Four-Manifolds, Conformal Curvature, & Differential Topology Claude LeBrun Stony Brook University Union College Mathematics Conference, Schenectady, NY. June 4, 2022 Given (M^2, g) Given (M^2, g) Given (M^2, g) Given (M^2, g) and any $p \in M$, Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. Given $$(M^2, g)$$ and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx \otimes dx + dy \otimes dy \right]$$ Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. Gauss (1822) Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. Gauss (1822) Korn, Lichtenstein (1916) Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. Lamé (1833): "isothermal coordinates" Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. A better name might be "conformal coordinates". Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. A better name might be "conformal coordinates". Distort distances, but not angles. "Minerva Torus" Image credit: Davide Cervone, Union College Mercator Projection Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. A better name might be "conformal coordinates". Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. A better name might be "conformal coordinates". Oriented case: z = x + iy complex coordinate. Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. A better name might be "conformal coordinates". Oriented case: z = x + iy complex coordinate. Any such z and \tilde{z} related by holomorphic function. Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. A better name might be "conformal coordinates". Oriented case: z = x + iy complex coordinate. Any such z and \tilde{z} related by holomorphic function. Makes M into a Riemann surface. Given (M^2, g) and any $p \in M$, \exists coordinates (x, y) on a neighborhood of p s.t. $$g = f(x, y) \left[dx^2 + dy^2 \right]$$ on this neighborhood, for some f(x, y) > 0. A better name might be "conformal coordinates". Oriented case: z = x + iy complex coordinate. Any such z and \tilde{z} related by holomorphic function. Makes (M, g) into a Kähler manifold. But not true for (M^n, g) of dimension $n \geq 3!$ But not true for (M^n, g) of dimension $n \geq 3!$ Generic g not locally Euclidean times function! But not true for (M^n, g) of dimension $n \geq 3!$ Generic g not locally Euclidean times function! Usually, ∄ "isothermal coordinates".... To make this precise... Let (M^n, g) be a Riemannian *n*-manifold, $p \in M$. Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $\exp: T_pM \to M$ Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $$\exp: T_pM \to M$$ which is a diffeomorphism on a neighborhood of 0: Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map $$\exp: T_pM \to M$$ which is a diffeomorphism on a neighborhood of 0: Now choosing $T_pM \stackrel{\cong}{\to} \mathbb{R}^n$ via some orthonormal basis gives us special coordinates on M. In these "geodesic normal" coordinates, In these "geodesic normal" coordinates, the metric $$g = \sum_{j,k=1}^{n} g_{jk} dx^{j} \otimes dx^{k}$$ In these "geodesic normal" coordinates, the metric $$g = g_{jk} \ dx^j \otimes dx^k$$ $$g_{jk} =$$ $$g_{jk} = \delta_{jk}$$ $$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^{m}$$ $$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^m + O(|x|^3)$$ $$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^{m} + O(|x|^{3})$$ where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor $$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^m + O(|x|^3)$$ where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor at the reference point p represented by $\vec{x} = 0$ in these coordinates. $$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^{m} + O(|x|^{3})$$ where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor at the reference point p represented by $\vec{x} = 0$ in these coordinates. Uniquely determined by the above expression for g_{jk} once one also requires Bianchi identities $$\mathcal{R}_{j\ell km} = -\mathcal{R}_{\ell jkm} = -\mathcal{R}_{j\ell mk}$$ $$\mathcal{R}_{j\ell km} + \mathcal{R}_{jkm\ell} + \mathcal{R}_{jm\ell k} = 0$$ $$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^m + O(|x|^3)$$ where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor at the reference point p represented by $\vec{x} = 0$ in these coordinates. $$d\mu_g = d\mu_{\text{Euclidean}},$$ $$d\mu_g = \begin{bmatrix} 1 - \end{bmatrix} d\mu_{\text{Euclidean}}$$ $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + \right] d\mu_{\text{Euclidean}},$$ $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ $$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the Ricci tensor $$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$ where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$. Finally, the *scalar curvature* is the trace of Ricci: Finally, the *scalar curvature* is the trace of Ricci: $$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$ Finally, the *scalar curvature* is the trace of Ricci: $$s = r_j^j = \mathcal{R}^{ij}_{ij}.