non-Archimedean numbers ( Qp and
K := Fpn ((t)) ) act on Bruhat-Tits buildings.
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Euclidean buildings
Example:

Q

| ¨ |8 is the usual absolute value Ñ metric completion is R

| ¨ |p is the p-adic absolute value Ñ metric completion is Qp

G = SL2

G = SL2(R) acts on the upper half-plane
G = SL2(Q2) acts on a tree with valency 3.

https://commons.wikimedia.org/wiki/File:Bruhat-Tits-tree-for-Q-2.png, licensed under CC BY-SA 4.0.
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Euclidean buildings

Bruhat-Tits tree for the 2-adic Lie group SL(2,Q2).

https://commons.wikimedia.org/wiki/File:Bruhat-Tits-tree-for-Q-2.png, licensed under CC BY-SA 4.0.
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Euclidean buildings

Bruhat-Tits building for the 2-adic Lie group SL(2,Q2)
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Euclidean buildings

Bruhat-Tits building for the 2-adic Lie group SL(2,Q2)
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Euclidean buildings

The fixed point set of w P Waff are called walls.
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Euclidean buildings

The intersection of two apartments is contained in a wall.
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Euclidean buildings

Walls in an apartment: locally finite case vs. locally non-finite case.

The structure of a locally non-finite buildings is complicated:

The convex hull of 3 points may not be contained in a finite
number of apartments!
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Regular sets and Singular sets

Let A be the set of charts of a Euclidean building X .
Let u : M̃ Ñ X be a harmonic map.

Definition

Regular set

R(u) = tx P M̃ : Dr ą 0, ι P A such that u(Br (x)) Ă A = ι(Rr )u

Singular set
S(u) = ΩzR(u)
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Example

Vertical leaves of q = zdz2, i.e. curves γ such that q(γ1,γ1) ă 0

The projection map u : D Ñ T is a harmonic map.
u´1(vertex) is not the singular set
S(u) = t0u
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Regularity Theorem

Theorem (Gromov-Schoen 1993)

If X is a locally finite Euclidean building, then a harmonic map
u : Ω Ñ X is smooth outside of a closed set S(u) of Hausdorff
codimension 2.

Theorem (Breiner-Dees-Mese 2025)

Same conclusion without assuming local finiteness.

Chikako Mese, Johns Hopkins University Harmonic maps into Euclidean Buildings



Regularity Theorem

Theorem (Gromov-Schoen 1993)

If X is a locally finite Euclidean building, then a harmonic map
u : Ω Ñ X is smooth outside of a closed set S(u) of Hausdorff
codimension 2.

Theorem (Breiner-Dees-Mese 2025)

Same conclusion without assuming local finiteness.

Chikako Mese, Johns Hopkins University Harmonic maps into Euclidean Buildings



Tools in Gromov-Schoen’s Proof

By local finiteness, we can assume the target space is Tx0X .

blow up maps uσ : B1(0) Ñ Tx0X :

For x0 = 0 P Ω and σ ą 0,

uσ(x) = u(σx)

and rescale the target Tx0X by a factor of µ´1
σ .

‚ Blow up maps generalize the difference quotients of functions.

tangent map u˚ : B1(0) Ñ Tx0X :

Arzela-Ascoli says that a subsequence of blow up maps
uσ : B1(0) Ñ Tx0X converges uniformly to a tangent map
u˚ : B1(0) Ñ Tx0X in any compact subset of B1(0).
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Tools in Gromov-Schoen’s Proof
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Review of the Gromov-Schoen’s Proof

The two key components of Gromov and Schoen’s proof are:
(1) A tangent map u˚ : B1(0) Ñ Tx0X is a homogeneous degree 1

map; i.e. the restriction of u˚ to a radial ray is a constant speed
geodesic.

The image of u˚ is a flat = image of a isometric, totally geodesic
map ϕ : Rm Ñ Tx0X .

(2) The tangent map u˚ at an order 1 point is effectively contained
in a subbuilding Rm ˆ Y where Y is a lower dimensional
Euclidean building.

KEY: Gromov-Schoen show that u must be contained in Rm ˆ Y .

