Anti-Self-Dual 4-Manifolds,

Quasi-Fuchsian Groups, &

Almost-Kähler Geometry

Claude LeBrun Stony Brook University

Workshop in Complex Differential Geometry Vanderbilt University, 2 March, 2018

Christopher J. Bishop Stony Brook University

Christopher J. Bishop Stony Brook University

e-print: arXiv:1708.03824 [math.DG]

Christopher J. Bishop Stony Brook University

e-print: arXiv:1708.03824 [math.DG]

To appear in Comm. An. Geom.

Complex Geometry

Complex Geometry

Symplectic Geometry

Complex Geometry

Symplectic Geometry

Metric Geometry

Drop demand that J be integrable.

Drop demand that J be integrable.

Linked to conformal geometry in dimension 4.

Drop demand that J be integrable.

Linked to conformal geometry in dimension 4.

Higher dimensions are demonstrably different.

Let (M^{2m}, ω) be a

symplectic manifold.

Thus, ω is a 2-form with $d\omega = 0$

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

$$J:TM \to TM, \quad J^2 = -1,$$

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

$$J:TM \to TM, \quad J^2 = -1,$$

$$J^*\omega = \omega,$$

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

$$J:TM \to TM, \quad J^2 = -1,$$

$$J^*\omega = \omega, \qquad \omega(v, Jv) > 0 \quad \forall v \neq 0.$$

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

 $\Rightarrow \exists$ compatible almost-complex structures J:

$$J:TM \to TM, \quad J^2 = -1,$$

$$J^*\omega = \omega, \qquad \omega(v, Jv) > 0 \quad \forall v \neq 0.$$

Leads to theory of J-holomorphic curves,

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

 $\Rightarrow \exists$ compatible almost-complex structures J:

$$J:TM \to TM, \quad J^2=-1,$$

$$J^*\omega = \omega, \qquad \omega(v, Jv) > 0 \quad \forall v \neq 0.$$

Leads to theory of J-holomorphic curves, Gromov-Witten invariants, etc.

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

 $\Rightarrow \exists$ compatible almost-complex structures J:

$$J:TM \to TM, \quad J^2=-1,$$

$$J^*\omega = \omega, \qquad \omega(v, Jv) > 0 \quad \forall v \neq 0.$$

Leads to theory of J-holomorphic curves, Gromov-Witten invariants, etc.

Imitates Kähler geometry in a non-Kähler setting.

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

$$J:TM \to TM, \quad J^2 = -1,$$

$$J^*\omega = \omega, \qquad \omega(v, Jv) > 0 \quad \forall v \neq 0.$$

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

 $\Rightarrow \exists$ compatible almost-complex structures J:

$$J:TM \to TM, \quad J^2 = -1,$$

$$J^*\omega = \omega, \qquad \omega(v, Jv) > 0 \quad \forall v \neq 0.$$

 $\Longrightarrow g:=\omega(\cdot,J\cdot)$ is a Riemannian metric.

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

 $\Rightarrow \exists$ compatible almost-complex structures J:

$$J:TM \to TM, \quad J^2 = -1,$$

$$J^*\omega = \omega, \qquad \omega(v, Jv) > 0 \quad \forall v \neq 0.$$

 $\Longrightarrow g := \omega(\cdot, J \cdot)$ is a Riemannian metric.

Such g are called almost-Kähler metrics, because

Thus, ω is a 2-form with $d\omega = 0$ and $\omega^{\wedge m} \neq 0$.

By convention, orient M so that $\omega^{\wedge m} > 0$.

 $\Rightarrow \exists$ compatible almost-complex structures J:

$$J:TM \to TM, \quad J^2 = -1,$$

$$J^*\omega = \omega, \qquad \omega(v, Jv) > 0 \quad \forall v \neq 0.$$

 $\implies g := \omega(\cdot, J \cdot)$ is a Riemannian metric.

Such g are called almost-Kähler metrics, because

Kähler $\iff J$ integrable.

Any two algebraically determine the third.

Any two algebraically determine the third.

For example, can avoid explicitly mentioning J.

Lemma. An oriented Riemannian manifold (M^{2m}, g)

Lemma. An oriented Riemannian manifold (M^{2m}, g) is almost-Kähler

•
$$|\omega|_g \equiv \sqrt{m}$$
,

- $|\omega|_g \equiv \sqrt{m}$,
- $d\omega = 0$, and

•
$$|\omega|_g \equiv \sqrt{m}$$
,

•
$$d\omega = 0$$
, and

• *
$$\omega = \frac{\omega^{\wedge (m-1)}}{(m-1)!}$$
.

- $|\omega|_g \equiv \sqrt{m}$,
- ω is a harmonic 2-form, and

$$\bullet * \omega = \frac{\omega^{\wedge (m-1)}}{(m-1)!}.$$

Simplifies dramatically when m = 2:

- $\bullet |\omega|_g \equiv \sqrt{m},$
- ω is a harmonic 2-form, and

• *
$$\omega = \frac{\omega^{\wedge (m-1)}}{(m-1)!}$$
.

