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9= f(z,y) [dwz + dy?}
on this neighborhood, for some f(x,y) > 0.

A better name might be “conformal coordinates”.

Distort distances, but not angles.
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2 2
9= f(z,y) [dflf +dy }
on this neighborhood, for some f(x,y) > 0.
A better name might be “conformal coordinates”.
Oriented case: z = x + iy complex coordinate.

Any such z and 2 related by holomorphic function.

Makes (M, g) into a Kahler manifold.
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exp : IpM — M

which is a diffeomorphism on a neighborhood of 0:

Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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Uniquely determined by the above expression for
g once one also requires Bianchi identities
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where 7 1s the [ticci tensor 1. = Rijik.
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For metrics on fixed M"™, Weyl functional

P = [ Wl

only depends on the conformal class

lg] = {u29 | u: M QRJF}.

Measures deviation [¢g| from conformal flatness.

Basic problems: For given smooth compact M.
e What is inf 77

e Do there exist minimizers?
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For M*,

) = [ WP

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here |
By = (vcvd + §%Cd)Wa,cbd

called Bach tensor.
Solutions called Bach-flat metrics.

Bianchi = Any Einstein (1%, ¢) is Bach-flat.

Of course, conformally Einstein good enough!
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For M™
7 (g]) = / W[ 2du,
M

has degenerate Euler-Lagrange equation
‘Wg‘(n—ﬂr)/?(vv.w 4o ) =0
when n > 4.

Einstein metrics are usually not critical points.
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The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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K(P) = K(PY)
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H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} dH,,

where

Hy ={p € I(A\") | dp = 0}

self-dual & anti-self-dual harmonic forms. Then

b+ (M) = dim#H.
The subspaces ?—[;t are conformally invariant:

Same for ¢ and any § = u?g.
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1985-1995: 3 self-dual /anti-self ¢ on many M 1

Poon, L, Donaldson-Friedman, Taubes ...
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Proposition (Atiyah-Hitchin-Singer '78). The Fubini-
Study metric on CPy 1s self-dual. Consequently,
minimaizes Weyl functional.
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Osamu Kobayashi ’86:

What about S2 x 527

Conjecture (Kobayashi). The Kdhler-Einstein
product metric on S? x S? minimizes the Weyl
functional W' .

Commonality between CPy and S2 x 527
Kahler-Einstein, with A > 0.
Kahler-Einstein means Einstein, and also Kahler.

Kahler means there exists an almost-complex struc-
ture ./ that is invariant under parallel transport
with respect to g:

VJ =0.
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(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each del Pezzo (M*,J) admits a
J-compatible conformally Kahler, FEinstein
metric, and this metric is geometrically unique.

Uniqueness: Bando-Mabuchi 87, L. "12.
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Theorem (CLW '08). Suppose that M is a smooth
compact oriented 4-manifold which carries some
symplectic form w. Then M admits an (unre-
lated) Finstein metric g with A > 0

CPy#kCPy, 0<k <38,
— M~ or
S2 % G2

Diffeotypes: exactly the Del Pezzo surfaces.

For known ¢, can take w harmonic self-dual 2-form.

But this is not needed in above result.
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minimizes the Weyl functional W .

Persuasive partial results.

But problem still not settled!
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Theorem (Gursky '98). Let M be a smooth com-
pact 4-manifold with by (M) # 0. Then any con-
formal class |g] with Y (|g]) > 0 satisfies

9 47'('2
(Wi "dp = ——(2x + 37)(M),
M 3

with equality < |g] contains Kdhler-Einstein g
with s > 0.

Method: Weitzenbock formula
1
0= §A|wl2 + |Vwl? = 2W (w, w) + g]w\Q

for self-dual harmonic 2-form w.
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A different use of self-dual harmonic forms
yields a complementary result.

Definition. A conformal class |g] on a compact
oriented 4-manifold M 1s said to be of symplectic
type <3 self-dual harmonic 2-form w on (M, g)
such that w # 0 everywhere.

Open condition in C? topology on metrics.

(Harmonic forms depend continuously on metric. )
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Method: Almost-Kahler geometry:

3/ Wi(w,w) du > 4mey o |W]
M
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any conformal class |g] of symplectic type on M
satisfies

9 47'('2
(W |%dp = ——(2x + 37)(M),
Y 3

with equality <|g| contains a Kdahler-Einstein
metric g.

However, only works for M del Pezzo.

This is apparently not an accident!
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But Gursky’s theorem also works for (S? x S2)#(S? x S?).
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What happens there in the Yamabe-negative realm?
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M =m(S°x S?) = £32X32># o #SQXSQZ

admits Riemannian conformal classes |g] such

that
[ i <
M

Similarly, for any any sufficiently large integer
m and any integer n such that = is sufficiently
close to 1, the smooth compact stmply-connected
non-spin manifold

M = mCPy#nCP5 := CPo# - - - #CPZ#@Q# X #@2

m n

e

; (2x + 37)(M).

admits conformal classes |g] where the above in-
equality holds.
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Wall '66: It Y and Z are homotopy-equivalent simply-
connected smooth compact 4-manifolds,

then Y#0(5% x S?) ~ Z#0(5?x S?) for all £ > 0.

In proof, we apply this to
M = (k+ O)(X#X)#(k + 20)(5? x S?)

where X simply-connected minimal complex sur-
face of general type with 7(X) > 0.

Such X now known to exist in profusion!
Roulleau-Urzta "15: 3 sequences with 7/x — 1/3.

— Miyaoka-Yau line! Can choose spin or non-spin!
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