Einstein Metrics,

Weyl Curvature, &

Symplectic 4-Manifolds

Claude LeBrun
Stony Brook University

Geometric Analysis in Geometry and Topology
Tokyo University of Science, November 9, 2015
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature.
Definition. A *Riemannian metric* g is said to be *Einstein* if it has constant *Ricci curvature* — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$ r = \lambda g $$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.

Has same sign as the scalar curvature

$$ s = r^j_j = R^{ij}{}_{ij}. $$
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.

Has same sign as the scalar curvature

$$s = r^j_j = \mathcal{R}^{ij} ij.$$

$$\frac{\text{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$
Geometrization Problem:
Geometrization Problem:

Given a smooth compact manifold M^n,
Geometrization Problem:

Given a smooth compact manifold M^n, can one decompose M in Einstein and collapsed pieces?
Geometrization Problem:

Given a smooth compact manifold M^n, can one decompose M in Einstein and collapsed pieces?

When $n = 3$, answer is “Yes.”
Geometrization Problem:

Given a smooth compact manifold M^n, can one decompose M in Einstein and collapsed pieces?

When $n = 3$, answer is “Yes.”

Proof by Ricci flow. Perelman et al.
Geometrization Problem:

Given a smooth compact manifold M^n, can one decompose M in Einstein and collapsed pieces?

When $n = 3$, answer is “Yes.”

Proof by Ricci flow. Perelman et al.

Perhaps reasonable in other dimensions?
Recognition Problem:
Recognition Problem:

Suppose M^n admits Einstein metric g.
Recognition Problem:

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?
Recognition Problem:

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?
Recognition Problem:

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?

When $n = 3$, g has constant sectional curvature!
Recognition Problem:

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?

When $n = 3$, g has constant sectional curvature!

So M has universal cover S^3, \mathbb{R}^3, \mathcal{H}^3...
Recognition Problem:

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?

When $n = 3$, g has constant sectional curvature!

So M has universal cover S^3, \mathbb{R}^3, \mathcal{H}^3...

But when $n \geq 5$, situation seems hopeless.
Recognition Problem:

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?

When $n = 3$, g has constant sectional curvature!

So M has universal cover S^3, \mathbb{R}^3, \mathcal{H}^3...

But when $n \geq 5$, situation seems hopeless.

$\left\{\text{Einstein metrics on } S^n\right\}/\sim$ is highly disconnected.
Recognition Problem:

Suppose M^n admits Einstein metric g.

What, if anything, does g then tell us about M?

Can we recognize M by looking at g?

When $n = 3$, g has constant sectional curvature!

So M has universal cover S^3, \mathbb{R}^3, \mathcal{H}^3 . . .

But when $n \geq 5$, situation seems hopeless.

$\{\text{Einstein metrics on } S^n\}/\sim$ is highly disconnected.

When $n = 4$, situation is more encouraging . . .
Moduli Spaces of Einstein metrics
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } g\} / (\text{Diffeos } \times \mathbb{R}^+) \]
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } g\} / (\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = \]
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{ \text{Einstein } g \}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \]

Berger,
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \quad K3, \]

Berger, Hitchin,
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos} \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \quad K3, \]

Berger, Hitchin,

\[K3 = \text{underlying } M^4 \text{ of a generic quartic in } \mathbb{CP}^3. \]
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{ \text{Einstein } g \}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \quad K3, \]

Berger, Hitchin,
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \]

Berger, Hitchin, Besson-Courtois-Gallot,
Moduli Spaces of Einstein metrics

$\mathcal{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos } \times \mathbb{R}^+)$

Known to be connected for certain 4-manifolds:

$M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad C\mathcal{H}_2/\Gamma.$

Berger, Hitchin, Besson-Courtois-Gallot, L.
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } g\} / (\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathcal{C}\mathcal{H}_2/\Gamma. \]

Berger, Hitchin, Besson-Courtois-Gallot, L.

Four Dimensions is Exceptional!
Moduli Spaces of Einstein metrics

\[E(M) = \{ \text{Einstein } g \} / (\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \quad K3, \quad H^4/\Gamma, \quad C\mathcal{H}_2/\Gamma. \]

Berger, Hitchin, Besson-Courtois-Gallot, L.

Four Dimensions is Exceptional!

Key question:
Moduli Spaces of Einstein metrics

\[\mathcal{E}(M) = \{\text{Einstein } g\}/(\text{Diffeos } \times \mathbb{R}^+) \]

Known to be connected for certain 4-manifolds:

\[M = T^4, \quad K3, \quad \mathcal{H}^4/\Gamma, \quad \mathbb{C}\mathcal{H}_2/\Gamma. \]

Berger, Hitchin, Besson-Courtois-Gallot, L.

Four Dimensions is Exceptional!

Key question:

For which \(M^4 \) is \(\mathcal{E}(M) \) connected?
Why is dimension 4 special?
Why is dimension 4 special?

The Lie group $SO(4)$ is not simple.
Why is dimension 4 special?

The Lie group $SO(4)$ is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$
Why is dimension 4 special?

The Lie group $SO(4)$ is *not simple*:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented (M^4, g),
Why is dimension 4 special?

The Lie group $SO(4)$ is *not simple*:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g), \implies

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$
Why is dimension 4 special?

The Lie group $SO(4)$ is not simple:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g), \implies

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^\pm are (± 1)-eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$
Why is dimension 4 special?