Simplifies dramatically when m = 2:

- $|\omega|_g \equiv \sqrt{2}$,
- ω is a harmonic 2-form, and
- $\bullet *\omega = \omega$.

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

 Λ^+ self-dual 2-forms: (+1)-eigenspace of $*: \Lambda^2 \to \Lambda^2$.

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

 Λ^+ self-dual 2-forms: (+1)-eigenspace of $*: \Lambda^2 \to \Lambda^2$.

 Λ^- anti-self-dual 2-forms: (-1)-eigenspace of $*: \Lambda^2 \to \Lambda^2$.

Simplifies dramatically when m = 2:

- $|\omega|_g \equiv \sqrt{2}$,
- ω is a harmonic 2-form, and
- $\bullet *\omega = \omega$.

Simplifies dramatically when m = 2:

- $\bullet |\omega|_g \equiv \sqrt{2},$
- ω is a self-dual harmonic 2-form.

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

 Λ^+ self-dual 2-forms: (+1)-eigenspace of $*: \Lambda^2 \to \Lambda^2$.

 Λ^- anti-self-dual 2-forms: (-1)-eigenspace of $*: \Lambda^2 \to \Lambda^2$.

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

 Λ^+ self-dual 2-forms: (+1)-eigenspace of $*: \Lambda^2 \to \Lambda^2$.

 Λ^- anti-self-dual 2-forms: (-1)-eigenspace of $*: \Lambda^2 \to \Lambda^2$.

But Hodge star

$$*: \Lambda^2 \to \Lambda^2$$

is conformally invariant on middle-dimensional forms:

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

 Λ^+ self-dual 2-forms: (+1)-eigenspace of $*: \Lambda^2 \to \Lambda^2$.

 Λ^- anti-self-dual 2-forms: (-1)-eigenspace of $*: \Lambda^2 \to \Lambda^2$.

But Hodge star

$$*: \Lambda^2 \to \Lambda^2$$

is conformally invariant on middle-dimensional forms:

Only depends on the conformal class

$$[g] := \{ u^2g \mid u : M \to \mathbb{R}^+ \}.$$

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

 Λ^+ self-dual 2-forms: (+1)-eigenspace of $*: \Lambda^2 \to \Lambda^2$.

 Λ^- anti-self-dual 2-forms: (-1)-eigenspace of $*: \Lambda^2 \to \Lambda^2$.

Only depends on the conformal class

$$[g] := \{u^2g \mid u : M \to \mathbb{R}^+\}.$$

Simplifies dramatically when m = 2:

- $\bullet |\omega|_g \equiv \sqrt{2},$
- ω is a self-dual harmonic 2-form.

Proposition. A conformal class [g] on a smooth compact oriented 4-manifold M is represented by an almost-Kähler metric g iff it carries a self-dual harmonic 2-form ω that is $\neq 0$ everywhere.

Proposition. A conformal class [g] on a smooth compact oriented 4-manifold M is represented by an almost-Kähler metric g iff it carries a selfdual harmonic 2-form ω that is $\neq 0$ everywhere.

Moreover, the set of conformal classes [g] on M that carry such a harmonic form ω is open in the C^2 topology.

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d * \varphi = 0 \}.$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d * \varphi = 0 \}.$$

Since * is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d * \varphi = 0 \}.$$

Since * is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms.

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d * \varphi = 0 \}.$$

Since * is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms.

One can choose a basis for \mathcal{H}_g^{\pm} that depends continuously on g in the $C^{1,\alpha}$ topology.

Proposition. A conformal class [g] on a smooth compact oriented 4-manifold M is represented by an almost-Kähler metric g iff it carries a selfdual harmonic 2-form ω that is $\neq 0$ everywhere.

Moreover, the set of conformal classes [g] on M that carry such a harmonic form ω is open in the C^2 topology.

"Conformal classes of symplectic type"

Proposition. A conformal class [g] on a smooth compact oriented 4-manifold M is represented by an almost-Kähler metric g iff it carries a selfdual harmonic 2-form ω that is $\neq 0$ everywhere.

Moreover, the set of conformal classes [g] on M that carry such a harmonic form ω is open in the C^2 topology.

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d * \varphi = 0 \}.$$

Since * is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms.

One can choose a basis for \mathcal{H}_g^{\pm} that depends continuously on g in the $C^{1,\alpha}$ topology.

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d * \varphi = 0 \}.$$

Since * is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms.

One can choose a basis for \mathcal{H}_g^{\pm} that depends continuously on g in the $C^{1,\alpha}$ topology.

In particular, the numbers

$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}$$

are independent of g, and so are invariants of M.

 $b\pm(M)$?

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$+1$$
 $+1$
 -1
 -1

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$\begin{array}{c}
+1 \\
 & \cdots \\
 & +1 \\
\hline
 & b_{+}(M) \\
 & b_{-}(M) \\
\end{array}$$

$$\begin{array}{c}
-1 \\
 & \cdots \\
-1
\end{array}$$

Best understood in terms of intersection pairing

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$\begin{bmatrix} +1 \\ & \ddots \\ & +1 \\ b_{+}(M) \\ & b_{-}(M) \end{bmatrix} \begin{cases} -1 \\ & \ddots \\ & -1 \end{bmatrix}$$

$$b_{2}(M) = b_{+}(M) + b_{-}(M)$$

Best understood in terms of intersection pairing

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$\begin{array}{c}
+1 \\
 & \ddots \\
 & +1 \\
b_{+}(M) \\
 & b_{-}(M)
\end{array}$$

$$\begin{array}{c}
-1 \\
 & \ddots \\
 & -1
\end{array}$$

$$\tau(M) = b_{+}(M) - b_{-}(M)$$
"Signature" of M .

