Einstein Metrics,

Complex Surfaces, &

Symplectic 4-Manifolds

Claude LeBrun Stony Brook University

Colloquium de Mathématiques Université Paul Sabatier Toulouse, 10 mai, 2019 Let (M^n, g) be a Riemannian *n*-manifold, $p \in M$.

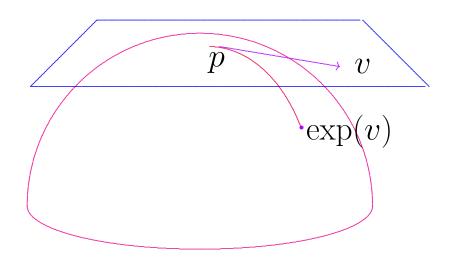
Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

 $\exp: T_pM \to M$

Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

$$\exp: T_pM \to M$$

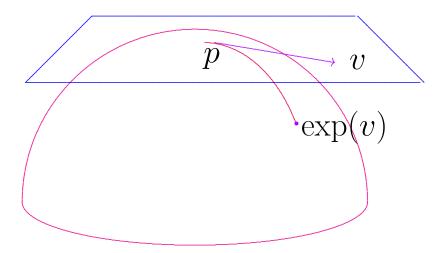
which is a diffeomorphism on a neighborhood of 0:



Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

$$\exp: T_pM \to M$$

which is a diffeomorphism on a neighborhood of 0:



Now choosing $T_pM \stackrel{\cong}{\to} \mathbb{R}^n$ via some orthonormal basis gives us special coordinates on M.

In these "geodesic normal" coordinates, the metric

$$g_{jk} =$$

$$g_{jk} = \delta_{jk}$$

$$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^{m}$$

$$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^m + O(|x|^3)$$

$$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^{m} + O(|x|^{3})$$

where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor

$$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^m + O(|x|^3)$$

where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor at the reference point p represented by $\vec{x} = 0$ in these coordinates.

$$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^m + O(|x|^3)$$

where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor at the reference point p represented by $\vec{x} = 0$ in these coordinates.

Uniquely determined

$$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^m + O(|x|^3)$$

where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor at the reference point p represented by $\vec{x} = 0$ in these coordinates.

Uniquely determined by the above expression for g_{jk}

$$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^m + O(|x|^3)$$

where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor at the reference point p represented by $\vec{x} = 0$ in these coordinates.

Uniquely determined by the above expression for g_{jk} once one also requires Bianchi identities

$$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^m + O(|x|^3)$$

where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor at the reference point p represented by $\vec{x} = 0$ in these coordinates.

Uniquely determined by the above expression for g_{jk} once one also requires Bianchi identities

$$\mathcal{R}_{j\ell km} = -\mathcal{R}_{\ell jkm} = -\mathcal{R}_{j\ell mk}$$

$$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^{m} + O(|x|^{3})$$

where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor at the reference point p represented by $\vec{x} = 0$ in these coordinates.

Uniquely determined by the above expression for g_{jk} once one also requires Bianchi identities

$$\mathcal{R}_{j\ell km} = -\mathcal{R}_{\ell jkm} = -\mathcal{R}_{j\ell mk}$$

$$\mathcal{R}_{j\ell km} + \mathcal{R}_{jkm\ell} + \mathcal{R}_{jm\ell k} = 0$$

$$g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^{\ell} x^m + O(|x|^3)$$

where the $\mathcal{R}_{j\ell km}$ are exactly the components of the Riemann curvature tensor at the reference point p represented by $\vec{x} = 0$ in these coordinates.

Uniquely determined by the above expression for g_{jk} once one also requires Bianchi identities

$$\mathcal{R}_{j\ell km} = -\mathcal{R}_{\ell jkm} = -\mathcal{R}_{j\ell mk}$$

$$\mathcal{R}_{j\ell km} + \mathcal{R}_{jkm\ell} + \mathcal{R}_{jm\ell k} = 0$$

Components like \mathcal{R}_{1212} are "sectional curvatures"...

 $K: Gr_2TM \to \mathbb{R}$

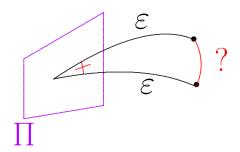
$$K: Gr_2TM \to \mathbb{R}$$

compares distances to the Euclidean answer:

$$K: Gr_2TM \to \mathbb{R}$$

compares distances to the Euclidean answer:

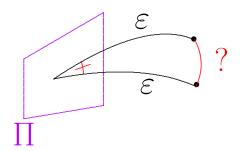
$$\frac{\text{length}_g(\text{base of isosceles triangle})}{\text{Euclidean answer}} \approx 1 - K(\Pi) \frac{\varepsilon^2}{6} + O(\varepsilon^3)$$



$$K: Gr_2TM \to \mathbb{R}$$

compares distances to the Euclidean answer:

$$\frac{\text{length}_g(\text{base of isosceles triangle})}{\text{Euclidean answer}} \approx 1 - K(\Pi) \frac{\varepsilon^2}{6} + O(\varepsilon^3)$$

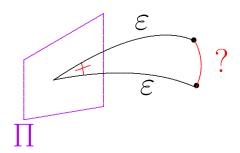


For example, $K \equiv +1$ for the unit n-sphere $S^n \subset \mathbb{R}^{n+1}$,

$$K: Gr_2TM \to \mathbb{R}$$

compares distances to the Euclidean answer:

$$\frac{\text{length}_g(\text{base of isosceles triangle})}{\text{Euclidean answer}} \approx 1 - K(\Pi) \frac{\varepsilon^2}{6} + O(\varepsilon^3)$$



For example, $K \equiv +1$ for the unit *n*-sphere $S^n \subset \mathbb{R}^{n+1}$,

and this characterizes the standard metric on S^n .

$$d\mu_g = d\mu_{\text{Euclidean}},$$

$$d\mu_g = \left[1 - \right] d\mu_{\text{Euclidean}}$$

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + \right] d\mu_{\text{Euclidean}},$$