The Lie group $SO(4)$ is not simple:

\[\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3). \]

On oriented (M^4, g), \Rightarrow

\[\Lambda^2 = \Lambda^+ \oplus \Lambda^- \]

where Λ^\pm are (± 1)-eigenspaces of

\[\star : \Lambda^2 \rightarrow \Lambda^2, \]

\[\star^2 = 1. \]

Λ^+ self-dual 2-forms.
Λ^- anti-self-dual 2-forms.
Riemann curvature of g

$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$
Riemann curvature of g

$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$

splits into 4 irreducible pieces:
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

splits into 4 irreducible pieces:

<table>
<thead>
<tr>
<th>Λ^+</th>
<th>$\Lambda^+\ast$</th>
<th>$\Lambda^+\ast$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_+ + \frac{s}{12}$</td>
<td>\hat{r}</td>
<td>\hat{r}</td>
</tr>
<tr>
<td>Λ^-</td>
<td>Λ^-</td>
<td>$W_+ + \frac{s}{12}$</td>
</tr>
</tbody>
</table>
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

splits into 4 irreducible pieces:

<table>
<thead>
<tr>
<th>Λ^+</th>
<th>$\Lambda^+\ast$</th>
<th>Λ^\ast</th>
<th>$\Lambda^\ast\ast$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_+ + \frac{s}{12}$</td>
<td>\hat{r}</td>
<td>\hat{r}</td>
<td>$W_- + \frac{s}{12}$</td>
</tr>
</tbody>
</table>

where

$s = \text{scalar curvature}$

$\hat{r} = \text{trace-free Ricci curvature}$

$W_+ = \text{self-dual Weyl curvature}$

$W_- = \text{anti-self-dual Weyl curvature}$
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

<table>
<thead>
<tr>
<th>Λ^+</th>
<th>$W_+ + \frac{s}{12}$</th>
<th>$\mathring{\mathcal{r}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ^-</td>
<td>$\mathring{\mathcal{r}}$</td>
<td>$W_- + \frac{s}{12}$</td>
</tr>
</tbody>
</table>

where

$s = \text{scalar curvature}$

$\mathring{\mathcal{r}} = \text{trace-free Ricci curvature}$

$W_+ = \text{self-dual Weyl curvature (conformally invariant)}$

$W_- = \text{anti-self-dual Weyl curvature}$
In dimension 4, Einstein metrics
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g. \]

Conformally invariant:
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.$$

Conformally invariant: only depends on the conformal class.
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g. \]

Conformally invariant: only depends on the conformal class

\[[g] = \{ u^2 g \mid u : M \xrightarrow{\mathcal{C}^\infty} \mathbb{R}^+ \}. \]
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g.$$

Conformally invariant: only depends on the conformal class

$$[g] = \{ u^2 g \mid u : M \xrightarrow{C^\infty} \mathbb{R}^+ \}.$$

Measures deviation $[g]$ from conformal flatness.
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g.$$

Remark: In dimension $n > 4$, have analog
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$\mathcal{W}(g) := \int_M \left(|W^+|^2 + |W^-|^2 \right) d\mu_g.$$

Remark: In dimension $n > 4$, have analog

$$\mathcal{W}(g) := \int_M |W|^{n/2} d\mu_g$$
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$W(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \ d\mu_g.$$

Remark: In dimension $n > 4$, have analog

$$W(g) := \int_M |W|^{n/2} \ d\mu_g$$

but Einstein metrics not critical in general:
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g.$$

Remark: In dimension $n > 4$, have analog

$$\mathcal{W}(g) := \int_M |W|^{n/2} \, d\mu_g$$

but Einstein metrics not critical in general:

Ricci-flat product $K3 \times T^m$ never critical!
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.$$
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[
\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.
\]

Dimension Four is Exceptional
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g. \]
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[W(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

Explanation:

In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

Explanation:

4-dimensional Gauss-Bonnet formula
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[W(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

Explanation:

4-dimensional Gauss-Bonnet formula

\[\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu \]
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g. \]

Explanation:

4-dimensional Gauss-Bonnet formula

\[\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{\hat{r}^2}{2} \right) \, d\mu \]

for Euler-characteristic \(\chi(M) = \sum_j (-1)^j b_j(M). \)
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g. \]

Explanation:

\[\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\gamma}|^2}{2} \right) \, d\mu \]
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

Explanation:

4-dimensional Gauss-Bonnet formula

\[\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\overset{.}{\text{r}}|^2}{2} \right) d\mu \]

To prove that \(\mathcal{E}(M) \) connected, must control \(\mathcal{W}(g) \).
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

Explanation:

\[\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu \]

To prove that \(\mathcal{E}(M) \) connected, must control \(\mathcal{W}(g) \).
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

4-dimensional signature formula

\[\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu \]

To prove that \(\mathcal{E}(M) \) connected, must control \(\mathcal{W}(g) \).
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

4-dimensional signature formula

\[\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu \]

For signature \(\tau(M) = b_+ - b_- \) of intersection form.
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[W(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \ d\mu_g. \]

4-dimensional signature formula \(\implies\)

\[W(g) \geq 12\pi^2 |\tau(M)| \]

With equality iff \(W_+ \equiv 0\) or \(W_- \equiv 0\).
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g. \]

4-dimensional signature formula \[\implies\]

\[\mathcal{W}(g) \geq 12\pi^2 |\tau(M)| \]

With equality iff \(W_+ \equiv 0\) or \(W_- \equiv 0\).

Equality e.g. for \(T^4\), \(K3\), \(\mathcal{H}^4/\Gamma\), or \(\mathbb{C}\mathcal{H}_2/\Gamma\).
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[W(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

4-dimensional signature formula \(\Rightarrow \)

\[W(g) \geq 12\pi^2 |\tau(M)| \]

With equality iff \(W_+ \equiv 0 \) or \(W_- \equiv 0 \).

Equality e.g. for \(T^4, K3, \mathcal{H}^4/\Gamma \), or \(\mathbb{C}\mathcal{H}_2/\Gamma \).

Connectedness of \(\mathcal{E}(M) \): must also control \(\int_M s^2 d\mu \).
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g. \]

4-dimensional signature formula \(\implies \)

\[\mathcal{W}(g) \geq 12\pi^2 |\tau(M)| \]

With equality iff \(W_+ \equiv 0 \) or \(W_- \equiv 0 \).

Equality e.g. for \(T^4, K3, \mathcal{H}^4/\Gamma \), or \(\mathbb{C}\mathcal{H}_2/\Gamma \).