Signature defined in terms of intersection pairing

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

Diagonalize:

$$\begin{array}{c}
+1 \\
 & \ddots \\
 & +1 \\
\hline
 & b_{+}(M) \\
 & b_{-}(M) \\
\end{array}$$

$$\begin{array}{c}
-1 \\
 & \ddots \\
 & -1
\end{array}$$

$$\tau(M) = b_{+}(M) - b_{-}(M)$$

Signature of M.

Signature defined in terms of intersection pairing

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

$$\tau(M) = b_{+}(M) - b_{-}(M)$$

Signature defined in terms of intersection pairing, but also expressible as a curvature integral:

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Signature defined in terms of intersection pairing,

but also expressible as a curvature integral:

$$\tau(M) = \frac{1}{12\pi^2} \int_{M} (|W_{+}|^2 - |W_{-}|^2) d\mu$$
$$= \langle \frac{1}{3} p_1(M), [M] \rangle$$

(Thom-Hirzebruch Signature Formula)

Signature defined in terms of intersection pairing,

but also expressible as a curvature integral:

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Has major consequences in conformal geometry.

On oriented (M^4, g) ,

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$

 W_{-} = anti-self-dual Weyl curvature

For M^4 compact,

$$W([g]) = \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

$$\mathcal{W}([g]) = \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

measures the deviation from conformal flatness,

$$W([g]) = \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

measures the deviation from conformal flatness, because (M^4, g) is locally conformally flat \iff its Weyl curvature $W = W_+ + W_-$ vanishes.

$$\mathscr{W}([g]) = \int_{\mathcal{M}} \left(|W_{+}|^{2} + |W_{-}|^{2} \right) d\mu_{g}$$

measures the deviation from conformal flatness, because (M^4, g) is locally conformally flat \iff its Weyl curvature $W = W_+ + W_-$ vanishes.

$$W([g]) = \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

measures the deviation from conformal flatness, because (M^4, g) is locally conformally flat \iff its Weyl curvature $W = W_+ + W_-$ vanishes.

$$\mathscr{W}([g]) = \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

measures the deviation from conformal flatness, because (M^4, g) is locally conformally flat \iff its Weyl curvature $W = W_+ + W_-$ vanishes.

Basic problems: For given smooth compact M^4 ,

$$\mathscr{W}([g]) = \int_{\mathcal{M}} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

measures the deviation from conformal flatness, because (M^4, g) is locally conformally flat \iff its Weyl curvature $W = W_+ + W_-$ vanishes.

Basic problems: For given smooth compact M^4 ,

• What is $\inf \mathcal{W}$?

$$\mathscr{W}([g]) = \int_{\mathcal{M}} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

measures the deviation from conformal flatness, because (M^4, g) is locally conformally flat \iff its Weyl curvature $W = W_+ + W_-$ vanishes.

Basic problems: For given smooth compact M^4 ,

- What is $\inf \mathscr{W}$?
- Do there exist minimizers?

$$W([g]) = \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

measures the deviation from conformal flatness, because (M^4, g) is locally conformally flat \iff its Weyl curvature $W = W_+ + W_-$ vanishes.

But we've already noted that

$$12\pi^2 \tau(\mathbf{M}) = \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu_g$$

is a topological invariant.

$$W([g]) = \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

measures the deviation from conformal flatness, because (M^4, g) is locally conformally flat \iff its Weyl curvature $W = W_+ + W_-$ vanishes.

But we've already noted that

$$12\pi^{2}\tau(\mathbf{M}) = \int_{\mathbf{M}} \left(|W_{+}|^{2} - |W_{-}|^{2} \right) d\mu_{g}$$

is a topological invariant.

So Weyl functional is essentially equivalent to

$$[g] \longmapsto \int_{M} |W_{+}|^{2} d\mu_{g}$$

$$\mathscr{W}([g]) = \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

measures the deviation from conformal flatness, because (M^4, g) is locally conformally flat \iff its Weyl curvature $W = W_+ + W_-$ vanishes.

But we've already noted that

$$12\pi^2 \tau(\mathbf{M}) = \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu_g$$

is a topological invariant.

In particular, metrics with $W_{+} \equiv 0$ minimize \mathscr{W} .

$$\mathscr{W}([g]) = \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

measures the deviation from conformal flatness, because (M^4, g) is locally conformally flat \iff its Weyl curvature $W = W_+ + W_-$ vanishes.

But we've already noted that

$$12\pi^2 \tau(\mathbf{M}) = \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu_g$$

is a topological invariant.