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the Ricci tensor

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

$$d\mu_g = \sqrt{\det[g_{jk}]} \ dx^1 \wedge \dots \wedge dx^n$$

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The Ricci curvature

$$d\mu_g = \left[1 - \frac{1}{6} \frac{\mathbf{r}_{jk}}{\mathbf{x}^j x^k} + O(|\mathbf{x}|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$STM = \{v \in TM \mid g(v, v) = 1\}$$

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$STM = \{v \in TM \mid g(v, v) = 1\}$$

given by

$$v \longmapsto r(v,v).$$

 $r: STM \to \mathbb{R}$

is a standard Riemannian invariant comparing the volume of narrow cones to the Euclidean answer:

$$r: STM \to \mathbb{R}$$

is a standard Riemannian invariant comparing the volume of narrow cones to the Euclidean answer:

$$\frac{\operatorname{vol}_g(C_{\varepsilon}(p, v, \Omega))}{\operatorname{Euclidean answer}} \approx 1 - r(v, v) \frac{n\varepsilon^2}{6(n+2)} + O(\varepsilon^3)$$

$$r: STM \to \mathbb{R}$$

is a standard Riemannian invariant comparing the volume of narrow cones to the Euclidean answer:

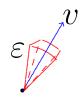
$$\frac{\operatorname{vol}_g(C_{\varepsilon}(p, v, \Omega))}{\operatorname{Euclidean answer}} \approx 1 - \frac{r(v, v)}{6(n+2)} + O(\varepsilon^3)$$

For example, the unit *n*-sphere $S^n \subset \mathbb{R}^{n+1}$ has Ricci curvature $\equiv +(n-1)$,

$$r: STM \to \mathbb{R}$$

is a standard Riemannian invariant comparing the volume of narrow cones to the Euclidean answer:

$$\frac{\operatorname{vol}_g(C_{\varepsilon}(p, v, \Omega))}{\operatorname{Euclidean answer}} \approx 1 - r(v, v) \frac{n\varepsilon^2}{6(n+2)} + O(\varepsilon^3)$$



For example, the unit n-sphere $S^n \subset \mathbb{R}^{n+1}$ has Ricci curvature $\equiv +(n-1)$, but this does not locally characterize the standard metric when $n \geq 4$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

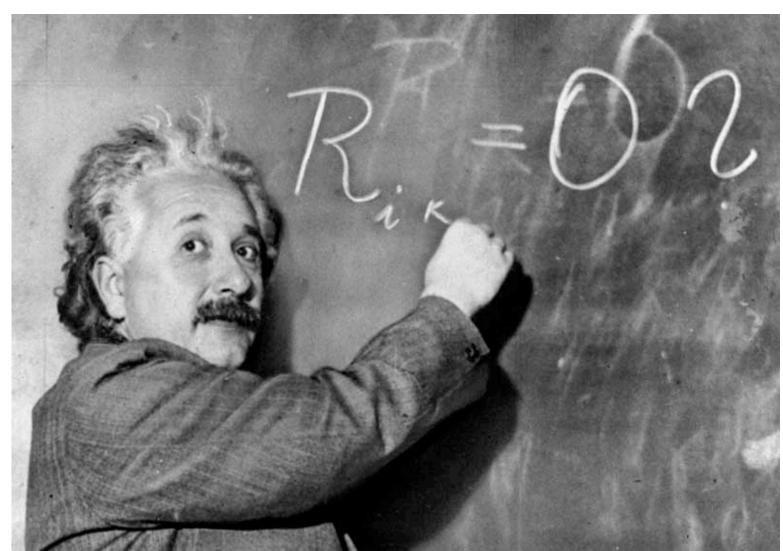
for some constant $\lambda \in \mathbb{R}$.

"... the greatest blunder of my life!"

— A. Einstein, to G. Gamow

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.



$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$r = \lambda g$$

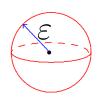
for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$\frac{\operatorname{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$



$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

n=2,3: Einstein \iff constant sectional

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

n=2,3: Einstein \iff constant sectional

 $n \geq 4$: Einstein \Leftarrow , \Rightarrow constant sectional

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

$$g_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$r_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

$$g_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$r_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$\mathcal{R}^{j}_{k\ell m}$$
: $\frac{n^{2}(n^{2}-1)}{12}$ components.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.

$$\Delta x^j = 0 \Longrightarrow r_{jk} = \frac{1}{2} \Delta g_{jk} + \ell ots.$$

What we know:

• When n = 2: Yes! (Riemann)

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture.

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When n = 4: No! (Hitchin)

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When n = 4: No! (Hitchin)
- When n = 5: Yes?? (Boyer-Galicki-Kollár)

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When n = 4: No! (Hitchin)
- When n = 5: Yes?? (Boyer-Galicki-Kollár)
- When $n \geq 6$, wide open. Maybe???

Einstein's equations are "locally trivial:"

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

 \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

 \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

 \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum #:

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum #:

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \implies Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

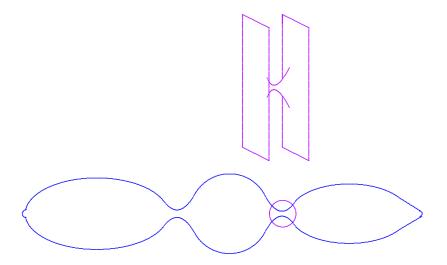
 \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

 \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \implies Existence obstructed for connect sums $M^3 \# N^3$.

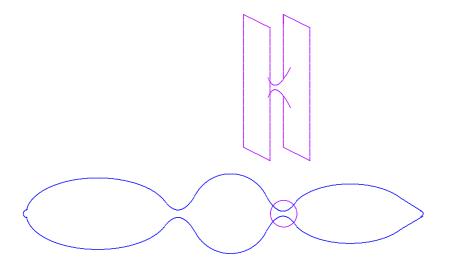


Ricci flow pinches off S^2 necks.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.