$$ $$\frac{\operatorname{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. "...the greatest blunder of my life!" — A. Einstein, to G. Gamow $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. As punishment ... $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. Has same sign as the *scalar curvature* $$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$ $$r = \lambda g$$ for some constant $\lambda \in \mathbb{R}$. λ called Einstein constant. Has same sign as the *scalar curvature* $$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$ $$s = n\lambda$$ Any Riemannian 2-manifold is conformally flat. But not true for (M^n, g) of dimension $n \geq 3!$ Generic g not locally Euclidean times function! Usually, ∄ "isothermal coordinates".... On Riemannian n-manifold (M, g), On Riemannian *n*-manifold (M, g), $n \geq 3$, $Riemann = Weyl \oplus Ricci$ On Riemannian *n*-manifold (M, g), $n \geq 3$, $Riemann = Weyl \oplus trace-free Ricci \oplus scalar$ On Riemannian *n*-manifold (M, g), $n \geq 3$, $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c} \delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^{a}{}_{[c} \delta^{b]}_{d]}$$ On Riemannian n-manifold (M, g), $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^a_{[c}\delta^b_{d]}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature W =Weyl curvature ## On Riemannian n-manifold (M, g), $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^{a}{}_{[c}\delta^{b]}_{d]}$$ where s = scalar curvature \dot{r} = trace-free Ricci curvature W = Weyl curvature (conformally invariant) $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature W = Weyl curvature (conformally invariant) W^a_{bcd} unchanged if $g \rightsquigarrow \hat{g} = u^2 g$. $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$ where
s = scalar curvature \mathring{r} = trace-free Ricci curvature W = Weyl curvature (conformally invariant) $$W^a_{bcd}$$ unchanged if $g \rightsquigarrow \hat{g} = u^2 g$. But $\exists u$ such that $\hat{r} = 0$ at any given $p \in M$. $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature W = Weyl curvature (conformally invariant) W^a_{bcd} unchanged if $g \rightsquigarrow \hat{g} = u^2 g$. $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature W = Weyl curvature (conformally invariant) Proposition. Assume $n \ge 4$. Then (M^n, g) locally conformally flat $\iff W \equiv 0$. $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^{a}{}_{[c}\delta^{b]}_{d]}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature W = Weyl curvature (conformally invariant) $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c} \delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^a_{[c} \delta^b_{d]}$$ where s = scalar curvature \dot{r} = trace-free Ricci curvature W = Weyl curvature (conformally invariant) Warning: When n = 3, story is different. $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature W = Weyl curvature (conformally invariant) Warning: When n = 3, story is different. W always 0, but g usually not conformally flat. $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature W = Weyl curvature (conformally invariant) Warning: When n = 3, story is different. W always 0, but g usually not conformally flat. Cotton tensor $C = \nabla \wedge (\mathring{r} - \frac{s}{12}g)$ obstruction. $$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature W = Weyl curvature (conformally invariant) Proposition. Assume $n \ge 4$. Then (M^n, g) locally conformally flat $\iff W \equiv 0$. For metrics on fixed M^n , For metrics on fixed M^n , compact, $\partial M = \emptyset$, $\mathscr{W}: \{\text{metrics}\} \longrightarrow \mathbb{R}$ $\mathscr{W}:\mathcal{G}_M\longrightarrow\mathbb{R}$ $$\mathscr{W}(g) = \int_{M} |W_g|^{n/2} d\mu_g$$ $$\mathscr{W}(g) = \int_{M} |W_g|^{n/2} d\mu_g$$ only depends on the conformal class $$W([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$ only depends on the conformal class $$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$ $$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$ only depends on the conformal class $$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$ Power n/2 is necessary for scale invariance! $$W([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$ only depends on the conformal class $$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$ $$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$ only depends on the conformal class $$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$ $$\mathscr{W}: \mathcal{G}_M/(C^{\infty})^+ \longrightarrow \mathbb{R}$$ $$\mathscr{W}([g]) = \int_{M} |W_{g}|^{n/2} d\mu_{g}$$ only depends on the conformal class $$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$ Measures deviation [g] from conformal flatness. $$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$ only depends on the conformal class $$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$ Measures deviation [g] from conformal flatness. Basic problems: For given smooth compact M, $$\mathscr{W}([g]) = \int_{M} |W_{g}|^{n/2} d\mu_{g}$$ only depends on the conformal class $$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$ Measures deviation [g] from conformal flatness. Basic problems: For given smooth compact M, • What is $\inf \mathscr{W}$? $$\mathscr{W}([g]) = \int_{M} |W_{g}|^{n/2} d\mu_{g}$$ only depends on the conformal class $$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$ Measures deviation [g] from conformal flatness. Basic problems: For given smooth compact M, - What is $\inf \mathcal{W}$? - Do there exist minimizers? For M^4 , For M^4 , $$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$ For M^4 , $$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$ Euler-Lagrange equations B = 0 elliptic mod gauge. For M^4 , $$\mathcal{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$ Euler-Lagrange equations B = 0 elliptic mod gauge. Here $$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$ For M^4 , $$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$ Euler-Lagrange equations B = 0 elliptic mod gauge. Here $$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$ called Bach tensor. For M^4 , $$\mathcal{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$ Euler-Lagrange equations B = 0 elliptic mod gauge. Here $$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$ called Bach tensor. Solutions called Bach-flat metrics. For M^4 , $$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$ Euler-Lagrange equations B = 0 elliptic mod gauge. Here $$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$ called Bach tensor. Solutions called Bach-flat metrics. Bianchi \Longrightarrow Any Einstein (M^4, g) is Bach-flat. For M^4 , $$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$ Euler-Lagrange equations B = 0 elliptic mod gauge. Here $$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$ called Bach tensor. Solutions called Bach-flat metrics. Bianchi \Longrightarrow Any Einstein (M^4, g) is Bach-flat. Of course, conformally Einstein good enough! ## By contrast: ### By contrast: For M^n , $$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$ #### By contrast: For M^n , $$\mathcal{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$ has degenerate Euler-Lagrange equation $$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$ when n > 4. #### By contrast: For M^n , $$\mathcal{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$ has degenerate Euler-Lagrange equation $$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$ when n > 4. Einstein metrics are usually not critical points. The Lie group SO(4) is not simple: The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented (M^4, g) , The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented $(M^4,g), \Longrightarrow$ $\Lambda^2 = \Lambda^+ \oplus \Lambda^-$ The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented $(M^4, g), \Longrightarrow$ $$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$ where Λ^{\pm} are (± 1) -eigenspaces of $\star : \Lambda^2 \to \Lambda^2,$ $$\star^2 = 1.$$ The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented $$(M^4, g)$$, \Longrightarrow $$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$ where Λ^{\pm} are (± 1) -eigenspaces of $$\star : \Lambda^2 \to \Lambda^2,$$ $$\star^2 = 1.