In particular, metrics with $W_+ \equiv 0$ minimize \mathscr{W} . If g has $W_+ \equiv 0$, it is said to be anti-self-dual.

$$W([g]) = \int_{M} (|W_{+}|^{2} + |W_{-}|^{2}) d\mu_{g}$$

measures the deviation from conformal flatness, because (M^4, g) is locally conformally flat \iff its Weyl curvature $W = W_+ + W_-$ vanishes.

But we've already noted that

$$12\pi^2 \tau(\mathbf{M}) = \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu_g$$

is a topological invariant.

In particular, metrics with $W_+ \equiv 0$ minimize \mathscr{W} . If g has $W_+ \equiv 0$, it is said to be anti-self-dual. (ASD)

Oriented $(M^4, g) \iff (Z, J)$.

Oriented $(M^4, g) \iff (Z, J)$.

$$Z = S(\Lambda^+), J: TZ \to TZ, J^2 = -1$$
:

Oriented $(M^4, g) \iff (Z, J)$.

$$Z = S(\Lambda^+), J: TZ \to TZ, J^2 = -1$$
:

Oriented $(M^4, g) \iff (Z, J)$.

$$Z = S(\Lambda^+), J: TZ \to TZ, J^2 = -1$$
:

Theorem (Atiyah-Hitchin-Singer). (Z, J) is a complex 3-manifold iff $W_{+} = 0$.

Oriented $(M^4, g) \iff (Z, J)$. $Z = S(\Lambda^+), J : TZ \to TZ, J^2 = -1$:

Theorem (Atiyah-Hitchin-Singer). (Z, J) is a complex 3-manifold iff $W_{+} = 0$.

Reconceptualizes earlier work by Penrose.

Oriented $(M^4, g) \iff (Z, J)$.

$$Z = S(\Lambda^+), J: TZ \to TZ, J^2 = -1$$
:

Theorem (Atiyah-Hitchin-Singer). (Z, J) is a complex 3-manifold iff $W_{+} = 0$.

Oriented $(M^4, g) \iff (Z, J)$. $Z = S(\Lambda^+), J : TZ \to TZ, J^2 = -1$:

Theorem (Atiyah-Hitchin-Singer). (Z, J) is a complex 3-manifold iff $W_{+} = 0$.

Motivates study of ASD metrics, and yields methods for constructing them. So ASD metrics are linked to complex geometry. . .

If (M^4, g, J) is a Kähler surface,

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces: special case of cscK manifolds,

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces: special case of cscK manifolds, and so of extremal Kähler manifolds.

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces: special case of cscK manifolds, and so of extremal Kähler manifolds.

Results proved about SFK in '90s foreshadowed many more recent results about general case.

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism: (compact case)

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism:

• Ricci-flat case

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

- Ricci-flat case
- Non-Ricci-flat case

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism:

- Ricci-flat case
 - ___
 - ____
 - ___

• Non-Ricci-flat case

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism:

- Ricci-flat case
 - -K3

• Non-Ricci-flat case

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism:

- Ricci-flat case
 - -K3
 - $-T^4$

• Non-Ricci-flat case

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

- Ricci-flat case
 - -K3
 - $-T^4$
 - -eight specific finite quotients of these
- Non-Ricci-flat case

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

- Ricci-flat case (ignore from now on)
 - -K3
 - $-T^{4}$
 - eight specific finite quotients of these
- Non-Ricci-flat case

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

- Ricci-flat case
- Non-Ricci-flat case

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

- Ricci-flat case
- Non-Ricci-flat case
 - ___
 - ___
 - ___
 - ___

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism:

- Ricci-flat case
- Non-Ricci-flat case

$$-\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \, k \ge 10$$

_

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum #:

Blowing Up: $M \rightsquigarrow M \# \overline{\mathbb{CP}}_2$

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum #:

Blowing Up: $M \rightsquigarrow M \# \overline{\mathbb{CP}}_2$

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism:

- Ricci-flat case
- Non-Ricci-flat case

$$-\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \, k \ge 10$$

_

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism:

- Ricci-flat case
- Non-Ricci-flat case

$$-\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, k \geq 10$$

$$-(T^2 \times S^2) \# k \overline{\mathbb{CP}}_2, \, k \ge 1$$

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism:

- Ricci-flat case
- Non-Ricci-flat case

$$-\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, k \geq 10$$

$$-(T^2 \times S^2) \# k \overline{\mathbb{CP}}_2, k \geq 1$$

$$-\Sigma \times S^2$$

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism:

- Ricci-flat case
- Non-Ricci-flat case

$$-\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, k \ge 10$$

$$-(T^2 \times S^2) \# k \overline{\mathbb{CP}}_2, k \geq 1$$

$$-\Sigma \times S^2$$
 and $\Sigma \tilde{\times} S^2$,

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism:

- Ricci-flat case
- Non-Ricci-flat case

$$-\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, k \geq 10$$

$$-(T^2 \times S^2) \# k \overline{\mathbb{CP}}_2, k \geq 1$$

$$-\Sigma \times S^2$$
 and $\Sigma \times S^2$, genus $\Sigma \geq 2$

If (M^4, g, J) is a Kähler surface, then [g] is ASD \iff the scalar curvature s of g is identically zero.

