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Let (M", g) be a Riemannian n-manifold, p € M.
Metric defines locally shortest curves, called geodesics.
Following geodesics from p defines a map

exp : IpM — M

which is a diffeomorphism on a neighborhood of 0:

Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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In these “geodesic normal” coordinates, the metric
has components given by

1 ¢ 3
Jik =0 — gRjékmx z" + O(|z]°)

where the R gy, are exactly the components of the

Riemann curvature tensor at the reference point p
represented by £ = 0 in these coordinates.

Uniquely determined by the above expression for
g once one also requires Bianchi identities

Rjékm — _REjkm — _Rjémk

Rjékm + Rjkm€ + ijé/f =0

Components like R 1919 are “sectional curvatures”. ..
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More conceptually, the sectional curvature
K :GroI'M — R

compares distances to the Euclidean answer:

length (base of isosceles triangle) . 3

FEuclidean answer

For example, K = +1 for the unit n-sphere
Sn C Rn+1

and this characterizes the standard metric on S™.
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Similarly, in geodesic normal coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM| gv,v)=1}

given by
v — (v, V).
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More conceptually, the Ricci curvature
r:STM — R

is a standard Riemannian invariant comparing the
volume of narrow cones to the Euclidean answer:

l ()
VO 9(06(pvvv )) ~1— T(?),U> n—52 + 0(53)

6(n-+2)
4

FEuclidean answer

For example, the unit n-sphere S™ C Rt hag
Ricci curvature = +(n — 1), but this does not lo-
cally characterize the standard metric when n > 4.
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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.
Azl =0 —= ik = %AgjknL (ots.
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Question  (Yamabe). Does every  smooth
compact simply-connected n-manifold admat
an Einstein metric?

What we know:
e When n = 2: Yes! (Riemann)

e When n = 3: <= Poincaré¢ conjecture.
Hamilton, Perelman, ... Yes!

e When n = 4: No! (Hitchin)
e When n = 5: Yes?? (Boyer-Galicki-Kollar)
e When n > 6, wide open. Maybe???
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Dimension < 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
— If M3 carries Einstein metric, mo(M) = 0.

— Existence obstructed for connect sums M54 N3,

™S

DS

C X >

Ricci flow pinches off SZ necks.
First step in geometrization:

Prime Decomposition.
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There are many known Einstein metrics on S",
n > 5 which do not have constant curvature.

The moduli space of Einstein metrics on S? x 53
has infinitely many connected components. Unit-
volume Einstein metrics exist for sequence of A—07".

(Bohm, Wang, Ziller, et al.)
Same behavior for certain rational homology spheres.

Connected sums (S? x S3)# - - - #(S5% x §3) admit
Einstein metrics for arbitrarily many summands.
Moduli space never seems to be connected.

Similar results for most simply connected spin
S-manifolds. (Boyer, Galicki, Kollar, et al.)
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Theorem (Berger). Any Einstein metric on
A-torus T* is flat.

—> Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3
15 Ricer-flat Kahler.

—> Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). There is only

one Einstein metric on compact hyperbolic
4-manafold 7—[4/F, up to scale and diffeos.

Theorem (L). There is only one Einstein met-
ric on compact complex-hyperbolic 4-manifold CHo /1,
up to scale and diffeos.
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K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Typical model: Smooth quartic in CPs.

Calabi/Yau: Admits Ricci-flat Kéahler metrics.
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<— 4 almost complex-structure .J with V.J = 0
and g(J-, J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
closed 2-form w such that g = w(-, J-).
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P = T(‘]°7 )

then ip is curvature of canonical line bundle A™U.
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K3 = Kummer-Kahler-Kodaira surface.
Simply connected complex surface with ¢; = 0.

Typical model: Smooth quartic in CPs.

Calabi/Yau: Admits Ricci-flat Kéahler metrics.
Hitchin: Every Einstein g on /K3 is Calabi-Yau.
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Four Dimensions is Exceptional

When n = 4, existence for Einstein depends deli-
cately on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

But might allow for geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension
four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too
common; have little to do with geometrization.
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What'’s so special about dimension 47

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Corollary. A Riemannian 4-manifold (M, g) is
FEinstein <= sectional curvatures are equal for
any pair of perpendicular 2-planes.

K(P) = K(PY)
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(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

-] (2wt 18).
X =gz [l T e SR

for Euler-characteristic x (M) = Z(—l)j bi(M).
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4-dimensional Hirzebruch signature formula

1
(M) = — [ (W4 = W) du
™ JM

for signature 7(M) = by (M) — b_(M).
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Here 7(M) = by (M) — b_(M) defined in terms of
itersection pairing

H*(M,R) x H*(M,R) — R
(1 1) [ e
M

Diagonalize:

+1




For (M*, g) compact oriented Riemannian,

Euler characteristic

o= | I
X =gz [l T -7

Signature

w0 =5 [ (W= 1)

1272
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Conjecture (11/8 Conjecture). Any smooth com-
pact simply connected spin 4-manifold M is (un-
orientedly) homeomorphic to either S* or a con-

nected sum jI34#k(S% x S?).

Equivalent to asserting that such manitfolds satisty

11
by > —|T]|.
22 ||
(Furuta) Current know:
10

bo > —|T1].
5 > 8\T|
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When such an invariant is non-trivial (for a given
spin structure on M), Seiberg-Witten equations

Dpgd =0
1 _
Ff=—000
A 2 ©
have a solution (¢, A) for every metric g on M.

This then gives rise to non-trivial lower bounds for
the quantities

82 82 9
Mﬂd,ug and y ﬂ+2|W+] ditg

which appear e.g. in

(2x + 37)(M) = 1/ S2+2]W 2 7 d
XTI T2 J LR B
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Theorem (1.'96,01). Let X be a symplectic 4-
manaifold with by > 1, and let

M = X#kCP,.

Then M cannot admit an Einstein metric if

k> %<2>< L 30)(X).

By contrast, existence result:

Theorem (Aubin/Yau). Compact complex man-
ifold (M?™, J) admits compatible Kdhler-Einstein
metric with A < 0 <= 4 holomorphic embedding

7 M — CPk
such that ci (M) is negative multiple of j%c1(CPy.).
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Aubin/Yau = N carries Einstein metric.

B CP,
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Now let X be a triple cyclic cover CIPy, ramified at
a smooth sextic

Tl ==

CP,

M = X#CPs.

Theorem =— no Einstein metric on M.
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But M and NN are both
simply connected & non-spin,
and both have

X = 46

7T = —30
Hence Freedman = M homeomorphic to /!

Moral: Existence depends on diffeotype!
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