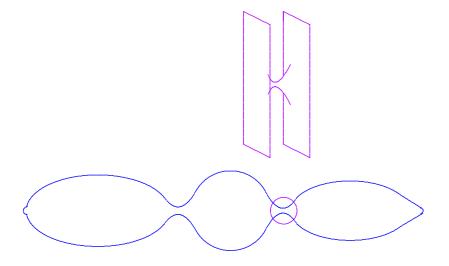
Ricci flow pinches off S^2 necks.

First step in geometrization:

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.



Ricci flow pinches off S^2 necks.

First step in geometrization:

Prime Decomposition.

There are many known Einstein metrics on S^n , $n \geq 5$ which do not have constant curvature.

There are many known Einstein metrics on S^n , $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components.

There are many known Einstein metrics on S^n , $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components.

$$\mathscr{E}(M) = \{ \text{Einstein } g \text{ on } M \} / (\text{Diffeos} \times \mathbb{R}^+)$$

There are many known Einstein metrics on S^n , $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

There are many known Einstein metrics on S^n , $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

There are many known Einstein metrics on S^n , $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Connected sums $(S^2 \times S^3) \# \cdots \# (S^2 \times S^3)$ admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected.

There are many known Einstein metrics on S^n , $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Connected sums $(S^2 \times S^3) \# \cdots \# (S^2 \times S^3)$ admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected.

Similar results for most simply connected spin 5-manifolds. (Boyer, Galicki, Kollár, et al.)

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

(Terminology to be explained in a moment!)

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.)

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ , up to scale and diffeos.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is Ricci-flat Kähler.

⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ , up to scale and diffeos.

Theorem (L). There is only one Einstein metric on compact complex-hyperbolic 4-manifold $\mathbb{C}\mathcal{H}_2/\Gamma$, up to scale and diffeos.

K3 = Kummer

$K3 = \text{Kummer-K\"{a}hler}$

$K3 = \text{Kummer-K\"{a}hler-Kodaira}$

—André Weil, 1958

Simply connected complex surface with $c_1 = 0$.

Simply connected complex surface with $c_1 = 0$.

Only one deformation type.

Simply connected complex surface with $c_1 = 0$.

Only one diffeomorphism type.

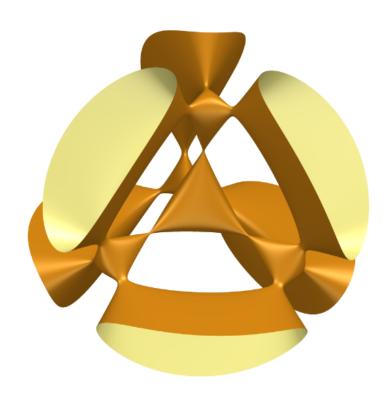
Simply connected complex surface with $c_1 = 0$.

Simply connected complex surface with $c_1 = 0$.

Typical model: Smooth quartic in \mathbb{CP}_3 .

Simply connected complex surface with $c_1 = 0$.

Typical model: Smooth quartic in \mathbb{CP}_3 .

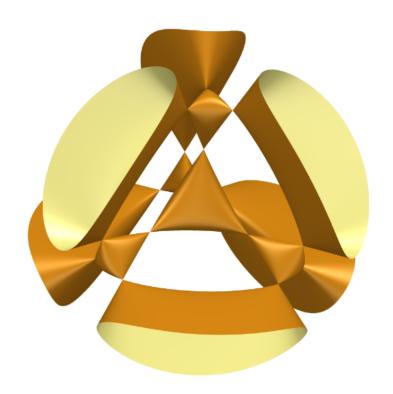


Kummer construction:

Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .

Kummer construction:

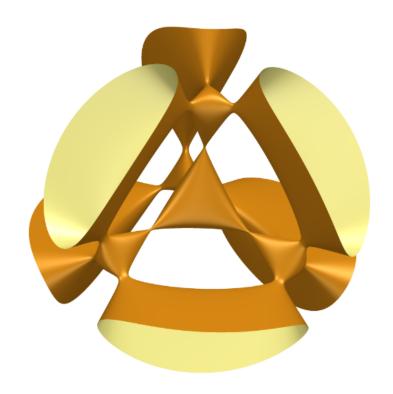
Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .



 T^4 = Picard torus of curve of genus 2.

Kummer construction:

Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .



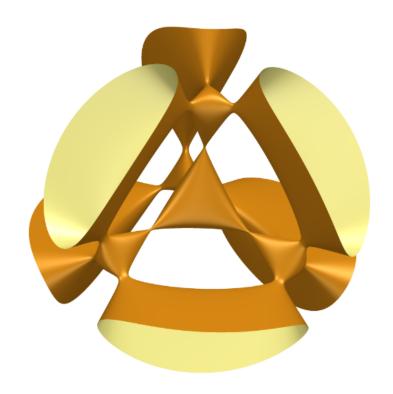
Kummer construction:

Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .



Kummer construction:

Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .



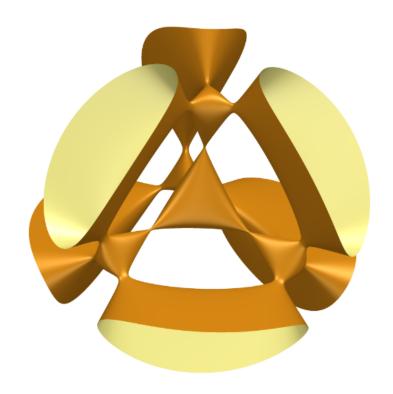
Kummer construction:

Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .



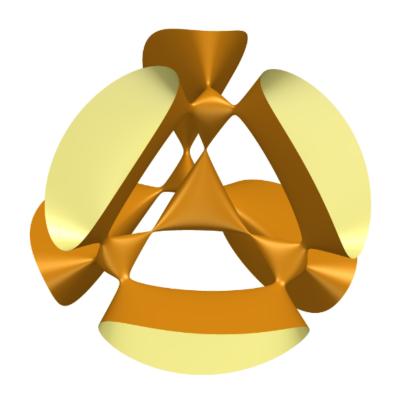
Kummer construction:

Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .



Kummer construction:

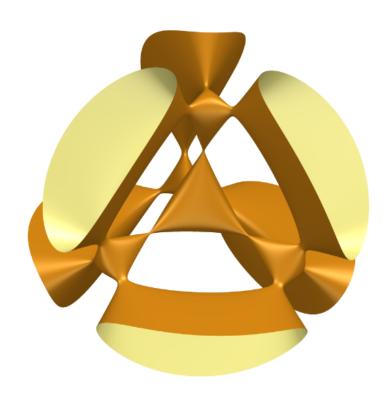
Kummer: T^4/\mathbb{Z}_2 : Singular quartic in \mathbb{CP}_3 .



Generic quartic is a K3 surface.

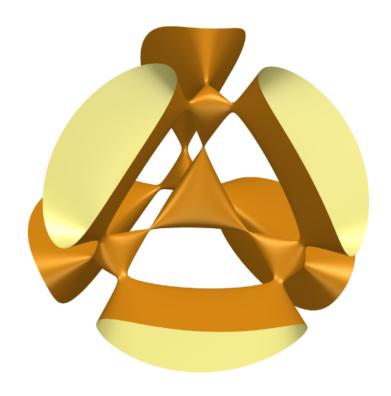
Simply connected complex surface with $c_1 = 0$.

Typical model: Smooth quartic in \mathbb{CP}_3 .



Simply connected complex surface with $c_1 = 0$.

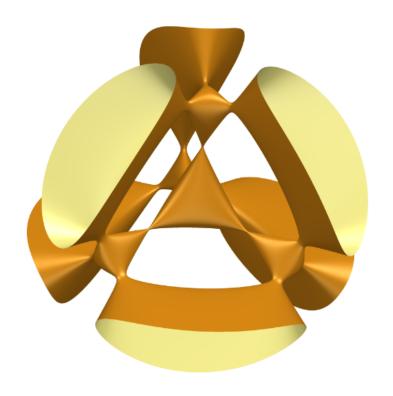
Typical model: Smooth quartic in \mathbb{CP}_3 .



Calabi/Yau: Admits $\lambda = 0$ Einstein metrics.

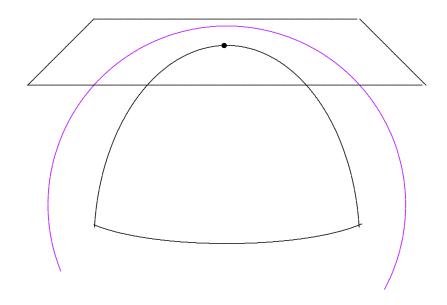
Simply connected complex surface with $c_1 = 0$.

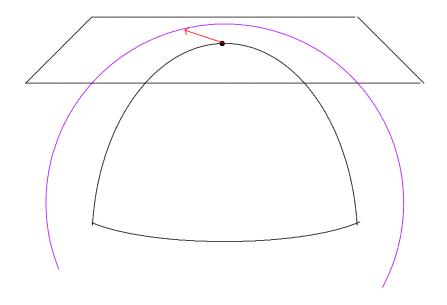
Typical model: Smooth quartic in \mathbb{CP}_3 .

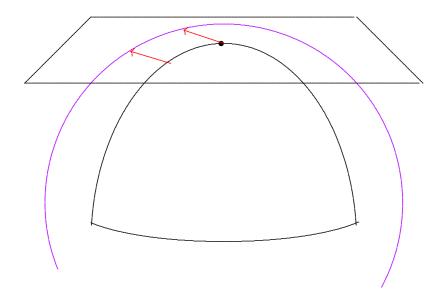


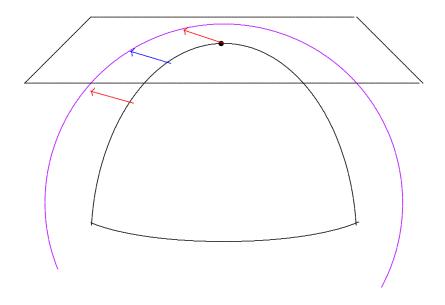
Calabi/Yau: Admits Ricci-flat Kähler metrics.

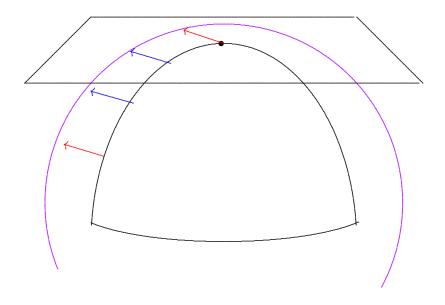
Kähler?