Scalar-flat Kähler surfaces:

Classification up to diffeomorphism:

- Ricci-flat case
- Non-Ricci-flat case
 - $-\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, k \geq 10$
 - $-(T^2 \times S^2) \# k \overline{\mathbb{CP}}_2, k \ge 1$
 - $-\Sigma \times S^2$ and $\Sigma \times S^2$, genus $\Sigma \geq 2$
 - $-(\Sigma \times S^2) \# k \overline{\mathbb{CP}}_2, \, k \ge 1$

Notice that the 4-manifolds $\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}$

Plausible conjecture:

Plausible conjecture:

these manifolds don't admit any ASD metrics.

Plausible conjecture: these manifolds don't admit any ASD metrics.

Stronger conjecture:

Plausible conjecture:

these manifolds don't admit any ASD metrics.

Stronger conjecture:

any metric on one of these manifolds satisfies

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (9 - k)$$

Plausible conjecture:

these manifolds don't admit any ASD metrics.

Stronger conjecture:

any metric on one of these manifolds M satisfies

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M)$$

Plausible conjecture:

these manifolds don't admit any ASD metrics.

Stronger conjecture:

any metric on one of these manifolds M satisfies

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M)$$

Theorem (Gursky '98). True for conformal classes of positive Yamabe constant.

Plausible conjecture:

these manifolds don't admit any ASD metrics.

Stronger conjecture:

any metric on one of these manifolds M satisfies

$$\int_{M} |W_{+}|^{2} d\mu \ge \frac{4\pi^{2}}{3} (2\chi + 3\tau)(M)$$

Theorem (Gursky '98). True for conformal classes of positive Yamabe constant.

Theorem (L '15). True for conformal classes of symplectic type.

Inyoung Kim '16: classification of almost-Kähler ASD roughly the same as in scalar-flat Kähler case.

Inyoung Kim '16: classification of almost-Kähler ASD roughly the same as in scalar-flat Kähler case.

Does this say anything about general ASD metrics?

Inyoung Kim '16: classification of almost-Kähler ASD roughly the same as in scalar-flat Kähler case.

Does this say anything about general ASD metrics?

Almost-Kähler ASD metrics sweep out an open set in the ASD moduli space.

Product is scalar-flat

Product is scalar-flat Kähler.

Product is scalar-flat Kähler.

For both orientations!

Product is scalar-flat Kähler.

For both orientations!

$$W_{+}=0.$$

Product is scalar-flat Kähler.

For both orientations!

$$W_{\pm}=0.$$

Product is scalar-flat Kähler.

For both orientations!

$$W_{\pm}=0.$$

Locally conformally flat!

$$\widetilde{M} = \mathcal{H}^2 \times S^2$$

$$\widetilde{M} = \mathcal{H}^2 \times S^2 = S^4 - S^1$$

$$\widetilde{M} = \mathcal{H}^2 \times S^2 = S^4 - S^1$$

$$\pi_1(\Sigma) \hookrightarrow \mathbf{SO}_+(1,2)$$

$$K = +1$$

$$M = \Sigma \times S^{2}$$

$$S^{2}$$

$$K = -1$$

$$\widetilde{M} = \mathcal{H}^2 \times S^2 = S^4 - S^1$$

$$\pi_1(\Sigma) \hookrightarrow \mathbf{SO}_+(1,2) \times \mathbf{SO}(3)$$

$$K = +1$$

$$M = \Sigma \times S^{2}$$

$$S^{2}$$

$$K = -1$$

$$\widetilde{M} = \mathcal{H}^2 \times S^2 = S^4 - S^1$$

$$\pi_1(\Sigma) \hookrightarrow \mathbf{SO}_+(1,2) \times \mathbf{SO}(3) \hookrightarrow \mathbf{SO}_+(1,5)$$

Scalar-flat Kähler deformations: 12(g-1) moduli

Scalar-flat Kähler deformations: 12(g-1) moduli Locally conformally flat def'ms: 30(g-1) moduli

Example.

Scalar-flat Kähler deformations: 12(g-1) moduli almost-Kähler ASD deformat'ns: 30(g-1) moduli

Inyoung Kim '16: classification of almost-Kähler ASD roughly the same as in scalar-flat Kähler case.

Does this say anything about general ASD metrics?

Almost-Kähler ASD metrics sweep out an open set in the ASD moduli space.

Inyoung Kim '16: classification of almost-Kähler ASD roughly the same as in scalar-flat Kähler case.

Does this say anything about general ASD metrics?

Almost-Kähler ASD metrics sweep out an open set in the ASD moduli space.

Is this subset also closed?

Inyoung Kim '16: classification of almost-Kähler ASD roughly the same as in scalar-flat Kähler case.

Does this say anything about general ASD metrics?

Almost-Kähler ASD metrics sweep out an open set in the ASD moduli space.

Is this subset also closed?

Does one get entire connected components this way?

Inyoung Kim '16: classification of almost-Kähler ASD roughly the same as in scalar-flat Kähler case.

Does this say anything about general ASD metrics?