Connectedness of \(\mathcal{E}(M) \): more difficult when \(\lambda > 0 \).
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.$$
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.$$

Atiyah-Hitchin-Singer (1978):
Standard Einstein metric on $\mathbb{C}P_2$ minimizes $\mathcal{W}(g)$.
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g.$$

Atiyah-Hitchin-Singer (1978): Standard Einstein metric on \mathbb{CP}^2 minimizes $\mathcal{W}(g)$.

Fubini-Study:
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

Atiyah-Hitchin-Singer (1978):
Standard Einstein metric on \(\mathbb{CP}^2 \) minimizes \(\mathcal{W}(g) \).

Fubini-Study: \(W_- = 0 \),
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[W(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g. \]

Atiyah-Hitchin-Singer (1978):
Standard Einstein metric on \(\mathbb{CP}^2 \) minimizes \(W(g) \).

Fubini-Study: \(W_- = 0 \), Kähler-Einstein.
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) \, d\mu_g.$$

Atiyah-Hitchin-Singer (1978):
Standard Einstein metric on \mathbb{CP}^2 minimizes $\mathcal{W}(g)$.

Fubini-Study: $W_- = 0$, Kähler-Einstein.

Osamu Kobayashi (1985):
What about standard Einstein metric on $S^2 \times S^2$?
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

Atiyah-Hitchin-Singer (1978):
Standard Einstein metric on \(\mathbb{CP}^2 \) minimizes \(\mathcal{W}(g) \).

Fubini-Study: \(W_- = 0 \), Kähler-Einstein.

Osamu Kobayashi (1985):
What about standard Einstein metric on \(S^2 \times S^2 \)?

Also Kähler-Einstein, but \(W_\pm \neq 0 \).
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

$$\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g.$$

Atiyah-Hitchin-Singer (1978):

Standard Einstein metric Fubini-Study:

Osamu Kobayashi (1985):

What about standard Einstein metric on $S^2 \times S^2$?

Also Kähler-Einstein.

Proved: At least a local minimum.
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

Osamu Kobayashi (1985):
What about standard Einstein metric on \(S^2 \times S^2 \)?

Also Kähler-Einstein.

Proved: At least a local minimum.

Conjectured: Global minimizer.
In dimension 4, Einstein metrics are critical points of the conformally invariant Weyl functional:

\[\mathcal{W}(g) := \int_M \left(|W_+|^2 + |W_-|^2 \right) d\mu_g. \]

Osamu Kobayashi (1985):

Proposed systematic study of invariant \(\inf \mathcal{W}(M) \).
Let’s generalize Osamu Kobayashi’s idea as follows:
Let’s generalize Osamu Kobayashi’s idea as follows:

Conjecture (Generalized Kobayashi Conjecture).
Let’s generalize Osamu Kobayashi’s idea as follows:

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$.
Let's generalize Osamu Kobayashi's idea as follows:

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then $[g]$ is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.
Let’s generalize Osamu Kobayashi’s idea as follows:

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then $[g]$ is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open.
Let’s generalize Osamu Kobayashi’s idea as follows:

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then $[g]$ is an absolute minimizer of the Weyl functional W among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!
Let’s generalize Osamu Kobayashi’s idea as follows:

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then $[g]$ is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky ’98).
Let’s generalize Osamu Kobayashi’s idea as follows:

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then $[g]$ is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky ’98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$,
Let’s generalize Osamu Kobayashi’s idea as follows:

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then $[g]$ is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky ’98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then $[g]$ is absolute minimizer of \mathcal{W}.
Let’s generalize Osamu Kobayashi’s idea as follows:

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then $[g]$ is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky ’98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then $[g]$ is absolute minimizer of \mathcal{W} among all conformal classes $[\tilde{g}]$ with positive Yamabe constant.
Let’s generalize Osamu Kobayashi’s idea as follows:

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then $[g]$ is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky ’98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then $[g]$ is absolute minimizer of \mathcal{W} among all conformal classes $[\tilde{g}]$ with positive Yamabe constant. Moreover, the only other minimizers in this setting are other Kähler-Einstein metrics.
Let’s generalize Osamu Kobayashi’s idea as follows:

Conjecture (Generalized Kobayashi Conjecture). Let M^4 be a compact 4-manifold that admits a Kähler-Einstein metric g with $\lambda > 0$. Then $[g]$ is an absolute minimizer of the Weyl functional \mathcal{W} among all conformal classes $[\tilde{g}]$ on M.

This is still open. But there has been progress!

Theorem (Gursky ’98). If smooth compact M^4 admits Kähler-Einstein metric g with $\lambda > 0$, then $[g]$ is absolute minimizer of \mathcal{W} among all conformal classes $[\tilde{g}]$ with positive Yamabe constant. Moreover, the only other minimizers in this setting are other Kähler-Einstein metrics.

We will see later that $Y > 0$ does not seem essential.
We’ve been discussing very special 4-Manifolds.
We’ve been discussing very special 4-Manifolds.

Kähler geometry is a rich source of Einstein metrics.
We’ve been discussing very special 4-Manifolds.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω.
We’ve been discussing very special 4-Manifolds.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.
We’ve been discussing very special 4-Manifolds.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question.
We’ve been discussing very special 4-Manifolds.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question. If (M^4, ω) is a symplectic 4-manifold,
We’ve been discussing very special 4-Manifolds.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g?
We’ve been discussing very special 4-Manifolds.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (perhaps unrelated to ω)?
We’ve been discussing very special 4-Manifolds.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (perhaps unrelated to ω)? What if we also require $\lambda \geq 0$?
We’ve been discussing very special 4-Manifolds.

Kähler geometry is a rich source of Einstein metrics.

If M admits a Kähler metric, it of course admits a symplectic form ω.

On such manifolds, Seiberg-Witten theory mimics Kähler geometry when treating non-Kähler metrics.

Question. If (M^4, ω) is a symplectic 4-manifold, when does M^4 admit an Einstein metric g (perhaps unrelated to ω)? What if we also require $\lambda \geq 0$?