Using an inductive argument on the dimension of the Euclidean
building, prove u is “well-approximated" by u˚; i.e. u is
instrinsically differentiable.
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Review of the Gromov-Schoen’s Proof

“Effectively contained"

In this diagram, the set of points on the thick line close to the
complement of an apartment is small.

For the non-simplicial case, the situation is much more complicated.
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Why we need to modify Gromov-Schoen’s proof

Gromov-Schoen assumes the buildings are:
locally finite
simplicial

For a general Euclidean building:

Issue 1 not locally finite ñ the blow up maps uσ and tangent map u˚ do
not have the same target as u.

Issue 2 not simplicial ñ u˚ is not effectively contained in a subbuilding.
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Constructing a tangent map – Ultralimits

ω finitely additive probability measure on N

ω(S) = 0 or 1 for all S Ă N

ω(S) = 0 for every finite set

For a sequence s = (s1, s2, . . . ),

ω-lims = s˚

means that ω(s´1(U)) = 1 for all neighborhoods U Ă R of s˚.
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Constructing a tangent map – Ultralimits

x0 P X
scale factors µk , ω-lim µk = 0
dk (¨, ¨) := µk d(¨, ¨), k P N

(Xω,dω) = ω-lim (X ,dk ) where

Xω = tx = (x1, x2, . . . ) : dk (xk , x0) ă 8u

dω(x , y) := ω-lim dk (xk , yk ) where
x = (x1, x2 . . . ), y = (y1, y2, . . . )

Xω := Xω/dω is the quotient with respect to dω
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Constructing a tangent map – Ultralimits
Fix x0 P Ω and choose normal coordinates centered at x0 = 0.

Let σk Ñ 0.

For simplicity of notation, let

dk (x1, x2) = µ´1
k d(σk x1, σk x2)

and

uk : B1(0) Ñ (X ,dk ) uk (x) := u(σk x).

(Xω,dω) = ω-lim (X ,dk )

Recall the Xω is an equivalence class of bounded sequences
x = (x1, x2, . . . )

uω = ω-lim uk is defined as the map

uω : B1(0) Ñ (Xω,dω), uω(p) = [(u1(p),u2(p), . . . )]
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Constructing a tangent map – Ultralimits

Regarding the ultralimit (Xω,dω) (Kleiner-Leeb, ‘97):

The ultralimit (Xω,dω) is a Euclidean building with rotational part of
the affine Weyl group the same as that of (X ,dk ).
A chart ι : Er Ñ A for Xω is

ι = (ι1, ι2, . . . )

where ιk : Er Ñ Ak is a chart for Xk = (X ,dk ).

Regarding the ultralimit uω : B1(0) Ñ Xω (Korevaar-Schoen ‘97):

dk (uk (p),uk (q)) Ñ dω(uω(p),uω(q)),

|∇uk |2dµgk á |∇uω|2dµ0,

and
ˇ

ˇ

ˇ

ˇ

Buk
Bxi

ˇ

ˇ

ˇ

ˇ

2
dµgk á

ˇ

ˇ

ˇ

ˇ

Buω

Bxi

ˇ

ˇ

ˇ

ˇ

2
dµ0.
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Issue 1: Approximation by a tangenet map
Assume Ordu(0) = 1.

uω : En Ñ Xω is a homogeneous degree 1 harmonic map.

uω is “linear", i.e. D a linear map L : En Ñ EN = A Ă Xω such
that

dω(uω(x),uω(y)) = |L(x) ´ L(y)|

Here, A = ι(Rr ) and ι = (ι1, ι2, . . . ).

uω and uk have different target spaces. But using the chart,

ιk : EN = Ak Ă Xk ,

we construct a homogenous degree 1 map into Xk

Lk := ιk ˝ L : Rn Ñ Ak Ă Xk

which is close to uk ; i.e. limkÑ8 dk (uk ,Lk ) = 0

This takes care of Issue 1
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Proof of the Regularity Theorem: Tangent Map
(Kleiner-Leeb, ‘97) For F := L(En) » Em, the set of all parallel
flats to F is a subbuilding isometric to

PF := Em ˆ Y

where Y is a Euclidean building of dimension N ´ m.
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Proof of the Regularity Theorem: Tangent Maps

KEY STEP: We show u maps into PF so that we can induct on
the dimension of the building.