Almost-Kähler ASD metrics sweep out an open set in the ASD moduli space.

Is this subset also closed?

Does one get entire connected components this way?

Alas, No!

Theorem A.

Theorem A. Consider 4-manifold $M = \Sigma \times S^2$,

Then
$$\forall$$
 $g \gg 0$,

Then \forall even $g \gg 0$,

Then \forall even $g \gg 0$, \exists family $[g_t]$,

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$,

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of locally-conformally-flat classes on M,

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of locally-conformally-flat classes on M, such that

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of locally-conformally-flat classes on M, such that

• $\exists scalar\text{-flat K\"{a}hler metric } g_0 \in [g_0]; but$

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of locally-conformally-flat classes on M, such that

- $\exists scalar\text{-flat K\"{a}hler metric } g_0 \in [g_0]; but$
- \nexists almost-Kähler metric $g \in [g_1]$.

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of locally-conformally-flat classes on M, such that

- $\exists scalar\text{-flat K\"{a}hler metric } g_0 \in [g_0]; but$
- \nexists almost-Kähler metric $g \in [g_1]$.

Same method simultaneously proves...

Theorem B.

Theorem B. Fix an integer $k \geq 2$,

Theorem B. Fix an integer $k \geq 2$, and then consider the 4-manifolds $M = (\Sigma \times S^2) \# k \overline{\mathbb{CP}}_2$,

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$,

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of anti-self-dual conformal classes on M,

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of anti-self-dual conformal classes on M, such that

• $\exists scalar\text{-flat K\"{a}hler metric } g_0 \in [g_0]; but$

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of anti-self-dual conformal classes on M, such that

- $\exists scalar\text{-flat K\"{a}hler metric } g_0 \in [g_0]; but$
- \nexists almost-Kähler metric $g \in [g_1]$.

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of anti-self-dual conformal classes on M, such that

- $\exists scalar\text{-flat K\"{a}hler metric } g_0 \in [g_0]; but$
- \nexists almost-Kähler metric $g \in [g_1]$.

Proof hinges on a construction of hyperbolic 3-manifolds.

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of anti-self-dual conformal classes on M, such that

- $\exists scalar\text{-flat K\"{a}hler metric } g_0 \in [g_0]; but$
- \nexists almost-Kähler metric $g \in [g_1]$.

Proof hinges on a construction of hyperbolic 3-manifolds.

We begin by revisiting hyperbolic metrics on Σ .

$$\pi_1(\Sigma) \hookrightarrow \mathbf{SO}_+(1,2) = \mathbf{PSL}(2,\mathbb{R})$$

$$\pi_1(\Sigma) \hookrightarrow \mathbf{SO}_+(1,2) = \mathbf{PSL}(2,\mathbb{R})$$

$$\cap \qquad \cap$$

$$\mathbf{SO}_+(1,3) = \mathbf{PSL}(2,\mathbb{C})$$

 $\pi_1(\Sigma) \stackrel{\cong}{\longrightarrow} \Gamma \subset \mathbf{PSL}(2,\mathbb{R})$ Fuchsian group

 $\pi_1(\Sigma) \stackrel{\cong}{\longrightarrow} \Gamma \subset \mathbf{PSL}(2,\mathbb{C})$ Fuchsian group

Fuchsian

Fuchsian

Fuchsian

quasi-Fuchsian

quasi-Fuchsian

 $\pi_1(\Sigma) \stackrel{\cong}{\longrightarrow} \Gamma \subset \mathbf{PSL}(2,\mathbb{C})$ quasi-Fuchsian group

quasi-Fuchsian

 $\pi_1(\Sigma) \stackrel{\cong}{\longrightarrow} \Gamma \subset \mathbf{PSL}(2,\mathbb{C})$ quasi-Fuchsian group of Bers type

quasi-Fuchsian

 $\pi_1(\Sigma) \stackrel{\cong}{\longrightarrow} \Gamma \subset \mathbf{PSL}(2,\mathbb{C})$ quasi-Fuchsian group of Bers type

Quasi-conformally conjugate to Fuchsian.

 Γ Fuchsian

 Γ Fuchsian

$$X \approx \Sigma \times \mathbb{R}$$

 Γ quasi-Fuchsian

$$X \approx \Sigma \times \mathbb{R}$$

 Γ quasi-Fuchsian

$$X \approx \Sigma \times \mathbb{R}$$

Freedom: two points in Teichmüller space.

