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Metric defines locally shortest curves, called geodesics.
Following geodesics from p defines a map

exp : IpM — M

which is a diffeomorphism on a neighborhood of 0:

Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM| gv,v)=1}

given by
v — (v, V).



In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

Volume of narrow cone



In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]]{ ijﬂjk + O(|I‘3) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Riﬁ-k.

Volume of narrow cone vs. Euclidean expectation:

| ()
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. In dimension n > 2, equivalent to
r=0
where

o._ S
T.—T—ﬁg

1s the trace-free Riccl tensor.
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*...the greatest blunder of my life
— A. Einstein, to G. Gamow

“Mathematicians are like Frenchmen:

tell them something, they translate it into their
own language, and, before you know it, it’s
something entirely different.”

— J.W. von Goethe
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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.

Solves a natural variational problem. (Hilbert)

g / Sqdfitg Vol(M , g) = const.
M



Yamabe, 1960: New angle on variational problem.
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Question  (Yamabe). Does every  smooth
compact simply-connected n-manifold admat
an Einstein metric?

What we know:
e When n = 2: Yes! (Riemann)

e When n = 3: <= Poincaré¢ conjecture.
Hamilton, Perelman, ... Yes!

e When n = 4: No! (Hitchin)
e When n = 5: Probably! (Boyer-Galicki-Kollar)
e When n > 6: Maybe???
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Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
— If M3 carries Einstein metric, mo(M) = 0.

— Existence obstructed for connect sums M54 N5,

Riccl flow

ik = —2'j
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Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
— If M3 carries Einstein metric, mo(M) = 0.

— Existence obstructed for connect sums M54 N5,

™S

OC

C X >

Ricci flow pinches off SZ necks.
First step in geometrization:
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Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
— If M3 carries Einstein metric, mo(M) = 0.

— Existence obstructed for connect sums M54 N5,

Ricci flow leads to geometrization:

Decomposes M into Einstein and collapsed pieces.



Dimension 3:
Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

(M3, g) Einstein = M3 = S3/TI", R3/T, or H3/T".



Dimension 3:
Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

(M3, g) Einstein = M3 = S3/TI", R3/T, or H3/T".

Moduli space of Einstein metrics:

& (M) = {Einstein g}/(Diffeos x RT)



Dimension 3:
Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

(M3, g) Einstein = M3 = S3/TI", R3/T, or H3/T".

Moduli space of Einstein metrics:

&(M?3) is connected (if # @).
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Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

(M3, g) Einstein = M3 = S3/TI", R3/T, or H3/T".

Moduli space of Einstein metrics:

&(M?3) is connected (if # @).

In fact, typically a point! (Mostow rigidity)
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The moduli space of Einstein metrics on 5% x 93
has infinitely many connected components. Unit-
volume Einstein metrics exist for sequence of A—07".

(Wang-Ziller)

The moduli space of Einstein metrics on S° has
infinitely many connected components.

(Bohm, Collins-Székelyhidi)

Connected sums (S? x S3)# - - - #(5% x §3) admit
Einstein metrics for arbitrarily many summands.
Moduli space always has infinitely many connected
components.

Similarly: “most” simply-connected spin 5-manifolds.

(Boyer-Galicki, Kollar, Van Coevering)
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FEinstein metrics again seem comimon.
Moduli spaces typically disconnected.

Non-standard Einstein metrics exist on S
ifn<12orifeg n=1mod4.

(Jensen, Bohm, Boyer-Galicki-Kollar, .. .)

All exotic 7-spheres ©.7 admit Einstein metrics.
Einstein moduli space always disconnected.

(Boyer-Galicki-Kollar)

There’s a smooth compact 8-manifold admitting
both A > 0 and A < 0 Einstein metrics. Similarly
for all larger n = 4k.

(Catanese-L.)



Dimension > 5:



Dimension > 5:

All very interesting, but we're left with. ..



Dimension > 5:
All very interesting, but we're left with. ..

Recognition Problem!



Dimension > 5:
All very interesting, but we're left with. ..
Recognition Problem!

In high dimensions, an Einstein metric does not
help reveal the identity of M"™.



Dimension > 5:
All very interesting, but we're left with. ..
Recognition Problem!

In high dimensions, an Einstein metric does not
help reveal the identity of M"™.

.. Not a meaningful geometrization of manifold!
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A-torus T* is flat.
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Theorem (Hitchin). Any Einstein metric on K3
15 Ricer-flat Kahler.

—> Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). There is only

one Einstein metric on compact hyperbolic
4-manafold 7—[4/F, up to scale and diffeos.