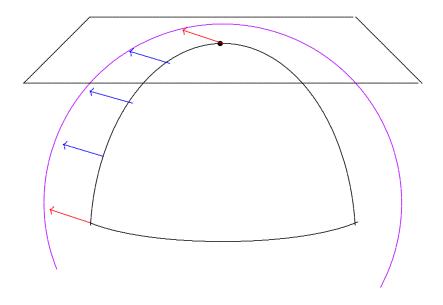


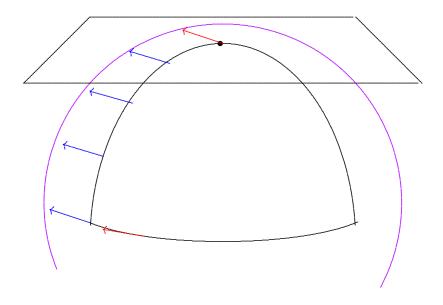


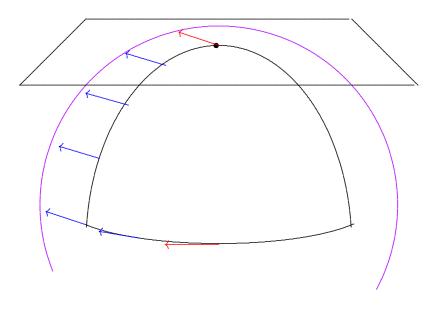


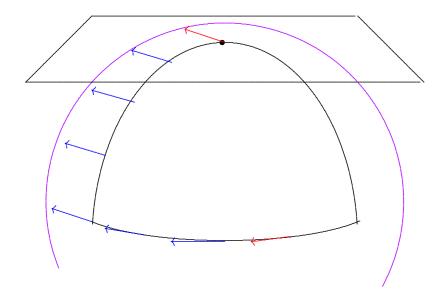


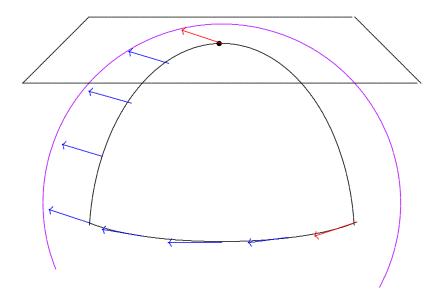


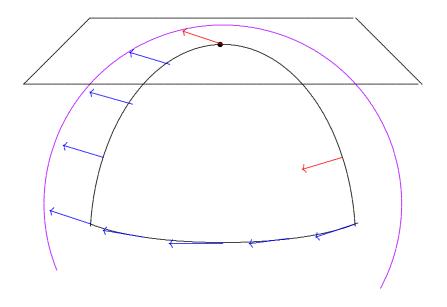


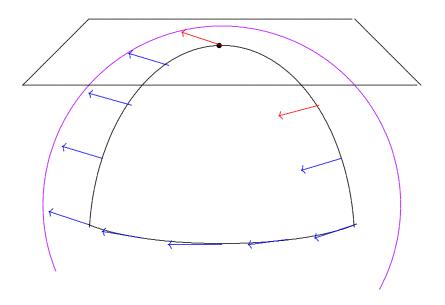


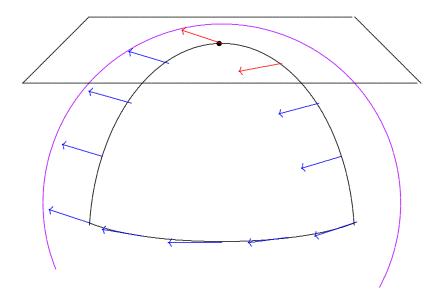


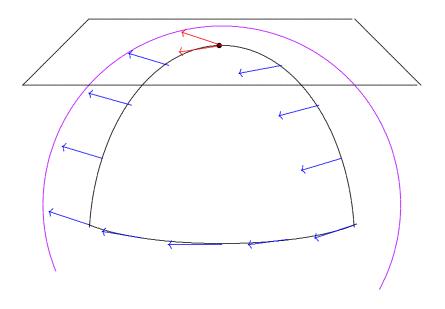


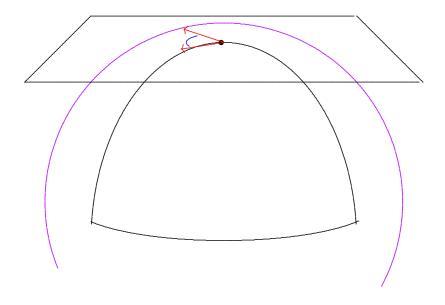




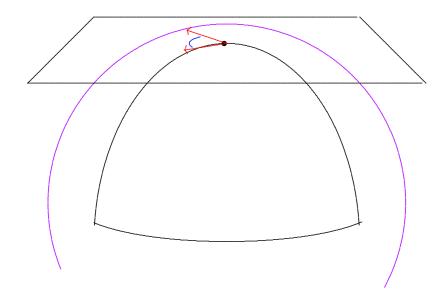






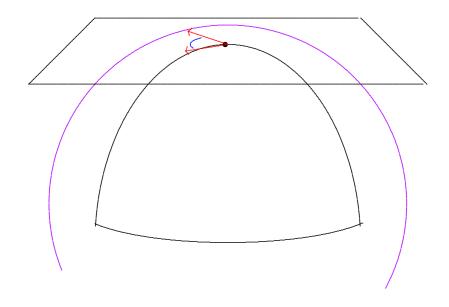


 (M^n, g) : holonomy $\subset \mathbf{O}(n)$



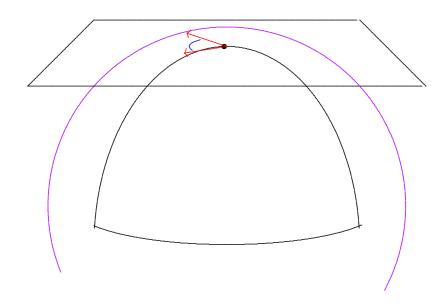
Kähler metrics:

 (M^{2m}, g) : holonomy

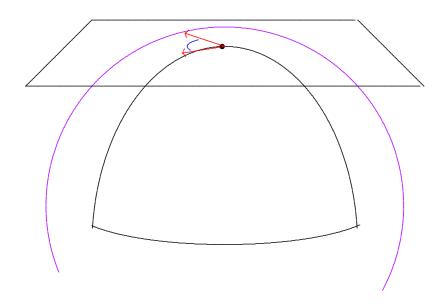


Kähler metrics:

 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$

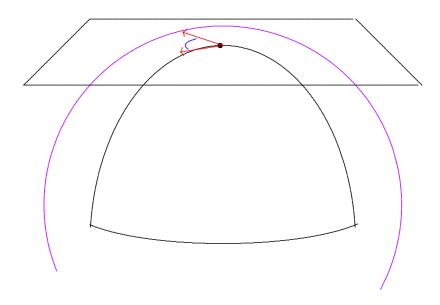


$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$



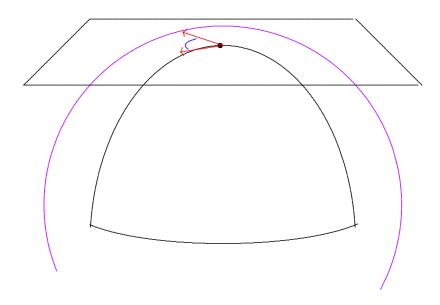
 $\mathbf{U}(m) := \mathbf{O}(2m) \cap \mathbf{GL}(m, \mathbb{C})$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$



Makes tangent space a complex vector space!