That is, we want to show:

If Ordu(0) = 1, then there exists a splitting:

u|Br (0) := (u1,u2) : Br (0) Ñ Em ˆ Y

where
u1 : Br (0) Ñ Em is smooth, and
u2 : Br (0) Ñ Y has the property that Ordu2(0) ą 1.

Gromov-Schoen uses “effectively contained".
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Proof of the Regularity Theorem: Loss of Energy

u maps into PF

THE KEY IDEA: Too much energy at points not mapping into PF .

The key lemma is the following:

Lemma

Bk := tx P B1(0) : uk (x) R PF u ñ lim
kÑ8

µ(Bk ) = 0.

To illustrate the idea of the proof of the lemma, we will first consider
the easiest case when the target is an R-tree T .
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Proof of Regularity when dimX = 1

Loss of energy argument for harmonic maps into an R-tree.

Assume
u : Ω Ñ T is a harmonic map into an R-tree.
x0 = 0 P Ω.
uk : B1(0) Ñ Xk and Lk : B1(0) Ñ Ak as before.

Lemma (X. Sun, 2003)

Assume dimX = 1.

Bk := tx P B1(0) : uk (x) R Ak u ñ lim
kÑ8

µ(Bk ) = 0.
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Proof of Regularity when dimX = 1
Nearest point projection map.

πk : Xk Ñ Ak

|∇(πk ˝ uk )|
2(x) ď |∇uk |2(x), @x P B1(0)

|∇(πk ˝ uk )|
2(x) = 0 for x P Bk .
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Proof of Regularity when dimX = 1
Harmonic replacement map:

hk : B1(0) Ñ Xk

hk |BB1(0) = πk ˝ uk |BB1(0)

Lemma
The tangent map uω is also the ω-limit of the sequence hk .

PROOF

sup
B1(0)

dk (hk ,uk ) ď C sup
BB1(0)

dk (hk ,uk ) (subharmonicity)

= C sup
BB1(0)

dk (πk ˝ uk ,uk ) (hk = πk ˝ uk on BB1(0))

ď C sup
BB1(0)

dk (Lk ,uk ). (Lk maps into Ak )

ñ ω- limhk = uω
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Proof of Regularity when dimX = 1
PROOF OF THAT µ(Bk ) Ñ 0.

On the contrary, assume m(Bk 1) ě ϵ. ñ
ş

Bk1
|∇uk 1 |2dµ ě δ.

Ehk ď Eπk ˝uk (hk is minimizing)

=

ż

B1(0)
|∇(πk ˝ uk )|

2dµ

=

ż

B1(0)zBk

|∇(πk ˝ uk )|
2dµ (|∇(πk ˝ uk )|

2(x) = 0 for x P Bk )

ď

ż

B1(0)zBk

|∇uk |2dµ (uk = πk ˝ uk for x R Bk )

= Euk ´

ż

Bk

|∇uk |2dµ

ď Euk ´ δ

ω- limhk = uω = ω- limuk ñ Euω ď Euω ´ δ, a contradiction!
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Proof of the Regularity Theorem

Generalizing the Gromov-Schoen argument boils down to finding a
way to prove limkÑ8 µ(Bk ) = 0 for higher dimensional buildings.

KEY STEPS IN THE PROOF:
If u(x) R PF then π ˝ u(x) P A lands in a wall of A which has
at least one direction not parallel to F .

Let πi
F : PF Ñ R denote the projection onto the i-th component

function of Rm » F .

There exists θ0 P (0,π/2] depending on F and Waff such that for
every x such that u(x) R PF , there exists at least one
i P t1, . . . ,mu such that

ˇ

ˇ

ˇ

ˇ

ˇ

B(πi
F ˝ π ˝ u)

Bx i

ˇ

ˇ

ˇ

ˇ

ˇ

2

(x) ď cos2 θ0

ˇ

ˇ

ˇ

ˇ

Bu
Bx i

ˇ

ˇ

ˇ

ˇ

2
(x).
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Proof of the Regularity Theorem

Proof that u(Ω) Ă PF .

On the contrary, suppose there exists y R u´1(PF ).

Choose r ą 0 so that Br (y) Ă Bk = Bk and there exists
x0 P BBr (y) X B1(0)zBk .