$$ Λ^+ self-dual 2-forms. The Lie group SO(4) is not simple: $$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$ On oriented $$(M^4, g)$$, \Longrightarrow $$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$ where Λ^{\pm} are (± 1) -eigenspaces of $$\star : \Lambda^2 \to \Lambda^2,$$ $$\star^2 = 1.$$ Λ^+ self-dual 2-forms. Λ^- anti-self-dual 2-forms. $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\mathcal{R}:\Lambda^2\to\Lambda^2$$ splits into 4 irreducible pieces: $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\Lambda^{+*} \qquad \Lambda^{-*}$$ $$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$ $$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\Lambda^{+*} \qquad \Lambda^{-*}$$ $$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$ $$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature $W_{+} = \text{self-dual Weyl curvature}$ W_{-} = anti-self-dual Weyl curvature $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ splits into 4 irreducible pieces: $$\Lambda^{+*} \qquad \Lambda^{-*}$$ $$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$ $$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$ where s = scalar curvature \mathring{r} = trace-free Ricci curvature $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$ W_{-} = anti-self-dual Weyl curvature $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\mathcal{R}:\Lambda^2\to\Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12}
\end{pmatrix}.$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$ $$\mathcal{R}: \Lambda^2 \to \Lambda^2$$ $$\star: \Lambda^2 \to \Lambda^2:$$ $$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$ Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. T_xM Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. T_xM Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. $$K(P) = K(P^{\perp})$$ For (M^4, g) compact oriented Riemannian, For (M^4, g) compact oriented Riemannian, Euler characteristic $$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$ For (M^4, g) compact oriented Riemannian, #### Euler characteristic $$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$ #### Signature $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$ Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$ Diagonalize: Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$ #### Diagonalize: $$+1$$ $\cdot \cdot \cdot \cdot \cdot +1$ -1 $\cdot \cdot \cdot \cdot \cdot -1$ Here $\tau(M) = b_{+}(M) - b_{-}(M)$ defined in terms of intersection pairing $$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$ $$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$ #### Diagonalize: $$\begin{array}{c} +1 \\ & \cdots \\ & +1 \\ \hline & b_{+}(M) \end{array}$$ $$\begin{array}{c} -1 \\ & \cdots \\ & -1 \end{array}$$ $$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$ $$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$ Since \star is involution of RHS, \Longrightarrow $$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$ $$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$ Since \star is involution of RHS, \Longrightarrow $$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$ where $$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$ self-dual & anti-self-dual harmonic forms. $$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$ Since \star is involution of RHS, \Longrightarrow $$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$ where $$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$ self-dual & anti-self-dual harmonic forms. Then $$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$ $$H^2(M,\mathbb{R})$$ $$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$ $$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$ $$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$ $$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$ Since \star is involution of RHS, \Longrightarrow $$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$ where $$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$ self-dual & anti-self-dual harmonic forms. Then $$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$ $$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$ Since \star is involution of RHS, \Longrightarrow $$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$ where $$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$ self-dual & anti-self-dual harmonic forms. Then $$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$ The subspaces \mathcal{H}_g^{\pm} are conformally invariant: Same for g and any $\widehat{g} = u^2 g$. $$\tau(M) = \frac{1}{3} \langle p_1(TM), [M] \rangle$$ $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$ $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\mathscr{W}([g]) \ge 12\pi^2 \tau(M)$$ $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\mathscr{W}([g]) \ge 12\pi^2 \tau(M)$$ with $= \iff W_- \equiv 0$. $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\mathscr{W}([g]) \ge 12\pi^2 \tau(M)$$ with $= \iff W_- \equiv 0$. "self-dual" $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\mathscr{W}([g]) \ge -12\pi^2 \tau(M)$$ $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\mathscr{W}([g]) \ge -12\pi^2 \tau(M)$$ with $= \iff W_+ \equiv 0$. $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\mathscr{W}([g]) \ge -12\pi^2 \tau(M)$$ with $= \iff W_+ \equiv 0$. "anti-self-dual" Signature $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\mathcal{W}([g]) \ge -12\pi^2 \tau(M)$$ with $= \iff W_+ \equiv 0$. "anti-self-dual" Reversing orientation \simples $self-duality \longleftrightarrow anti-self-duality$ Signature $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\mathcal{W}([g]) \ge -12\pi^2 \tau(M)$$ with $= \iff W_+ \equiv 0$. "anti-self-dual" 1985-1995: \exists self-dual/anti-self g on many M^4 . Signature $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ $$\mathscr{W}([g]) \ge -12\pi^2 \tau(M)$$ with $= \iff W_+ \equiv 0$. "anti-self-dual" 1985-1995: \exists self-dual/anti-self g on many M^4 . Poon, L, Donaldson-Friedman, Taubes . . . $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ Signature $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ **Proposition** (Atiyah-Hitchin-Singer). The Fubini-Study metric on \mathbb{CP}_2 is self-dual. Consequently, minimizes Weyl functional. Signature $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ **Theorem** (Poon '86). Up conformal isometry, the Fubini-Study class is the unique self-dual conformal class on \mathbb{CP}_2 with Y([g]) > 0. $$Y([g]) = \inf_{\widehat{g} = u^2 g} \frac{\int_{M} s_{\widehat{g}} d\mu_{\widehat{g}}}{\sqrt{\int_{M} d\mu_{\widehat{g}}}};$$ $$Y([g]) = \inf_{\widehat{g}=u^2g} \frac{\int_{M} s_{\widehat{g}} d\mu_{\widehat{g}}}{\sqrt{\int_{M} d\mu_{\widehat{g}}}};$$ If g has s of fixed sign, agrees with sign of $Y_{[g]}$. Signature $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ **Theorem** (Poon '86). Up conformal isometry, the Fubini-Study class is the unique self-dual conformal class on \mathbb{CP}_2 with Y([g]) > 0. Signature $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ **Proposition** (Atiyah-Hitchin-Singer '78). The Fubini-Study metric on \mathbb{CP}_2 is self-dual. Consequently, minimizes Weyl functional. What about $S^2 \times S^2$? What about $S^2 \times S^2$? No self-dual metric! What about $S^2 \times S^2$? No self-dual metric! Would be conformally flat, because $\tau = 0$. $$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$ What about $S^2 \times S^2$? No self-dual metric! Would be conformally flat, because $\tau = 0$. Also $\pi_1 = 0$. What about $S^2 \times S^2$? No self-dual metric! Would be conformally flat, because $\tau = 0$. Also $\pi_1 = 0$. Kuiper '49: .: Round $S^4!
\Rightarrow \Leftarrow$ What about $S^2 \times S^2$? What about $S^2 \times S^2$? Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} . What about $S^2 \times S^2$? Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} . Gave weak evidence: What about $S^2 \times S^2$? Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} . Gave weak evidence: Local minimum. What about $S^2 \times S^2$? Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} . What about $S^2 \times S^2$? Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} . Commonality between \mathbb{CP}_2 and $S^2 \times S^2$? What about $S^2 \times S^2$? Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} . Commonality between \mathbb{CP}_2 and $S^2 \times S^2$? Kähler-Einstein, with $\lambda > 0$. What about $S^2 \times S^2$? Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} . Commonality between \mathbb{CP}_2 and $S^2 \times S^2$? Kähler-Einstein, with $\lambda > 0$. Kähler-Einstein means Einstein, and also Kähler. What about $S^2 \times S^2$? Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} . Commonality between \mathbb{CP}_2 and $S^2 \times S^2$? Kähler-Einstein, with $\lambda > 0$. Kähler-Einstein means Einstein, and also Kähler. Kähler means there exists an almost-complex structure J that is invariant under parallel transport with respect to g: $$\nabla J = 0.