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

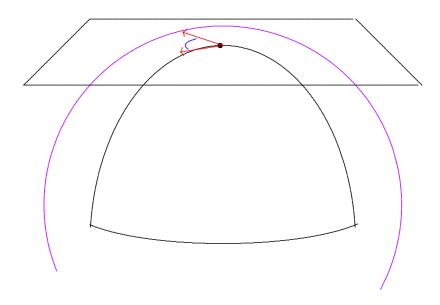


Makes tangent space a complex vector space!

$$J: TM \to TM$$
, $J^2 = -identity$

"almost-complex structure"

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$



Makes tangent space a complex vector space!

Invariant under parallel transport!

 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 ω called "Kähler form."

 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

$$d\omega = 0$$

 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 \iff In local complex coordinates (z^1, \ldots, z^m) ,

$$g = -\sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 \iff In local complex coordinates $(z^1, \ldots, z^m), \exists f(z)$

$$g = -\sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \overline{z}^k} \left[dz^j \otimes d\overline{z}^k + d\overline{z}^k \otimes dz^j \right]$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 \iff In local complex coordinates $(z^1, \ldots, z^m), \exists f(z)$

$$\omega = i \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} dz^j \wedge d\bar{z}^k$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 \iff In local complex coordinates $(z^1, \ldots, z^m), \exists f(z)$

$$g = -\sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \overline{z}^k} \left[dz^j \otimes d\overline{z}^k + d\overline{z}^k \otimes dz^j \right]$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

Kähler magic:

$$r = -\sum_{j,k=1}^{m} \frac{\partial^2}{\partial z^j \partial \bar{z}^k} \log \det[g_{p\bar{q}}] \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

Kähler magic:

If we define the Ricci form by

$$\rho = r(J \cdot, \cdot)$$

then $i\rho$ is curvature of canonical line bundle $\Lambda^{m,0}$.

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

$$d\omega = 0$$

 ω non-degenerate closed 2-form:

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

$$d\omega = 0$$

 ω non-degenerate closed 2-form: symplectic form

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

$$d\omega = 0$$

 ω non-degenerate closed 2-form: symplectic form

$$\omega^{\wedge m} \neq 0$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

$$d\omega = 0$$

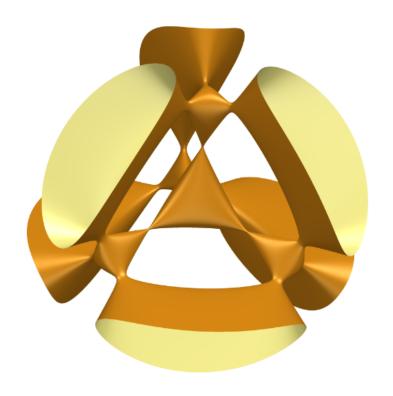
 ω non-degenerate closed 2-form: symplectic form

$$\underbrace{\omega \wedge \cdots \wedge \omega}_{m} \neq 0$$

 $K3 = \text{Kummer-K\"{a}hler-Kodaira surface}.$

Simply connected complex surface with $c_1 = 0$.

Typical model: Smooth quartic in \mathbb{CP}_3 .

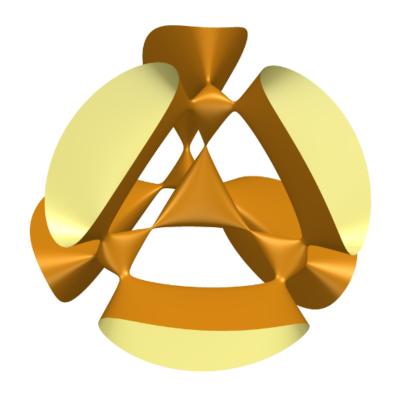


Calabi/Yau: Admits Ricci-flat Kähler metrics.

 $K3 = \text{Kummer-K\"{a}hler-Kodaira surface}.$

Simply connected complex surface with $c_1 = 0$.

Typical model: Smooth quartic in \mathbb{CP}_3 .



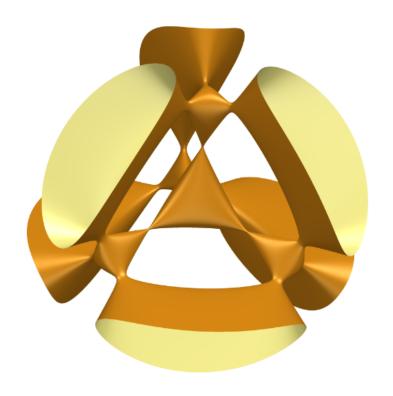
Calabi/Yau: Admits Ricci-flat Kähler metrics.

Kähler condition simplifies the Einstein condition!

 $K3 = \text{Kummer-K\"{a}hler-Kodaira surface}.$

Simply connected complex surface with $c_1 = 0$.

Typical model: Smooth quartic in \mathbb{CP}_3 .



Calabi/Yau: Admits Ricci-flat Kähler metrics.

Hitchin: Every Einstein g on K3 is Calabi-Yau.

When n=4, existence for Einstein depends delicately on smooth structure.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension four to call this a geometrization.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too common; have little to do with geometrization.