Consider blow up maps uk : B1(0) Ñ Xk at x0. About half of
B1(0) should lie in Bk .

This is a contradiction because µtx P B1(0) : uk (x) R PF u Ñ 0.
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Proof of the Regularity Theorem

If x0 is an order 1 point, then Dr ą 0 such that u = (u1,u2) where

u1 : Br (0) Ñ Rm

u2 : Br (0) Ñ Y .

By an induction on the dimension, the singular set S(u2) is of
Hausdorff codimension 2.

The set of higher order points is of Hausdorff codimension 2.

Q.E.D.
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Application: Rigidity Problems

Rigidity in group theory means that a homomorphism

ρ : G1 Ñ G

is determined by its restriction to a discrete subgroup Γ Ă G1.

In other words, rigidity means:

Γ Ñ G uniquely extends to ρ : G1 Ñ G.
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Application: Rigidity Problems

Given a lattice Γ Ă G1 and a representation ρ : Γ Ñ G:

Strong rigidity (Mostow 1960’s)
G1 = G are semi-simple Lie group with no compact factors.
G,G1 ‰ PSL(2,R)

If ρ is faithful, then ρ is rigid.

Superrigidity (Margulis 1970’s)
G, G1 are reductive algebraic groups in GLn

The Lie group of its real points has real rank at least 2 and no
compact factors.

If ρ(Γ) is Zariski dense, then ρ is rigid.
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Geometric rigidity

Observation: G acts isometrically on a geometric space.

Mostow’s original strong rigidity:

G1 = G = PO(n,1) Ă Isom(Hn), n ě 3

Geometric interpretation

The geometry of a compact hyperbolic manifold of
dim ě 3 is uniquely determined by its fundamental group.
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Geometric rigidity

M, Riemannian manifold with universal cover rM
X , NPC space
ρ : π1(M) Ñ Isom(X )

Definition
ρ is geodesically rigid if there exists a ρ-equivariant totally geodesic
map u : rM Ñ X .
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Harmonic maps approach to rigidity

Pioneered by Siu in the 1980’s:

Step 1. Show D a ρ-equivariant harmonic map u : rM Ñ X .

Step 2. Use the geometry of M and X to prove that u is totally geodesic.
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Harmonic maps approach to rigidity

Theorem (Siu 1980)

M, compact Kähler manifold
N, compact Kähler manifolds with strongly negative in the sense
of Siu

If u : M Ñ N is a harmonic map and the rankRdu ě 4 at some point,
then u is either holomorphic or conjugate holomorphic.

Remark: If M, N are also locally symmetric, then u is isometric.
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Bochner method

Proof.
Kähler form ω on M is parallel ñ Siu’s Bochner formula:

BB̄tB̄u, B̄uuωn´2 = 2(|BE B̄u|2 + Q0)ω
n

where

tB̄u, B̄uu =

B

Bu
Bz̄α

,
Bu
Bzβ

F

dz̄α ^ dzβ

Integrate:

0 =

ż

M
BB̄tB̄u, B̄uu = 2

ż

M
(|BE B̄u|2 + Q0)ω

2

Assuming Q0 ě 0, conclude:

|BE B̄u|2 = 0 = Q0.

|BE B̄u|2 = 0 means u is pluriharmonic, i.e. u is harmonic restricted to
any complex curve of M.
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Bochner method

Other variations of the Bochner formula:
J.H. Sampson 1986
K. Corlette 1992
N. Mok, S.-T. Siu, S.-K. Yeung 1993
J. Jost, S.-T.-Yau 1993
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Geometric rigidity

Geometric interpretation of superrigidity

Archimedian superrigidity:
M, locally symmetric space
rN = G/K , symmetric space of non-compact type
ρ : π1(M) Ñ G does not fix a point at infinity

ñ D ρ-equivariant totally geodesic map u : rM Ñ rN.

Non-Archimedian superrigidity:
M, locally symmetric space
X , Bruhat-Tits building for a reductive algebraic G groups over a
local non-Archimedean field.
ρ : π1(M) Ñ G does not fix a point at infinity

ñ D ρ-equivariant constant map.
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Archimedian and p-adic superrigidity

Rank ě 2

Theorem (Margulis 1970’s)

If rank( rM) ě 2, then Archimedian superrigidity and p-adic
superrigidity hold.