 Γ quasi-Fuchsian

$$X \approx \Sigma \times \mathbb{R}$$

 Γ quasi-Fuchsian

$$\overline{X} \approx \Sigma \times [0,1]$$

 Γ quasi-Fuchsian

$$\overline{X} \approx \Sigma \times [0, 1]$$

Tunnel-Vision function:

$$f: \overline{X} \to [0,1]$$

 Γ quasi-Fuchsian

$$\overline{X} \approx \Sigma \times [0, 1]$$

Tunnel-Vision function:

$$f: \overline{X} \to [0,1]$$

$$\Delta f = 0$$

quasi-Fuchsian

 Γ quasi-Fuchsian

$$\overline{X} \approx \Sigma \times [0, 1]$$

Tunnel-Vision function:

$$f: \overline{X} \to [0,1]$$

$$\Delta f = 0$$

$$M = [\overline{X} \times S^1]/\sim$$

$$M = [\overline{X} \times S^1]/\sim$$

 \sim : crush $\partial \overline{X} \times S^1$ to $\partial \overline{X}$.

$$M = [\overline{X} \times S^1]/\sim$$

$$M = [\overline{X} \times S^1]/\sim$$

$$g = \frac{h + dt^2}{}$$

$$M = [\overline{X} \times S^1]/\sim$$

$$g = f(1 - f)[\mathbf{h} + dt^2]$$

$$M = [\overline{X} \times S^1]/\sim$$

$$g = f(1 - f)[\mathbf{h} + dt^2]$$

Fuchsian case: $\Sigma \times S^2$ scalar-flat Kähler.

Choose k points $p_1, \ldots, p_k \in X$

Choose k points $p_1, \ldots, p_k \in X$

satisfying $\sum_{j=1}^{k} f(p_j) \in \mathbb{Z}$.

Choose k points $p_1, \ldots, p_k \in X$

satisfying $\sum_{j=1}^{k} f(p_j) \in \mathbb{Z}$.

Can do if $k \neq 1$.

Let G_j be the Green's function of p_j :

Let G_j be the Green's function of p_j :

$$\Delta G_j = 2\pi \delta_{p_j}, \qquad G_j \to 0 \text{ at } \partial \overline{X}$$

Let G_j be the Green's function of p_j , and set

$$V = 1 + \sum_{j=1}^{k} G_j.$$

$$V = 1 + \sum_{j=1}^{k} G_j.$$

$$V = 1 + \sum_{j=1}^{k} G_j.$$

Choose $P \to (X - \{p_1, \dots, p_k\})$ circle bundle with connection form θ such that

$$d\theta = \star dV$$
.

$$g = Vh + V^{-1}\theta^{2}$$

$$V = 1 + \sum_{j=1}^{k} G_{j}$$

$$d\theta = \star dV$$

$$g = f(1 - f)[Vh + V^{-1}\theta^2]$$

$$V = 1 + \sum_{j=1}^{k} G_j$$

$$d\theta = \star dV$$

$$g = f(1 - f)[Vh + V^{-1}\theta^2]$$

$$M = P \cup \{\hat{p}_1, \dots, \hat{p}_k\} \cup \partial \overline{X}$$

$$g = f(1 - f)[Vh + V^{-1}\theta^2]$$

$$\begin{array}{cccc}
M &= & P & \cup \{\hat{p}_1, \dots, \hat{p}_k\} \cup \partial \overline{X} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\overline{X} &= X - \{p_1, \dots, p_k\} \cup \{p_1, \dots, p_k\} \cup \partial \overline{X}
\end{array}$$

$$g = f(1 - f)[Vh + V^{-1}\theta^2]$$

$$M = P \cup \{\hat{p}_1, \dots, \hat{p}_k\} \cup \partial \overline{X}$$

$$g = f(1 - f)[Vh + V^{-1}\theta^{2}]$$

$$M = P \cup \{\hat{p}_{1}, \dots, \hat{p}_{k}\} \cup \partial \overline{X}$$

$$\approx (\Sigma \times S^{2}) \# k \overline{\mathbb{CP}}_{2}$$

$$\overline{X} = \Sigma \times [0, 1]$$

$$\overline{X} = \Sigma \times [0, 1]$$

$$g = f(1 - f)[Vh + V^{-1}\theta^{2}]$$

$$M = P \cup \{\hat{p}_{1}, \dots, \hat{p}_{k}\} \cup \partial \overline{X}$$

$$\approx (\Sigma \times S^{2}) \# k \overline{\mathbb{CP}}_{2}$$

$$g = f(1 - f)[Vh + V^{-1}\theta^2]$$

$$M = P \cup {\{\hat{p}_1, \dots, \hat{p}_k\} \cup \partial \overline{X}}$$

Fuchsian case: $(\Sigma \times S^2) \# k \overline{\mathbb{CP}}_2$ scalar-flat Kähler

 Γ quasi-Fuchsian

$$\overline{X} \approx \Sigma \times [0, 1]$$

Tunnel-Vision function:

$$f: \overline{X} \to [0,1]$$

$$\Delta f = 0$$

Theorem.

Theorem. Let (M, [g]) be ASD manifold

Theorem. Let (M, [g]) be ASD manifold arising from a quasi-Fuchsian 3-manifold (X, h)

Then $\exists almost\text{-}K\ddot{a}hler g \in [g]$

Then $\exists \ almost\text{-}K\ddot{a}hler \ g \in [g] \iff$

Then \exists almost-Kähler $g \in [g] \iff tunnel\text{-}vision$ function $f: X \to (0, 1)$

Then \exists almost-Kähler $g \in [g] \iff tunnel\text{-}vision$ function $f: X \to (0,1)$ has no critical points.

Then \exists almost-Kähler $g \in [g] \iff tunnel\text{-}vision$ function $f: X \to (0,1)$ has no critical points.