The Lie group SO(4) is not simple

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented (M^4, g) ,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4)\cong\mathfrak{so}(3)\oplus\mathfrak{so}(3).$$
 On oriented $(M^4,g),\Longrightarrow$
$$\Lambda^2=\Lambda^+\oplus\Lambda^-$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star: \Lambda^2 \to \Lambda^2,$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$
$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

 Λ^- anti-self-dual 2-forms.

Riemann curvature of g

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

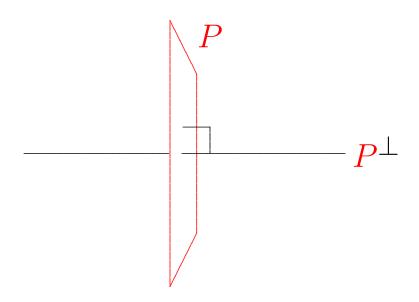
$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

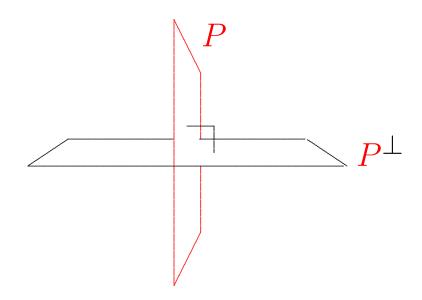
$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$

Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.



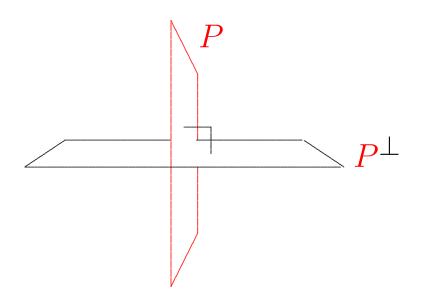
 T_xM

Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.



 T_xM

Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.



$$K(P) = K(P^{\perp})$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + \right) d\mu$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 \right) d\mu$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 \right) d\mu$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

for Euler-characteristic
$$\chi(\mathbf{M}) = \sum_{j} (-1)^{j} b_{j}(\mathbf{M}).$$

4-dimensional Hirzebruch signature formula

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 \right) d\mu$$

4-dimensional Hirzebruch signature formula

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

4-dimensional Hirzebruch signature formula

$$\tau(M) = \frac{1}{12\pi^2} \int_{M} \left(|W_{+}|^2 - |W_{-}|^2 \right) d\mu$$
 for signature $\tau(M) = b_{+}(M) - b_{-}(M)$.

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$+1$$
 $\cdot \cdot \cdot \cdot \cdot +1$
 -1
 $\cdot \cdot \cdot \cdot \cdot -1$

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$\begin{array}{c}
+1 \\
 & \cdots \\
 & +1 \\
\hline
 & b_{+}(M)
\end{array}$$

$$\begin{array}{c}
-1 \\
 & \cdots \\
 & -1
\end{array}$$

For (M^4, g) compact oriented Riemannian,

Euler characteristic

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

Signature

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

• they have the same Euler characteristic χ ;

- they have the same Euler characteristic χ ;
- they have the same signature τ ;

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 \qquad \qquad w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

No diffeomorphism classification currently known!

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

No diffeomorphism classification currently known!

Typically, one homeotype $\longleftrightarrow \infty$ many diffeotypes.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\overline{\mathbb{CP}}_2\#\cdots\#\overline{\mathbb{CP}}_2}_{k}$$

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\overline{\mathbb{CP}}_2\#\cdots\#\overline{\mathbb{CP}}_2}_{k}$$

Convention:

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\overline{\mathbb{CP}}_2\#\cdots\#\overline{\mathbb{CP}}_2}_{k}$$

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}_2} = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{k}$$
where $j = b_+(M)$ and $k = b_-(M)$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$.

What about spin case?

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Equivalent to asserting that such manifolds satisfy

$$b_2 \ge \frac{11}{8} |\tau|.$$

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Equivalent to asserting that such manifolds satisfy

$$b_2 \ge \frac{11}{8} |\tau|.$$

(Furuta) Current know:

$$b_2 \ge \frac{10}{8} |\tau|.$$

Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 \qquad \qquad w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

No diffeomorphism classification currently known!

Typically, one homeotype $\longleftrightarrow \infty$ many diffeotypes.

Seiberg-Witten invariants provide a powerful method.

Seiberg-Witten invariants provide a powerful method.

When such an invariant is non-trivial (for a given $spin^c$ structure on M), Seiberg-Witten equations

Seiberg-Witten invariants provide a powerful method.

When such an invariant is non-trivial (for a given $spin^c$ structure on M), Seiberg-Witten equations

$$D_A \Phi = 0$$

$$F_A^+ = -\frac{1}{2} \Phi \odot \bar{\Phi}$$

have a solution (Φ, A) for every metric g on M.

Seiberg-Witten invariants provide a powerful method.

When such an invariant is non-trivial (for a given $spin^c$ structure on M), Seiberg-Witten equations

$$D_A \Phi = 0$$

$$F_A^+ = -\frac{1}{2} \Phi \odot \bar{\Phi}$$

have a solution (Φ, A) for every metric g on M.

This then gives rise to non-trivial lower bounds for the quantities

$$\int_{\mathcal{M}} \frac{s^2}{24} \ d\mu_g$$

Seiberg-Witten invariants provide a powerful method.

When such an invariant is non-trivial (for a given $spin^c$ structure on M), Seiberg-Witten equations

$$D_A \Phi = 0$$

$$F_A^+ = -\frac{1}{2} \Phi \odot \bar{\Phi}$$

have a solution (Φ, A) for every metric g on M.

This then gives rise to non-trivial lower bounds for the quantities

$$\int_{\boldsymbol{M}} \frac{s^2}{24} d\mu_g \quad \text{and} \quad \int_{\boldsymbol{M}} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g$$

Seiberg-Witten invariants provide a powerful method.