Fortunately, a complete answer is available!
Theorem (L ’09).
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω.
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g.
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{CP}^2 \# k \mathbb{CP}^2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K_3, \\ K_3/\mathbb{Z}_2, \\ T_4, \\ T_4/\mathbb{Z}_2, \\ T_4/\mathbb{Z}_3, \\ T_4/\mathbb{Z}_4, \\ T_4/\mathbb{Z}_6, \\ T_4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), \\ T_4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \\ T_4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \approx \begin{cases} \mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\ \mathbb{T}^4, & \mathbb{T}^4/\mathbb{Z}_2, & \mathbb{T}^4/\mathbb{Z}_3, & \mathbb{T}^4/\mathbb{Z}_4, & \mathbb{T}^4/\mathbb{Z}_6, & \mathbb{T}^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), & \mathbb{T}^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), & \mathbb{T}^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4) \end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \approx \begin{cases}
\mathbb{CP}^2 \# k \mathbb{CP}^2, & 0 \leq k \leq 8, \\
S^2 \times S^2, &
\end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M^{\text{diff}} \approx \begin{cases}
\mathbb{CP}^2 \# k\overline{\mathbb{CP}}^2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3,
\end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M^{\text{diff}} \approx \begin{cases}
\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, &
\end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$
M \overset{\text{diff}}{\approx} \begin{cases}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), \\
T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4)
\end{cases}
$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$M^{\text{diff}} \approx \begin{cases}
\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,
\end{cases}$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$
Conventions:

\[\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \]
Conventions:

$\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2$.

Connected sum $\#$:

\[
\begin{array}{c}
 \text{Diagram 1} \\
 \text{Diagram 2}
\end{array}
\]
Conventions:

\(\overline{\mathbb{CP}_2} = \) reverse oriented \(\mathbb{CP}_2 \).

Connected sum \(\# \):
Conventions:

$\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2.$

Connected sum $\#$:
Conventions:

\[\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \]

Connected sum \#:
Conventions:

\(\overline{\mathbb{CP}_2} = \) reverse oriented \(\mathbb{CP}_2 \).

Connected sum \(\# \):
Conventions:

\[\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \]

Connected sum \#:
Conventions:

$\CP_2 = \text{reverse oriented } \CP_2$.

Connected sum $\#$:
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

\[
M^\text{diff} \approx \begin{cases}
\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}
\]
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M^{\text{diff}} \cong \begin{cases} \mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$

Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surface, Hyper-elliptic surfaces.
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \xrightarrow{\text{diff}} \begin{cases}
\mathbb{C}P^2 \# k\overline{\mathbb{C}P^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, & \\
T^4, & \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). &
\end{cases}$$

Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits a symplectic structure ω. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M^{\text{diff}} \approx \begin{cases}
\mathbb{C}P_2 \# k\overline{\mathbb{C}P_2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}$$

No others: Hitchin-Thorpe, Seiberg-Witten, …
$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}$, $0 \leq k \leq 8$,
$S^2 \times S^2$,
$K3$,
$K3/\mathbb{Z}_2$,
T^4,
$T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3)$, or $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4)$.
Definitive list . . .

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]
$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8,$
$S^2 \times S^2,$
$K3,$
$K3/\mathbb{Z}_2,$
$T^4,$
$T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
$T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \mathbb{CP}_2, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \mathbb{CP}_2, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.
But we understand some cases better than others!

\[\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \)
But we understand some cases better than others!

\[\mathbb{C}P^2 \# k \overline{\mathbb{C}P^2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) = \{ \text{Einstein } g \}/(\text{Diffeos} \times \mathbb{R}^+) \)
But we understand some cases better than others!

\[\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) completely understood.
But we understand some cases better than others!

\[
\begin{align*}
\mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & \quad 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, & \\
T^4, & \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), & \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{align*}
\]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M)\) connected!
$\mathbb{CP}_2 \# k\overline{\mathbb{CP}}_2, \quad 0 \leq k \leq 8,$
$S^2 \times S^2,$
$K3,$
$K3/\mathbb{Z}_2,$
$T^4,$
$T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$
$T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3),$ or $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathcal{E}(M)$ connected!
Above the line:

\[\mathbb{C}P_2 \# k\overline{\mathbb{C}P}_2, \quad 0 \leq k \leq 8, \]

\[S^2 \times S^2, \]

\[K3, \]

\[K3/\mathbb{Z}_2, \]

\[T^4, \]

\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]

\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) connected!
Above the line:

Know an Einstein metric on each manifold.

\[
\begin{aligned}
\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, & \quad 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{aligned}
\]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) connected!
Above the line:

Moduli space $\mathcal{E}(M) \neq \emptyset$.

$\mathbb{C}P_2 \# k\overline{\mathbb{C}P_2}$, $0 \leq k \leq 8,$

$S^2 \times S^2,$

$K3,$

$K3/\mathbb{Z}_2,$

$T^4,$

$T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$

$T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3),$ or $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4)$.

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathcal{E}(M)$ connected!
Above the line:

Moduli space $\mathcal{E}(M) \neq \emptyset$. But is it connected?

$\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8,$

$S^2 \times S^2,$

$K3,$

$K3/\mathbb{Z}_2,$

$T^4,$

$T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$

$T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3),$ or $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathcal{E}(M)$ connected!
In the remaining cases,
In the remaining cases, all known Einstein metrics are conformally Kähler:
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]

for some Kähler metric \(h \) and a positive function \(u \).

These live on Del Pezzo surfaces,
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]

for some Kähler metric \(h \) and a positive function \(u \).