Then \exists almost-Kähler $g \in [g] \iff tunnel\text{-}vision$ function $f: X \to (0,1)$ has no critical points.

$$b_{+}[(\Sigma \times S^{2}) \# k \overline{\mathbb{CP}}_{2}] = 1.$$

Then \exists almost-Kähler $g \in [g] \iff tunnel\text{-}vision$ function $f: X \to (0,1)$ has no critical points.

$$b_{+}[(\Sigma \times S^{2}) \# k \overline{\mathbb{CP}}_{2}] = 1.$$

$$\omega = df \wedge \theta + V \star df.$$

Then \exists almost-Kähler $g \in [g] \iff tunnel\text{-}vision$ function $f: X \to (0,1)$ has no critical points.

$$b_{+}[(\Sigma \times S^{2}) \# k \overline{\mathbb{CP}}_{2}] = 1.$$

$$\omega = df \wedge \theta + V \star df.$$

Lemma.

Lemma. For any piecewise smooth Jordan curve $\gamma \subset \mathbb{C}$

Lemma. For any piecewise smooth Jordan curve $\gamma \subset \mathbb{C}$ and any $\varepsilon > 0$,

Lemma. For any piecewise smooth Jordan curve $\gamma \subset \mathbb{C}$ and any $\varepsilon > 0$, there is a positive integer N

Lemma. For any piecewise smooth Jordan curve $\gamma \subset \mathbb{C}$ and any $\varepsilon > 0$, there is a positive integer N such that, for every compact oriented surface Σ

Lemma. For any piecewise smooth Jordan curve $\gamma \subset \mathbb{C}$ and any $\varepsilon > 0$, there is a positive integer N such that, for every compact oriented surface Σ of genus $g \geq N$,

Lemma. For any piecewise smooth Jordan curve $\gamma \subset \mathbb{C}$ and any $\varepsilon > 0$, there is a positive integer N such that, for every compact oriented surface Σ of genus $g \geq N$, there is quasi-Fuchsian group $\Gamma \cong \pi_1(\Sigma)$

Lemma. For any piecewise smooth Jordan curve $\gamma \subset \mathbb{C}$ and any $\varepsilon > 0$, there is a positive integer N such that, for every compact oriented surface Σ of genus $g \geq N$, there is quasi-Fuchsian group $\Gamma \cong \pi_1(\Sigma)$ whose limit set $\Lambda(\Gamma) \subset \mathbb{C} \subset \mathbb{CP}_1$

Lemma. For any piecewise smooth Jordan curve $\gamma \subset \mathbb{C}$ and any $\varepsilon > 0$, there is a positive integer N such that, for every compact oriented surface Σ of genus $g \geq N$, there is quasi-Fuchsian group $\Gamma \cong \pi_1(\Sigma)$ whose limit set $\Lambda(\Gamma) \subset \mathbb{C} \subset \mathbb{CP}_1$ is within Hausdorff distance ε of γ .

Lemma. For any piecewise smooth Jordan curve $\gamma \subset \mathbb{C}$ and any $\varepsilon > 0$, there is a positive integer N such that, for every compact oriented surface Σ of genus $g \geq N$, there is quasi-Fuchsian group $\Gamma \cong \pi_1(\Sigma)$ whose limit set $\Lambda(\Gamma) \subset \mathbb{C} \subset \mathbb{CP}_1$ is within Hausdorff distance ε of γ .

If γ is invariant under $\zeta \mapsto -\zeta$, and if \mathfrak{g} is even, we can also arrange for $\Lambda(\Gamma)$ to also be invariant under reflection through the origin.

Lemma. For any piecewise smooth Jordan curve $\gamma \subset \mathbb{C}$ and any $\varepsilon > 0$, there is a positive integer N such that, for every compact oriented surface Σ of genus $g \geq N$, there is quasi-Fuchsian group $\Gamma \cong \pi_1(\Sigma)$ whose limit set $\Lambda(\Gamma) \subset \mathbb{C} \subset \mathbb{CP}_1$ is within Hausdorff distance ε of γ .

If γ is invariant under $\zeta \mapsto -\zeta$, and if \mathfrak{g} is even, we can also arrange for $\Lambda(\Gamma)$ to also be invariant under reflection through the origin.

Ahlfors-Bers: Quasi-conformal mappings

Theorem A. Consider 4-manifolds $M = \Sigma \times S^2$, where Σ compact Riemann surface of genus g.

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of locally-conformally-flat classes on M, such that

- $\exists scalar\text{-flat K\"{a}hler metric } g_0 \in [g_0]; but$
- \nexists almost-Kähler metric $g \in [g_1]$.

Theorem B. Fix an integer $k \geq 2$, and then consider the 4-manifolds $M = (\Sigma \times S^2) \# k \overline{\mathbb{CP}}_2$, where Σ compact Riemann surface of genus g.

Then \forall even $g \gg 0$, \exists family $[g_t]$, $t \in [0,1]$, of anti-self-dual conformal classes on M, such that

- $\exists scalar\text{-flat K\"{a}hler metric } g_0 \in [g_0]; but$
- \nexists almost-Kähler metric $g \in [g_1]$.