When such an invariant is non-trivial (for a given $spin^c$ structure on M), Seiberg-Witten equations

$$D_A \Phi = 0$$

$$F_A^+ = -\frac{1}{2} \Phi \odot \bar{\Phi}$$

have a solution (Φ, A) for every metric g on M.

This then gives rise to non-trivial lower bounds for the quantities

$$\int_{\boldsymbol{M}} \frac{\boldsymbol{s}^2}{24} \, d\mu_g \quad \text{and} \quad \int_{\boldsymbol{M}} \left(\frac{\boldsymbol{s}^2}{24} + 2|W_+|^2 \right) d\mu_g$$

which appear e.g. in

$$(2\chi + 3\tau)(\mathbf{M}) = \frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + 2|W_+|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu_g$$

Theorem (L'96,'01). Let X be a symplectic 4-manifold with $b_+ > 1$, and let $M = X \# k \overline{\mathbb{CP}}_2$.

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if

$$k \ge \frac{1}{3}(2\chi + 3\tau)(X).$$

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if

$$k \ge \frac{1}{3}(2\chi + 3\tau)(X).$$

By contrast, existence result:

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if

$$k \ge \frac{1}{3}(2\chi + 3\tau)(X).$$

By contrast, existence result:

Theorem (Aubin/Yau).

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if

$$k \ge \frac{1}{3}(2\chi + 3\tau)(X).$$

By contrast, existence result:

Theorem (Aubin/Yau). Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $\lambda < 0 \iff$

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if

$$k \ge \frac{1}{3}(2\chi + 3\tau)(X).$$

By contrast, existence result:

Theorem (Aubin/Yau). Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $\lambda < 0 \iff \exists$ holomorphic embedding

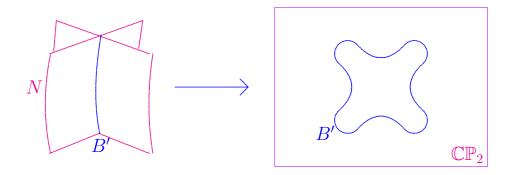
$$j: M \hookrightarrow \mathbb{CP}_k$$

such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$.

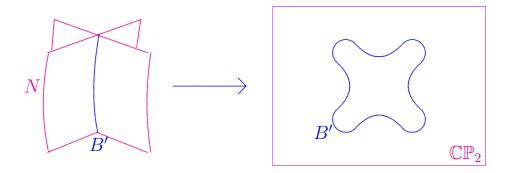
Example. Let N be double branched cover \mathbb{CP}_2 ,

Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:

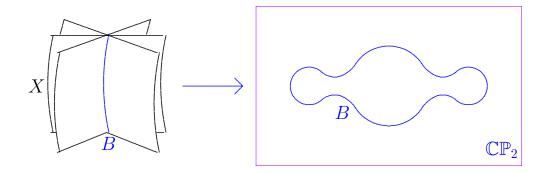
Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:

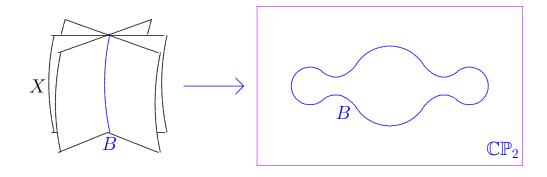


Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:



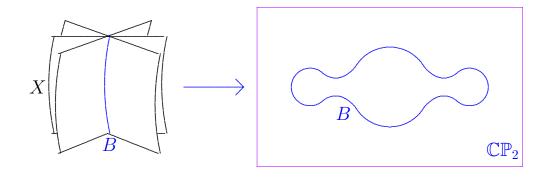
Aubin/Yau $\Longrightarrow N$ carries Einstein metric.





and set

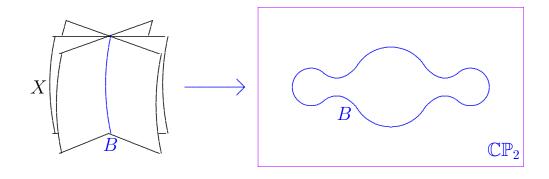
$$M = X \# \overline{\mathbb{CP}}_2.$$



and set

$$M = X \# \overline{\mathbb{CP}}_2.$$

$$k = 1 \ge 1 = \frac{1}{3}(2\chi + 3\tau)(X)$$

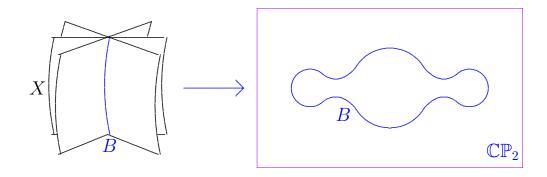


and set

$$M = X \# \overline{\mathbb{CP}}_2.$$

$$k = 1 \ge 1 = \frac{1}{3}(2\chi + 3\tau)(X)$$

$$b_{+}(X) = 7 > 1.$$



$$M = X \# \overline{\mathbb{CP}}_2.$$

Theorem $\Longrightarrow no$ Einstein metric on M.

But M and N are both simply connected & non-spin,

But M and N are both simply connected & non-spin, and both have

$$\chi = 46$$

$$\tau = -30$$

But M and N are both simply connected & non-spin, and both have

$$\chi = 46$$

$$\tau = -30$$

Hence Freedman $\Longrightarrow M$ homeomorphic to N!

But M and N are both simply connected & non-spin, and both have

$$\chi = 46$$

$$\tau = -30$$

Hence Freedman $\Longrightarrow M$ homeomorphic to N!

Moral: Existence depends on diffeotype!

Merci aux organisateurs,

Merci aux organisateurs, et à l'Université Paul Sabatier,

Merci aux organisateurs, et à l'Université Paul Sabatier, de m'avoir invité!

Merci aux organisateurs, et à l'Université Paul Sabatier, de m'avoir invité!