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with \(b_+ = 1 \).
Smooth compact M^4 has invariants $b_{\pm}(M)$, defined in terms of intersection pairing
Smooth compact M^4 has invariants $b_{\pm}(M)$, defined in terms of intersection pairing

\[H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \rightarrow \mathbb{R} \]

\[([\varphi], [\psi]) \mapsto \int_M \varphi \wedge \psi \]
Smooth compact M^4 has invariants $b_{\pm}(M)$, defined in terms of intersection pairing

\[
H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \rightarrow \mathbb{R}
\]

\[
([\varphi], [\psi]) \rightarrow \int_M \varphi \wedge \psi
\]

Diagonalize:
Smooth compact M^4 has invariants $b_{\pm}(M)$, defined in terms of intersection pairing

$$H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \rightarrow \mathbb{R}$$

$$(\varphi, \psi) \mapsto \int_M \varphi \wedge \psi$$

Diagonalize:

$$\begin{pmatrix}
+1 \\
\vdots \\
+1
\end{pmatrix}$$
Smooth compact M^4 has invariants $b_{\pm}(M)$, defined in terms of intersection pairing

$$H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi] , [\psi]) \mapsto \int_M \varphi \wedge \psi$$

Diagonalize:

$$\begin{bmatrix}
 +1 & & & \\
 \vdots & \ddots & \ddots & \\
 b_+ (M) & \cdots & +1 & \\
 b_- (M) & \{ & -1 & \cdots \} & -1
\end{bmatrix}.$$
Hodge theory:

\[H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d\star \varphi = 0 \}. \]
Hodge theory:

\[H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d\ast\varphi = 0 \}. \]

Since \(\ast \) is involution of RHS, \(\implies \)

\[H^2(M, \mathbb{R}) = \mathcal{H}^+_g \oplus \mathcal{H}^-_g, \]
Hodge theory:

\[H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \ast \varphi = 0 \} . \]

Since \(\ast \) is involution of RHS, \(\implies \)

\[H^2(M, \mathbb{R}) = \mathcal{H}^+_g \oplus \mathcal{H}^-_g , \]

where

\[\mathcal{H}^\pm_g = \{ \varphi \in \Gamma(\Lambda^\pm) \mid d\varphi = 0 \} \]

self-dual & anti-self-dual harmonic forms.
Hodge theory:

\[H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}. \]

Since \(\star \) is involution of RHS, \(\implies \)

\[H^2(M, \mathbb{R}) = \mathcal{H}^+_g \oplus \mathcal{H}^-_g, \]

where

\[\mathcal{H}^\pm_g = \{ \varphi \in \Gamma(\Lambda^\pm) \mid d\varphi = 0 \} \]

self-dual & anti-self-dual harmonic forms. Then

\[b^\pm(M) = \dim \mathcal{H}^\pm_g. \]
Hodge theory:

\[H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d\star \varphi = 0 \}. \]

Since \(\star \) is involution of RHS, \(\implies \)

\[H^2(M, \mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-, \]

where

\[\mathcal{H}_g^\pm = \{ \varphi \in \Gamma(\Lambda^\pm) \mid d\varphi = 0 \} \]

self-dual & anti-self-dual harmonic forms. Then

\[b_\pm(M) = \dim \mathcal{H}_g^\pm. \]

This decomposition is conformally invariant,

but does vary as we change \([g] \).
\(\mathcal{H}_g^+ \subset H^2(M, \mathbb{R}) \)
\{ a \mid a \cdot a = 0 \} \subset H^2(M, \mathbb{R})
\{ a \mid a \cdot a = 0 \} \subset \mathcal{H}^2(M, \mathbb{R})
\[b_{\pm}(M) = \dim \mathcal{H}_g^{\pm} . \]
\[b_{\pm}(M) = \dim \mathcal{H}_{g}^{\pm}. \]
\[
b_{\pm}(M) = \dim \mathcal{H}_{g}^{\pm}.
\]
\[b_{\pm}(M) = \dim \mathcal{H}_{g}^{\pm}. \]
Suppose M^4 has $b_+ = 1$.
Suppose M^4 has $b_+ = 1$. \(\iff\)

$\forall
g, \exists!$ self-dual harmonic 2-form ω:
Suppose M^4 has $b_+ = 1.$ \iff

$\forall g, \exists!$ self-dual harmonic 2-form ω:

\[d\omega = 0, \quad \star \omega = \omega. \]
Suppose M^4 has $b_+ = 1$. \iff

Up to scale, $\forall \ g$, $\exists!$ self-dual harmonic 2-form ω:

\[
d\omega = 0, \quad \star \omega = \omega.
\]
Suppose M^4 has $b_+ = 1$. \[\iff\]

Up to scale, $\forall \ g$, $\exists!$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star\omega = \omega.$$

This allows us to associate the scalar quantity
Suppose M^4 has $b_+ = 1$. \iff

Up to scale, $\forall \ g$, $\exists!$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star \omega = \omega.$$

This allows us to associate the scalar quantity

$$W_+(\omega, \omega)$$
Suppose M^4 has $b_+ = 1$.

Up to scale, $\forall \ g$, $\exists!$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star\omega = \omega.$$

This allows us to associate the scalar quantity

$$W_+(\omega, \omega)$$

with any metric g on such a manifold.
Suppose M^4 has $b_+ = 1$. \[\iff\]

Up to scale, $\forall \ g$, $\exists!$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star \omega = \omega.$$

This allows us to associate the scalar quantity

$$W_+(\omega, \omega)$$

with any metric g on such a manifold.

Let us now focus on metrics g.
Suppose M^4 has $b_+ = 1$. ⇐⇒

Up to scale, $\forall g$, $\exists!$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star \omega = \omega.$$

This allows us to associate the scalar quantity

$$W_+(\omega, \omega)$$

with any metric g on such a manifold.

Let us now focus on metrics g for which

$$W_+(\omega, \omega) > 0$$
Suppose M^4 has $b_+ = 1$.

Up to scale, $\forall \, g$, $\exists !$ self-dual harmonic 2-form ω:

$$d\omega = 0, \quad \star \omega = \omega.$$

This allows us to associate the scalar quantity $W_+(\omega, \omega)$ with any metric g on such a manifold.