$$ ## Natural Generalization: (M^4, J) for which c_1 is a Kähler class $[\omega]$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, in general position, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. If N is a complex surface, If N is a complex surface, may replace $p \in N$ If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 . If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$. If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$. # Blowing up: If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$. # Blowing up: If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up $$M \approx N \# \overline{\mathbb{CP}}_2$$ in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, no 6 on conic, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. No 3 on a line, no 6 on conic, no 8 on nodal cubic. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally $K\ddot{a}hler$, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is unique (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is unique up to complex automorphisms and constant rescalings. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, Siu, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, Siu, Tian-Yau, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, Siu, Tian-Yau, Tian, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, Siu, Tian-Yau, Tian, Odaka-Spotti-Sun, (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0
\le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Existence: Page-Derdziński, Siu, Tian-Yau, Tian, Odaka-Spotti-Sun, Chen-L-Weber. (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Uniqueness: Bando-Mabuchi '87 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$." Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$. **Theorem.** Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique. Uniqueness: Bando-Mabuchi '87, L '12. One reason this seems satisfying... **Theorem** (CLW '08). Suppose that M is a smooth compact oriented 4-manifold which carries some symplectic form ω . $$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$ $$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$ Diffeotypes: exactly the Del Pezzo surfaces. $$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$ Diffeotypes: exactly the Del Pezzo surfaces. For known g, can take ω harmonic self-dual 2-form. $$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$ Diffeotypes: exactly the Del Pezzo surfaces. For known g, can take ω harmonic self-dual 2-form. But this is not needed in above result. ## Osamu Kobayashi '86: What about $S^2 \times S^2$? Conjecture (Kobayashi). The Kähler-Einstein product metric on $S^2 \times S^2$ minimizes the Weyl functional \mathcal{W} . # Natural Generalization: ## **Natural Generalization:** Conjecture. On any del Pezzo surface (M^4, J) , the conformally Kähler, Einstein product metric minimizes the Weyl functional \mathcal{W} . ## **Natural Generalization:** Conjecture. On any del Pezzo surface (M^4, J) , the conformally Kähler, Einstein product metric minimizes the Weyl functional \mathcal{W} . Persuasive partial results. ## **Natural Generalization:** Conjecture. On any del Pezzo surface (M^4, J) , the conformally Kähler, Einstein product metric minimizes the Weyl functional \mathcal{W} . Persuasive partial results. But problem still not settled! **Theorem** (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. **Theorem** (Gursky '98). Let M be a smooth compact 4-manifold with $b_{+}(M) \neq 0$. Then any conformal class [g] i.e. represented by metric with s > 0. $$Y([g]) = \inf_{\widehat{g} = u^2 g} \frac{\int_{M} s_{\widehat{g}} d\mu_{\widehat{g}}}{\sqrt{\int_{M} d\mu_{\widehat{g}}}};$$ $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0. $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0. In particular, any K-E g with s > 0 minimizes restriction of \mathcal{W} to s > 0 metrics. $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0. In particular, any K-E g with s > 0 minimizes restriction of \mathcal{W} to s > 0 metrics. Big step towards generalized Kobayashi conjecture! $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0. In particular, any K-E g with s > 0 minimizes restriction of \mathcal{W} to s > 0 metrics. Big step towards generalized Kobayashi conjecture! But applies in much greater generality. $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0. In particular, any K-E g with s > 0 minimizes restriction of \mathcal{W} to s > 0 metrics. Big