Rank 1

Theorem (Corlette 1991)

If rM is a quaternionic hyperbolic space or a Caley hyperbolic space,
then Archimedian superrigidity holds.

Theorem (Gromov-Schoen 1992)

If rM is a quaternionic hyperbolic space or a Caley hyperbolic space,
then p-adic superrigidity hold.
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Non-Archimedian superrigidity

Rank ě 2

Theorem (Margulis 1970’s, Bader-Furman 2018)

If rank( rM) ě 2, then non-Archimedian superrigidity holds.

Rank 1

Theorem (Gromov-Schoen 1993, Breiner-Dees-M´ 2025)

If rM is a quaternionic hyperbolic space or a Caley hyperbolic space,
then non-Archimedian superrigidity holds.
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ρ-equivariant harmonic map - Existence

Existence Theorem: Donaldson 1987, Corlette 1992, Labourie 1991,
Gromov-Schoen 1992, Korevaar-Schoen 1993

Theorem (Korevaar-Schoen 1990’s)

M, Riemannian manifold of finite volume
X, finite rank NPC space
ρ : π(M) Ñ Isom(X ) does not fix a point on the visual boundary

If there exists a ρ-equivariant finite energy map, then D ρ-equivariant
harmonic map ũ : rM Ñ X.

For geodesic rays c, c1 : [0,8) Ñ X ,

c » c1 ô Dκ ą 0 such that d(c(t), c1(t)) ă κ, @t P [0,8).

The visual boundary BX is the equivalent class of geodesic rays.
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Regularity implies rigidity

Key to the proof of the rigidity results:

Harmonic maps are regular enough to apply Bochner methods.
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Regularity implies rigidity
Example (Generalization of Siu): Harmonic map u : M Ñ X from a
compact Kähler manifold into a Euclidean building is pluriharmonic.

Define cut-off functions tφiu with support contained in the regular
set R(u) and with limiÑ8 φi (x) = 1 for all x P R(u)
Multiply the Bochner formula by φi

φiBB̄tB̄u, B̄uuωn´2 = 2φi (|BE B̄u|2 + Q0)ω
n

Justfy integration by parts and take limit:

0 = lim
iÑ8

ż

M
d(φi B̄tB̄u, B̄uuωn´2)

= lim
iÑ8

ż

M
φiBB̄tB̄u, B̄uuωn´2 + lim

iÑ8

ż

M
Bφi ^ B̄tB̄u, B̄uuωn´2

= 2 lim
iÑ8

ż

M
φi (|BE B̄u|2 + Q0)ω

n =

ż

M
(|BE B̄u|2 + Q0)ω

n

Conclude |BE B̄u|2 = 0; i.e. u is pluriharmonic
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Regularity implies rigidity

Non-Archimedean geometric rigidity

Theorem (Gromov-Schoen 1992, Breiner-Dees-M´ 2025)

rM = G/K , irreducible symmetric space of noncompact type
other than the real and complex hyperbolic space

Γ, discrete subgroup of G such that M = rM/Γ is compact.
X , Bruhat-Tits building of an algebraic group G
ρ : Γ Ñ G, representation such that ρ(Γ) is Zariski dense

Any ρ-equivariant harmonic map u : rM Ñ X is a constant map.
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Proof of the rank 1 non-Archimedean superrigidity

ρ(Γ) Zariski dense ñ ρ-equivariant harmonic map u.

Apply regularity theorem and Bochner formula to prove
u ” x P X .

Mok-Siu-Yeung or Jost-Yau Bochner formula for rank( rM) ě 2
Corlette Bochner formula for rank( rM) = 1

Chikako Mese, Johns Hopkins University Harmonic maps into Euclidean Buildings



Further question

Let u : Ω Ñ X be a harmonic map into a Euclidean building.

We showed that if Ordu(x) = 1, then there exists a neighborhood U
of x such that u(U) Ă A.

Conjecture. For x P Ω with Ordu(x) ą 1, there exist a neighborhood
U of x and a finite number of apartments A1, . . . ,Ak of X such that
u(U) Ă A1 Y ¨ ¨ ¨ Y Ak .
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