Let us now focus on metrics g for which

$$W_+(\omega, \omega) > 0$$

everywhere on M.
$W_+(\omega,\omega)$ is non-trivially related
$W_+(\omega, \omega)$ is non-trivially related to scalar curv s.
$W_+ (\omega, \omega)$ is non-trivially related to scalar curv s, via Weitzenböck for harmonic self-dual 2-form ω:
$W_+^+(\omega, \omega)$ is non-trivially related to scalar curv s, via Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2W_+^+(\omega, \cdot) + \frac{s}{3} \omega$$
$W_+(\omega, \omega)$ is non-trivially related to scalar curv s, via Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3}\omega$$

Taking inner product with ω and integrating:
$W_+(\omega, \omega)$ is non-trivially related to scalar curv s, via Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2 W_+^+(\omega, \cdot) + \frac{s}{3} \omega$$

Taking inner product with ω and integrating:

$$\int_M W_+(\omega, \omega) d\mu \geq \int_M \frac{s}{6} |\omega|^2 d\mu$$
$W_+(\omega, \omega)$ is non-trivially related to scalar curv s, via Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3} \omega$$

Taking inner product with ω and integrating:

$$\int_M W_+(\omega, \omega) d\mu \geq \int_M \frac{s}{6} |\omega|^2 d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has
$W_+(\omega, \omega)$ is non-trivially related to scalar curvature s, via Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2W_+(\omega, \cdot) + \frac{s}{3} \omega$$

Taking inner product with ω and integrating:

$$\int_M W_+(\omega, \omega) d\mu \geq \int_M \frac{s}{6} |\omega|^2 d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

$$W_+(\omega, \omega) > 0$$

on average.
$W_+(\omega, \omega)$ is non-trivially related to scalar curv s, via Weitzenböck for harmonic self-dual 2-form ω:

$$0 = \nabla^* \nabla \omega - 2W^+(\omega, \cdot) + \frac{s}{3} \omega$$

Taking inner product with ω and integrating:

$$\int_M W_+(\omega, \omega) d\mu \geq \int_M \frac{s}{6} |\omega|^2 d\mu$$

In particular, an Einstein metric with $\lambda > 0$ has

$$W_+(\omega, \omega) > 0$$

on average. But we will need this everywhere.
However, $W_+(\omega, \omega)$ conformally invariant, with weight:
However, $W_+(\omega, \omega)$ conformally invariant, with weight:

If $g \sim u^2 g$, then $W_+(\omega, \omega) \sim u^{-6} W_+(\omega, \omega)$
However, $W_+(\omega, \omega)$ conformally invariant, with weight:

If $g \rightsquigarrow u^2 g$, then $W_+(\omega, \omega) \rightsquigarrow u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!
However, $W_+ (\omega, \omega)$ conformally invariant, with weight:

$$\text{If } g \mapsto u^2 g, \text{ then } W_+ (\omega, \omega) \mapsto u^{-6} W_+ (\omega, \omega)$$

Much simpler than scalar curvature!

In particular, if g satisfies
However, $W_+(\omega, \omega)$ conformally invariant, with weight:

$$\text{If } g \rightsquigarrow u^2 g, \text{ then } W_+ (\omega, \omega) \rightsquigarrow u^{-6} W_+ (\omega, \omega)$$

Much simpler than scalar curvature!

In particular, if g satisfies

$$W_+ (\omega, \omega) > 0$$
However, $W_+(\omega, \omega)$ conformally invariant, with weight:

If $g \leadsto u^2 g$, then $W_+(\omega, \omega) \leadsto u^{-6} W_+(\omega, \omega)$

Much simpler than scalar curvature!

In particular, if g satisfies

$$W_+(\omega, \omega) > 0$$

so does every other metric \tilde{g} in conformal class $[g]$.
Theorem A.

Let (M,h) be a smooth compact 4-dimensional Einstein manifold with $b^+ = 1$. If h satisfies everywhere on M, then h is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.
Theorem A. Let \((M, \mathfrak{g})\) be a smooth compact 4-dimensional Einstein manifold with \(b^+ = 1\). If \(h\) satisfies everywhere on \(M\), then \(h\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.
Theorem A. Let (M, g) be a smooth compact 4-dimensional Einstein manifold with $b^+ = 1$. If h satisfies everywhere on M, then h is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.
Theorem A. Let (M, g) be a smooth compact 4-dimensional Einstein manifold with $b_+ = 1$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.
Theorem A. Let (M, g) be a smooth compact 4-dimensional Einstein manifold with $b_+ = 1$. If g satisfies

$$W_+(\omega, \omega) > 0$$

then h is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.
Theorem A. Let (M, g) be a smooth compact 4-dimensional Einstein manifold with $b_+ = 1$. If g satisfies

\[W_+(\omega, \omega) > 0 \]

everywhere on M,
Theorem A. Let \((M, g)\) be a smooth compact 4-dimensional Einstein manifold with \(b_+ = 1\). If \(g\) satisfies
\[
W_+(\omega, \omega) > 0
\]
everywhere on \(M\), then \(g\) is conformally Kähler.
Theorem A. Let \((M, g)\) be a smooth compact 4-dimensional Einstein manifold with \(b_+ = 1\). If \(g\) satisfies
\[W_+(\omega, \omega) > 0 \]
everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\).
Theorem A. Let \((M, g)\) be a smooth compact 4-dimensional Einstein manifold with \(b_+ = 1\). If \(g\) satisfies
\[
W_+(\omega, \omega) > 0
\]
everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface.
Theorem A. Let \((M, g)\) be a smooth compact 4-dimensional Einstein manifold with \(b_+ = 1\). If \(g\) satisfies

\[W_+(\omega, \omega) > 0 \]

everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.
Theorem A. Let \((M, g)\) be a smooth compact 4-dimensional Einstein manifold with \(b_+ = 1\). If \(g\) satisfies
\[
W_+ (\omega, \omega) > 0
\]
everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties.
Theorem A. Let \((M, g)\) be a smooth compact 4-dimensional Einstein manifold with \(b_+ = 1\). If \(g\) satisfies

\[W_+(\omega, \omega) > 0 \]

everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are
Theorem A. Let \((M, g)\) be a smooth compact 4-dimensional Einstein manifold with \(b_+ = 1\). If \(g\) satisfies

\[
W_+(\omega, \omega) > 0
\]

everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with \(\lambda > 0\);
Theorem A. Let \((M, g)\) be a smooth compact 4-dimensional Einstein manifold with \(b_+ = 1\). If \(g\) satisfies
\[W_+(\omega, \omega) > 0 \]
everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with \(\lambda > 0\);
- the Page metric on \(\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2\); and
Theorem A. Let \((M, g)\) be a smooth compact 4-dimensional Einstein manifold with \(b_+ = 1\). If \(g\) satisfies
\[
W_+(\omega, \omega) > 0
\]
everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with \(\lambda > 0\);
- the Page metric on \(\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}\); and
- the CLW metric on \(\mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}\).
Del Pezzo surfaces:
Del Pezzo surfaces:

$$(M^4, J)$$ for which c_1 is a Kähler class $[\omega]$.
Del Pezzo surfaces:

\[(M^4, J)\] for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, in general position,
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position,
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: “$c_1 > 0$.”