step towards generalized Kobayashi conjecture. But says nothing about Y([g]) < 0 realm. $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0. In particular, any K-E g with s > 0 minimizes restriction of \mathcal{W} to s > 0 metrics. Big step towards generalized Kobayashi conjecture. Hence says nothing about "most" conformal classes. $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0. Method: Weitzenböck formula $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains Kähler-Einstein \widehat{g} with s > 0. Method: Weitzenböck formula $$0 = \frac{1}{2}\Delta|\omega|^2 + |\nabla\omega|^2 - 2W_{+}(\omega, \omega) + \frac{s}{3}|\omega|^2$$ for self-dual harmonic 2-form ω . **Definition.** A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic type **Definition.** A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow$ **Definition.** A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) **Definition.** A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere. **Definition.** A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere. Implies ω is orientation-compatible symplectic form. **Definition.** A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere. Implies ω is orientation-compatible symplectic form. Every symplectic 4-manifold arises this way. **Definition.** A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere. Implies ω is orientation-compatible symplectic form. Every symplectic 4-manifold arises this way. Choose $g \in [g]$ so that $|\omega| \equiv \sqrt{2}$. **Definition.** A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere. Implies ω is orientation-compatible symplectic form. Every symplectic 4-manifold arises this way. Choose $$g \in [g]$$ so that $|\omega| \equiv \sqrt{2}$. Then (M, g, ω) is almost-Kähler manifold: **Definition.** A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere. Implies ω is orientation-compatible symplectic form. Every symplectic 4-manifold arises this way. Choose $$g \in [g]$$ so that $|\omega| \equiv \sqrt{2}$. Then (M, g, ω) is almost-Kähler manifold: $$\exists J \quad s.t. \quad \omega = g(J \cdot, \cdot)$$ **Definition.** A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere. Open condition in C^2 topology on metrics. **Definition.** A conformal class [g] on a compact oriented 4-manifold M is said to be of symplectic $type \Leftrightarrow \exists self$ -dual harmonic 2-form ω on (M,g) such that $\omega \neq 0$ everywhere. Open condition in C^2 topology on metrics. (Harmonic forms depend continuously on metric.) **Theorem** (L '15). Let *M* be the underlying smooth oriented 4-manifold of a del Pezzo surface. $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g. $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g. This recovers Gursky's inequality $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g. This recovers Gursky's inequality — but for a different open set of conformal classes! $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g. ∃ conformal classes of symplectic type with $$Y([g_j]) \to -\infty.$$ $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g. ∃ conformal classes of symplectic type with $$Y([g_j]) \to -\infty.$$ Inequality not limited to the positive Yamabe realm! **Theorem** (L '15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class
[g] of symplectic type on M satisfies $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g. Method: Almost-Kähler geometry: $$3\int_{M} W_{+}(\omega, \omega) \ d\mu \ge 4\pi c_{1} \bullet [\omega]$$ **Theorem** (L'15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class [g] of symplectic type on M satisfies $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g. However, only works for M del Pezzo. **Theorem** (L '15). Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class [g] of symplectic type on M satisfies $$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M),$$ with equality \Leftrightarrow [g] contains a Kähler-Einstein metric g. However, only works for M del Pezzo. This is apparently not an accident! But Gursky's theorem also works for $(S^2 \times S^2) \# (S^2 \times S^2)$. But Gursky's theorem also works for $(S^2 \times S^2) \# (S^2 \times S^2)$. And indeed for all iterated connect-sums $m(S^2 \times S^2)$. But Gursky's theorem also works for $(S^2 \times S^2) \# (S^2 \times S^2)$. And indeed for all iterated connect-sums $m(S^2 \times S^2)$. What happens there in the Yamabe-negative realm? **Theorem** (L '22). For any sufficiently large integer m, $$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$ $$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$ $admits \ Riemannian \ conformal \ classes \ [g] \ such \ that$ $$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$ $admits \ Riemannian \ conformal \ classes \ [g] \ such \ that$ $$\int_{M} |W_{+}|^{2} d\mu < \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M).