Theorem (L). There is only one Einstein met-
ric on compact complex-hyperbolic 4-manifold CHo /1,
up to scale and diffeos.
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Four Dimensions is Exceptional

When n = 4, existence for Einstein depends deli-
cately on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

But might allow for geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension
four to perhaps call this a geometrization.

By contrast, high-dimensional Einstein metrics too
common; have little to do with geometrization.
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What'’s so special about dimension 47

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

for Euler-characteristic x (M) = 2 — 2by + bs.
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1
(M) = — [ (W4 = W) du
™ JM

for signature 7(M) = by (M) — b_(M).
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Here 7(M) = by (M) — b_(M) defined in terms of
itersection pairing

H*(M,R) x H*(M,R) — R
(1 1) [ e
M

Diagonalize:

+1




For (M*, g) compact oriented Riemannian,

Euler characteristic

o= | I
X =gz [l T -7

Signature

w0 =5 [ (W= 1)

1272
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X X
@ T4
T? |
o
T2

Replace R* /75 neighborhood of each singular point
with copy of T*S2.

Result 1s a K 3 surtface.
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K3 = Kummer-Kahler-Kodaira manifold.
Kummer construction:

Begin with 7" /2o Singular quartic in CP3.

Generic quartic is then a K3 surface. Example:

0=t +u’+0° —w)? = 8[(1 —v?)? — 267[(1 + v*)? — 2u7]
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Certainly true of all examples in these lectures!



Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?



Question. Which smooth compact 4-manifolds
M* admit Einstein metrics?

Question. In dimension four, how unique are
FEinstein metrics, when they exist?
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Theorem (Berger Inequality). If smooth compact
M* admits Einstein g, then

x(M) >0,

with equality only if (M, g) flat, and finitely cov-
ered by T* = R*/A.

However, x(M) > 0 if M* is simply connected. . .
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Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x + 37)(M) > 0,
with equality only if A™ is flat on (M, g).
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Kahler metrics:

(M?™, g) Kéhler <= holonomy C U(m)

<— 4 almost complex-structure .J with V.J = 0
and g(J-, J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
closed 2-form w such that g = w(-, J-).

<= Inlocal complex coordinates (21, ..., 2™), 3f(2)
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(M?™, g) Kéhler <= holonomy C U(m)

<— 4 almost complex-structure .J with V.J = 0
and g(J-, J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
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Kahler magic:
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Kahler metrics:

(M?™, g) Kéhler <= holonomy C U(m)

<— 4 almost complex-structure .J with V.J = 0
and g(J-,.J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
closed 2-form w such that g = w(-, J-).

Kahler magic:

If we define the Ricci form by
P = T(‘]°7 )

then ip is curvature of canonical line bundle A™U.
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P
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Kahler metrics:

(M?™ g): Ricci-flat Kéhler <= holonomy C SU(m)

o

if M is simply connected.
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Hyper-Kahler metrics:

(M*, ¢) hyper-Kihler <= holonomy C Sp(1)

Sp(1) =SU(2)

When (M*, ¢) simply connected:

hyper-Kahler <= Ricci-flat Kihler <= AT flat.
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Hitchin-Thorpe Inequality:
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Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x + 37)(M) > 0,
with equality only if A™ is flat on (M, g).

= <> universal cover Ricci-flat Kahler.
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Theorem (Yau). A compact complex manifold

(M2™ ) admits J-compatible Ricci-flat Kdihler
metrics iff

e it admits Kahler metrics; and
o (M?*™ J)=0¢€ H*(M,R).

When this happens, there i1s a unique such met-
ric in every Kdahler class |w).

Conjectured by Calabi (1954)

who proved necessity & uniqueness.

“Calabi-Yau metrics.”
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Corollary. 4 A =0 Einstein metrics on K3.

Indeed, 3 sequences of these — flat orbifold 7* /7.
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with equality only if AT is flat on (M, q). The
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Cheeger-Gromoll splitting theorem & Bieberbach
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Corollary. Suppose that M* is homeomorphic,
but not diffeomorphic, to K3. Then M does not
admit Einstein metrics.

Kodaira: d complex surfaces that are homotopy
equivalent to /3, but which have ¢ # 0.

(Of course, still have ¢;? = 2y 4+ 37 = 0.)
For any integer n, 9 examples where 2n|c;.

Tomorrow: These are pairwise non-diffeomorphic,
even though all are homeomorphic to A3.

.. Topological manifold |/K 3| has infinitely many
smooth structures, but only one of these admits
Finstein metrics.