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[\omega]$.

Shorthand: “$c_1 > 0.$”

Blow-up of $\mathbb{C}P^2$ at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{C}P^1 \times \mathbb{C}P^1$.

![Diagram of CP^2 with points and lines]
Blowing up:
Blowing up:

If N is a complex surface,
Blowing up:

If N is a complex surface, may replace $p \in N$
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \mathbb{CP}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

![Diagram of blow-up process](image)
Blowing up:

If \(N \) is a complex surface, may replace \(p \in N \) with \(\mathbb{CP}_1 \) to obtain blow-up

\[
M \approx N \# \overline{\mathbb{CP}_2}
\]

in which added \(\mathbb{CP}_1 \) has normal bundle \(\mathcal{O}(-1) \).
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \mathbb{CP}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[\omega]$.
Shorthand: "$c_1 > 0.$"

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

[Diagram of \mathbb{CP}_2 with points labeled and lines connecting them.]

233
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0.\)”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

No 3 on a line,
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: "\(c_1 > 0\)."

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

No 3 on a line, no 6 on conic,
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}^2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

No 3 on a line, no 6 on conic, no 8 on nodal cubic.
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\),
in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

Theorem. Each Del Pezzo \((M^4, J)\) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms.
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class [\(\omega\)].

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

Theorem. Each Del Pezzo \((M^4, J)\) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber…

Uniqueness: Bando-Mabuchi, L 2012…
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\),
in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

For each topological type:
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

For each topological type:

Moduli space of such \((M^4, J)\) is connected.
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: “$c_1 > 0$.”

Blow-up of $\mathbb{C}P_2$ at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{C}P_1 \times \mathbb{C}P_1$.

For each topological type:

Moduli space of such (M^4, J) is connected.

Just a point if $b_2(M) \leq 5$.

For M^4 a Del Pezzo surface, set
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } h \text{ on } M\} / (\text{Diffeos } \times \mathbb{R}^+)$$
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } h \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}^+_\omega(M) = \{\text{Einstein } h \text{ with } W^+(\omega,\omega) > 0\}/\sim$$
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } h \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}^+_{\omega}(M) = \{\text{Einstein } h \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Theorem B.
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } h \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}_\omega^+(M) = \{\text{Einstein } h \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Theorem B. $\mathcal{E}_\omega^+(M)$ is connected.
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \left\{ \text{Einstein } h \text{ on } M \right\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}_\omega^+(M) = \left\{ \text{Einstein } h \text{ with } W^+(\omega, \omega) > 0 \right\}/\sim$$

Theorem B. $\mathcal{E}_\omega^+(M)$ is connected. Moreover, if $b_2(M) \leq 5$,
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } h \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}^+_\omega(M) = \{\text{Einstein } h \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Theorem B. $\mathcal{E}^+_\omega(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}^+_\omega(M) = \{\text{point}\}$.
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } h \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}^+(M) = \{\text{Einstein } h \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Theorem B. $\mathcal{E}^+_\omega(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}^+_\omega(M) = \{\text{point}\}$.

Corollary.
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } h \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}^+_{\omega}(M) = \{\text{Einstein } h \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Theorem B. $\mathcal{E}^+_{\omega}(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}^+_{\omega}(M) = \{\text{point}\}$.

Corollary. $\mathcal{E}^+_{\omega}(M)$ is exactly one connected component of $\mathcal{E}(M)$.
Key point:
Key point: $W^+(\omega, \omega) > 0$
Key point: \(W^+(\omega, \omega) > 0 \implies \omega \neq 0. \)
Key point: $W^+(\omega, \omega) > 0 \implies \omega \neq 0$.

But $\omega \wedge \omega = |\omega|^2d\mu$, because $\star \omega = \omega$.
Key point: \(W^+(\omega, \omega) > 0 \implies \omega \neq 0. \)

But \(\omega \wedge \omega = |\omega|^2 d\mu, \) because \(*\omega = \omega. \)

So harmonic form \(\omega \) defines symplectic structure.
Key point: $W^+(\omega, \omega) > 0 \implies \omega \neq 0$.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:
Key point: $W^+(\omega, \omega) > 0 \implies \omega \neq 0$.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\ast \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition.
Key point: $W^+(\omega, \omega) > 0 \implies \omega \neq 0$.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$,

$.$
Key point: $W^+(\omega, \omega) > 0 \implies \omega \neq 0$.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$, and let $[g]$ be conformal class.
Key point: \(W^+(\omega, \omega) > 0 \implies \omega \neq 0. \)

But \(\omega \wedge \omega = |\omega|^2 d\mu, \) because \(\star \omega = \omega. \)

So harmonic form \(\omega \) defines symplectic structure.

We now codify this weaker condition:

Definition. Let \(M \) be smooth 4-manifold with \(b_+(M) = 1 \), and let \([g] \) be conformal class. We will say that \([g] \) is of symplectic type if associated self-dual harmonic form \(\omega \) is nowhere zero.
Key point: $W^+(\omega, \omega) > 0 \implies \omega \neq 0$.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$, and let $[g]$ be conformal class. We will say that $[g]$ is of symplectic type.
Key point: $W^+(\omega,\omega) > 0 \implies \omega \neq 0$.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$, and let $[g]$ be conformal class. We will say that $[g]$ is of symplectic type if associated self-dual harmonic ω.
Key point: $W^+(\omega, \omega) > 0 \implies \omega \neq 0$.