$$ $$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$ admits $Riemannian\ conformal\ classes\ [g]\ such$ that $$\int_{M} |W_{+}|^{2} d\mu < \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M).$$ Similarly, for any any sufficiently large integer m and any integer n such that $\frac{n}{m}$ is sufficiently close to 1, $$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$ admits $Riemannian\ conformal\ classes\ [g]\ such$ that $$\int_{M} |W_{+}|^{2} d\mu < \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M).$$ Similarly, for any any sufficiently large integer m and any integer n such that $\frac{n}{m}$ is sufficiently close to 1, the smooth compact simply-connected non-spin manifold $$M = m\mathbb{CP}_2 \# n\overline{\mathbb{CP}}_2 := \underbrace{\mathbb{CP}_2 \# \cdots \# \mathbb{CP}_2}_{m} \# \underbrace{\overline{\mathbb{CP}}_2 \# \cdots \# \overline{\mathbb{CP}}_2}_{n}$$ $$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$ admits $Riemannian\ conformal\ classes\ [g]\ such$ that $$\int_{M} |W_{+}|^{2} d\mu < \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M).$$ Similarly, for any any sufficiently large integer m and any integer n such that $\frac{n}{m}$ is sufficiently close to 1, the smooth compact simply-connected non-spin manifold $$M = m\mathbb{CP}_2 \# n\overline{\mathbb{CP}}_2 := \underbrace{\mathbb{CP}_2 \# \cdots \# \mathbb{CP}_2}_{m} \# \underbrace{\overline{\mathbb{CP}}_2 \# \cdots \# \overline{\mathbb{CP}}_2}_{n}$$ admits conformal classes [g] where the above inequality holds. Wall '66: If Y and Z are homotopy-equivalent simply-connected smooth compact 4-manifolds, Wall '66: If Y and Z are homotopy-equivalent simply-connected smooth compact 4-manifolds, then $Y \# \ell(S^2 \times S^2) \approx Z \# \ell(S^2 \times S^2)$ for all $\ell \gg 0$. Wall '66: If Y and Z are homotopy-equivalent simply-connected smooth compact 4-manifolds, then $$Y \# \ell(S^2 \times S^2) \approx Z \# \ell(S^2 \times S^2)$$ for all $\ell \gg 0$. In proof, we apply this to $$M = (k + \ell)(X \# \overline{X}) \# (k + 2\ell)(S^2 \times S^2)$$ where X simply-connected minimal complex surface of general type with $\tau(X) > 0$. Wall '66: If Y and Z are homotopy-equivalent simply-connected smooth compact 4-manifolds, then $$Y \# \ell(S^2 \times S^2) \approx Z \# \ell(S^2 \times S^2)$$ for all $\ell \gg 0$. In proof, we apply this to $$M = (k + \ell)(X \# \overline{X}) \# (k + 2\ell)(S^2 \times S^2)$$ where X simply-connected minimal complex surface of general type with $\tau(X) > 0$. Such X now known to exist in profusion! Wall '66: If Y and Z are homotopy-equivalent simply-connected smooth compact 4-manifolds, then $$Y \# \ell(S^2 \times S^2) \approx Z \# \ell(S^2 \times S^2)$$ for all $\ell \gg 0$. In proof, we apply this to $$M = (k + \ell)(X \# \overline{X}) \# (k + 2\ell)(S^2 \times S^2)$$ where X simply-connected minimal complex surface of general type with $\tau(X) > 0$. Such X now known to exist in profusion! Roulleau-Urzúa '15: \exists sequences with $\tau/\chi \to 1/3$. → Miyaoka-Yau line! Can choose spin or non-spin! $$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$ $admits \ Riemannian \ conformal \ classes \ [g] \ such \ that$ $$\int_{M} |W_{+}|^{2} d\mu < \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M).$$ $$M = m(S^2 \times S^2) := \underbrace{(S^2 \times S^2) \# \cdots \# (S^2 \times S^2)}_{m}$$ admits $Riemannian\ conformal\ classes\ [g]\ such$ that $$\int_{M} |W_{+}|^{2} d\mu < \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M).$$ Similarly, for any any sufficiently large integer m and any integer n such that $\frac{n}{m}$ is sufficiently close to 1, the smooth compact simply-connected non-spin manifold $$M = m\mathbb{CP}_2 \# n\overline{\mathbb{CP}}_2 := \underbrace{\mathbb{CP}_2 \# \cdots \# \mathbb{CP}_2}_{m} \# \underbrace{\overline{\mathbb{CP}}_2 \# \cdots \# \overline{\mathbb{CP}}_2}_{n}$$ admits conformal classes [g] where the above inequality holds. It's a real pleasure to be here! ## It's a real pleasure to be here! ## Thanks for the invitation!