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—> Global rigidity results in these low dimensions.
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On compact n-manifolds, n > 5, moduli space of
Einstein metrics is often highly disconnected.

In high dimensions, the Einstein condition allows
for a surprising degree of flexibility!
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—> Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, Kobayashi-Todorov)

Theorem (Besson-Courtois-Gallot). There is only

one Einstein metric on compact hyperbolic
4-manafold 7—[4/F, up to scale and diffeos.

Theorem (LeBrun). There is only one Einstein
metric on compact complex-hyperbolic 4-manzifold

CHo/I', up to scale and diffeos.
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What'’s so special about dimension 47

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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A laboratory for exploring Einstein metrics.
Kahler geometry is a rich source of examples.

[f M admits a Kahler metric, it of course admits a
symplectic form w.

Seiberg-Witten theory provides powerful constraints
on the differential topology of such manifolds.

Some Suggestive Questions. If (M*, w) is a
symplectic 4-manifold, when does M* admit an
FEinstein metric g (a priori unrelated tow)? What
if we also require A > 07
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Theorem (CLW '08). Suppose that M is a smooth
compact oriented 4-manifold which carries some
symplectic form w. Then M admits an (a priori
unrelated) Finstein metric g with A > 0

(CIP)Q#IC@% 0 <k <8,
ds
— M %ﬁ< or
S% % 52
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Uniqueness: Bando-Mabuchi 87, L. "12.



One fundamental open problem:



One fundamental open problem:

Understand all Einstein metrics on del Pezzos.



One fundamental open problem:
Understand all Einstein metrics on del Pezzos.

Is Einstein moduli space connected?



One fundamental open problem:
Understand all Einstein metrics on del Pezzos.

Is Einstein moduli space connected?

Progress to date:



One fundamental open problem:
Understand all Einstein metrics on del Pezzos.

Is Einstein moduli space connected?

Progress to date:

Completely understand one connected component.



One fundamental open problem:
Understand all Einstein metrics on del Pezzos.

[s Einstein moduli space connected?

Progress to date:

Completely understand one connected component.

Peng Wu proposed one beautiful characterization
of these metrics,



One fundamental open problem:
Understand all Einstein metrics on del Pezzos.

[s Einstein moduli space connected?

Progress to date:

Completely understand one connected component.

Peng Wu proposed one beautiful characterization
of these metrics, in terms of an open condition on

W. AT — AT



One fundamental open problem:
Understand all Einstein metrics on del Pezzos.

[s Einstein moduli space connected?

Progress to date:

Completely understand one connected component.
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Wu's criterion:

det(W+) > ().
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Theorem (Wu/lL 21). Let (M, g) be a simply-
connected compact oriented Einstein 4-manifold,
and suppose that its self-dual Weyl curvature

W AT = AT
satisfies
d6t<W+) > ()

at every point of M. Then M s diffeomorphic to
a del Pezzo surface, and g is one of the confor-
mally Kahler, Einstein metrics weve discussed.

Corollary. Every simply-connected compact ori-
ented Einstein (M*, h) with det(W,) > 0 is dif-
feomorphic to a del Pezzo surface. Conversely,
every del Pezzo M?* carries Finstein h with
det(Wi) > 0, and these sweep out exactly one
connected component of moduli space & (M ).
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In joint work with Tristan Ozuch, currently extend-
ing these results to non-collapsed Gromov-Hausdorft
limits of compact A > 0 Einstein 4-manifolds.

Objective: if orbifold limit is conformally Kahler,
show that the same is also true of smooth 4-manifolds
far out in the sequence.

Theorem requires auxiliary technical assumption re-
carding the gravitational instantons that bubble oft
as rescaled limits.

This leads to a natural generalization of classifica-
tion results of Odaka-Spotti-5un, where all metrics
involved were assumed to be Kahler-Einstein.

This illustrates how gravitational instantons play a
crucial role, even when studying compact case.
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Oy &
2

Data: ¢ points in R, = V with AV =0

g=Vh+V1¢?

on P. Then take M* = Riemannian completion.
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Gibbons-Hawking gravitational instantons:

g = V(da® + dy* + dz*) + V162

df) = xdV

Kahler with respect to three complex structures
Hence holonomy C Sp(1) = SU(2).

Hence Ricci-flat!

Calabi later called such metrics “hyper-Kahler.”

Gibbons and Hawking were unaware of all this!
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Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
When « = 0, they are ALE:

“Asymptotically locally Euclidean”

—4
gik = 01 + O(|z] )
In particular, volume of large ball is

?
T2
Vol(B,)~ L2

Notice that £ = 1 case is just flat R?!

The ¢ = 2 case is Eguchi-Hanson ~ T*52.



Gibbons-Hawking gravitational instantons:

These spaces have just one end, ~(R* — {0})/Z,
But when s # 0, they are instead ALF"



Gibbons-Hawking gravitational instantons:

g = V(da® + dy* + dz*) + V162



Gibbons-Hawking gravitational instantons:

These spaces have just one end, ~(R* — {0})/Z,
But when s # 0, they are instead ALF"



Gibbons-Hawking gravitational instantons:

These spaces have just one end, ~(R* — {0})/Z,
But when s # 0, they are instead ALF"

“Asymptotically locally flat”



Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”

Curvature still falls off at infinity,



Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”

Curvature still falls off at infinity,

R| ~ const - p°



Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”

Curvature still falls off at infinity,



Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”
Curvature still falls off at infinity,

but volume growth is only cubic:

Vol(B)) ~ const - p’



Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”
Curvature still falls off at infinity,

but volume growth is only cubic:
Vol(B)) ~ const - p’

This last property distinguishes the ALE spaces
from other classes of gravitational instantons:

ALG, ALH, ALG* ALH* ...
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Hawking: set ¢ = 4mf and 0 = 2m + g .
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Example. Riemannian Schwarzschild metric:

—1
1 2 2

et (1__m) d@u(l__m)dﬂ o
Y

2
Hawking: set t = 4m0 and ¢ = 2m + ¢ .
This makes ¢ into a Ricci-flat metric on R? x S2.
Makes h into extremal Kahler metric on C x CIPy.
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R? x §2
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Definition. A gravitational instanton is a
complete, non-compact, non-flat, Ricci-flat
Riemannian 4-manifold.

Many excellent mathematical papers cleverly
narrow the definition for technical convenience,
by assuming at the outset that the metric is
hyper-Kahler.

But my collaborators Biquard and Gauduchon
have fortunately done us all the favor of re-
minding us that the hyper-Kahler gravitons
are only one small part of the story!
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Each of the metrics ¢ in question is conformal to a
complete extremal Kahler metric with s > 0.

This implies that they always satisty Peng Wu's
criterion

det(W ™) > 0,

allowing one to generalize methods first explored in
the compact case.
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nian metric g on M which 1s sufficiently 013—
close to g 1s conformal to some strictly extremal
Kahler metric h, and so 1s, in particular, Her-

matian. Moreover, every such g carries at least
one Killing field.

Set h = a2/ 3¢, where o top eigenvalue of Wig,

and choose top eigenform w € AT with |w|;, = 1.
Then

0> |Vw|? + 3w, (d + d*)*w)

at every point, with respect to h.
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This optimal result combines Theorem A with a
result of Mingyang Li, arXiv:2310.13197.
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