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$, and let $[g]$ be conformal class. We will say that $[g]$ is of symplectic type if associated self-dual harmonic ω is nowhere zero.
Key point: $W^+(\omega, \omega) > 0 \implies \omega \neq 0$,

But $\omega \wedge \omega = |\omega|^2 d\mu$, because $\star \omega = \omega$.

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_+(M) = 1$, and let $[g]$ be conformal class. We will say that $[g]$ is of symplectic type if associated self-dual harmonic ω is nowhere zero.

- open condition;
Key point: $W^+(\omega,\omega) > 0 \implies \omega \neq 0,$

But $\omega \wedge \omega = |\omega|^2 d\mu,$ because $\star \omega = \omega.$

So harmonic form ω defines symplectic structure.

We now codify this weaker condition:

Definition. Let M be smooth 4-manifold with $b_+(M) = 1,$ and let $[g]$ be conformal class. We will say that $[g]$ is of symplectic type if associated self-dual harmonic ω is nowhere zero.

- open condition;
- holds in Kähler case;
Key point: \(W^+ (\omega, \omega) > 0 \implies \omega \neq 0 \),

But \(\omega \wedge \omega = |\omega|^2 d\mu \), because \(\ast \omega = \omega \).

So harmonic form \(\omega \) defines symplectic structure.

We now codify this weaker condition:

Definition. Let \(M \) be smooth 4-manifold with \(b_+ (M) = 1 \), and let \([g]\) be conformal class. We will say that \([g]\) is of symplectic type if associated self-dual harmonic \(\omega \) is nowhere zero.

- open condition;
- holds in Kähler case;
- most such classes have \(Y([g]) < 0 \).
Theorem C. Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface.
Theorem C. Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class $[g]$ of symplectic type on M satisfies
Theorem C. Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class $[g]$ of symplectic type on M satisfies

$$\int_M |W_+|^2 d\mu \geq \frac{4\pi^2}{3} (2\chi + 3\tau)(M),$$
Theorem C. Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class $[g]$ of symplectic type on M satisfies

$$\int_M |W_+|^2 d\mu \geq \frac{4\pi^2}{3} (2\chi + 3\tau)(M),$$

with equality iff $[g]$ contains a Kähler-Einstein metric g.
Theorem C. Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class $[g]$ of symplectic type on M satisfies

$$\int_M |W_+|^2 d\mu \geq \frac{4\pi^2}{3}(2\chi + 3\tau)(M),$$

with equality iff $[g]$ contains a Kähler-Einstein metric g.

This is exactly Gursky’s inequality.
Theorem C. Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class $[g]$ of symplectic type on M satisfies

$$\int_M |W_+|^2 d\mu \geq \frac{4\pi^2}{3} (2\chi + 3\tau)(M),$$

with equality iff $[g]$ contains a Kähler-Einstein metric g.

This is exactly Gursky’s inequality — but now proved for a different open set of conformal classes!
Theorem C. Let \(M \) be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class \([g]\) of symplectic type on \(M \) satisfies

\[
\int_M |W_+|^2 d\mu \geq \frac{4\pi^2}{3} (2\chi + 3\tau)(M),
\]

with equality iff \([g]\) contains a Kähler-Einstein metric \(g \).

This is exactly Gursky’s inequality — but now proved for a different open set of conformal classes!

Now works in a setting where \(Y \to -\infty \) allowed.
Theorem C. Let M be the underlying smooth oriented 4-manifold of a del Pezzo surface. Then any conformal class $[g]$ of symplectic type on M satisfies

$$
\int_M |W_+|^2 d\mu \geq \frac{4\pi^2}{3} (2\chi + 3\tau)(M),
$$

with equality iff $[g]$ contains a Kähler-Einstein metric g.

This is exactly Gursky’s inequality — but now proved for a different open set of conformal classes!

Strong evidence for O. Kobayashi’s conjecture.
What about other Einstein metrics we’ve discussed?
What about other Einstein metrics we’ve discussed?

Characterized by: Hermitian, but not Kähler.
What about other Einstein metrics we’ve discussed?

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:
What about other Einstein metrics we’ve discussed?

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem.
What about other Einstein metrics we’ve discussed?

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface,
What about other Einstein metrics we’ve discussed?

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M.
What about other Einstein metrics we’ve discussed?

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. *Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action.*
What about other Einstein metrics we’ve discussed?

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class $[g]$ minimizes Weyl functional W
What about other Einstein metrics we’ve discussed?

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. *Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class $[g]$ minimizes Weyl functional \mathcal{W} among symplectic conformal classes.*
What about other Einstein metrics we’ve discussed?

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class $[g]$ minimizes Weyl functional W among symplectic conformal classes which are invariant under the torus action.
What about other Einstein metrics we’ve discussed?

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let M be the underlying 4-manifold of a toric del Pezzo surface, and let g be Einstein, Hermitian metric on M which is invariant under fixed torus action. Then the conformal class $[g]$ minimizes Weyl functional \mathcal{W} among symplectic conformal classes which are invariant under the torus action. Moreover, up to diffeomorphism, $[g]$ is the unique such minimizer.
What about other Einstein metrics we’ve discussed?

Characterized by: Hermitian, but not Kähler.

Also seem to be minimizers, but evidence is weaker:

Theorem. Let \(M \) be the underlying 4-manifold of a toric del Pezzo surface, and let \(g \) be Einstein, Hermitian metric on \(M \) which is invariant under fixed torus action. Then the conformal class \([g]\) minimizes Weyl functional \(\mathcal{W} \) among symplectic conformal classes which are invariant under the torus action. Moreover, up to diffeomorphism, \([g]\) is the unique such minimizer.

Tempting to conjecture that these minimize, too!
小林先生、お誕生日おめでとうございます。
小林先生、お誕生日おめでとうございます。

会議に誘っていただきありがとうございます。
小林先生、お誕生日おめでとうございます。

会議に誘っていただきありがとうございます。

以上です。