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Higher dimensions are demonstrably different.
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Kahler <= J integrable.
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Any two algebraically determine the third.

For example, can avoid explicitly mentioning /.
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Lemma. An oriented Riemannian 4-manifold (M, g)
is almost-Kahler w/ respect to the 2-form w <=

o ‘W|g — \/§7
e w 15 a harmonic 2-form, and

® Xl = W.
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Hodge theory:

H*(M,R)={p e D(A%) | dp =0, d*yp =0}
Since * is involution of RHS, —

H*(M,R) =H} dH,,
where

Hy ={p € T(A\") | dp = 0}

self-dual & anti-self-dual harmonic forms.

One can choose a basis for H;t that depends
continuously on ¢ in the CH¢ topology.

In particular, the numbers
by (M) = dim#H;

are independent of ¢, and so are invariants of M.
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but also expressible as a curvature integral:

1
1272 S

(M) (W2 = W) du

Has major consequences in conformal geometry:.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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) = [ (W W) d

measures the deviation from conformal flatness,
because (M*?, ) is locally conformally flat <=
its Weyl curvature W = W 4+ W _ vanishes.

Basic problems: For given smooth compact M 4

e What is inf 77

e Do there exist minimizers?

~
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For M* compact, the Weyl functional

) = [ (W W) d

measures the deviation from conformal flatness,
because (M*?, ) is locally conformally flat <=
its Weyl curvature W = W 4+ W _ vanishes.

But we've already noted that

a2 (M) = [ (IWal? = W- ) d

is a topological invariant.

In particular, metrics with W4 = 0 minimize #".

If g has W =0, it is said to be anti-self-dual.
(ASD)
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Twistor picture of anti-selt-duality condition:

Oriented (M?, g) e~ (Z,J).
7 =8S\Y, J.TZ—=>TZ, J*=—1

Theorem (Atiyah-Hitchin-Singer). (Z, J) is a com-
plex 3-manafold iff W = 0.

Motivates study of ASD metrics,
and yields methods for constructing them.
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Scalar-flat Kahler surfaces:
special case of cscK manifolds,
and so of extremal Kahler manifolds.

Results proved about SFK in '90s foreshadowed
many more recent results about general case.
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If (M*, g, .J) is a Kihler surface, then [g] is ASD

<= the scalar curvature s of ¢ is identically zero.
Scalar-flat Kahler surfaces:

Classification up to diffeomorphism:
e Ricci-flat case
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A different link with complex geometry:

If (M*, g, .J) is a Kihler surface, then [g] is ASD

<= the scalar curvature s of ¢ is identically zero.
Scalar-flat Kahler surfaces:

Classification up to diffeomorphism:
e Ricci-flat case
e Non-Ricci-flat case
— CPo#kCP,, k > 10
—(T? x S?)#kCPy, k > 1
— Y x S? and ©x 52, genus Y > 2
— (2 x S?)#kCPy, k > 1
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Notice that the 4-manifolds CPy#kCP,

do not admit scalar-flat Kahler metrics when £ < 9.

Plausible conjecture:
these manifolds don’t admit any ASD metrics.

Stronger conjecture:
any metric on one of these manifolds M satisfies

/ Wi |*dp >
M

Theorem (Gursky '98). True for conformal classes
of positive Yamabe constant.

e

o (2 +37)(M)

Theorem (L. '15). True for conformal classes of
symplectic type.
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K=—1

Product is scalar-flat Kahler.
For both orientations!

Wiy =0.
Locally conformally flat!
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M =H"x5*=8"- 35!

7T1(Z) — SO_|_(1,2) X SO(S) — SO_|_(1, 5)
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K- 11 M=% xS

SQ

= T =

K =-1

Scalar-flat Kahler deformations: 12(g — 1) moduli
almost-Kéahler ASD deformatns: 30(g—1) moduli
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Last result indicates that almost-Kahler condition
oives extra control on ASD conformal geometry:.

[nyoung Kim '16: classification of almost-Kahler
ASD roughly the same as in scalar-flat Kahler case.

Does this say anything about general ASD metrics?

Almost-Kahler ASD metrics sweep out an open set
in the ASD moduli space.

[s this subset also closed?

Does one get entire connected components this way”?

Alas, No!
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Then ¥ even g > 0, 3 family |g¢], t € [0,1], of
locally-conformally-flat classes on M, such that

e 1 scalar-flat Kdhler metric gg € |gol; but
o B almost-Kdihler metric g € [g1].

Same method simultaneously proves. ..
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Theorem B. Fix an integer k > 2, and then
consider the 4-manifolds M = (¥ x S?)#kCPs,
where >. compact Riemann surface of genus g4.

Then ¥ even g > 0, 3 family |g¢], t € [0,1], of
anti-self-dual conformal classes on M, such that

e 1 scalar-flat Kdhler metric gg € |gol; but
e B almost-Kihler metric g € [g1].

Proof hinges on a construction of hyperbolic 3-manifolds.

We begin by revisiting hyperbolic metrics on ..
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1 (2) ST C PSL(2, C) quasi-Fuchsian group
of Bers type

Quasi-conformally conjugate to Fuchsian.
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X =H3T

Construction of conformally flat 4-manifolds:

M =X x S/ ~

g=f(1—f)[h+dt”]

Fuchsian case: 3 x S2 scalar-flat Kahler.
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Choose k points p1,...,pr € X

satistying Z?ﬂf (pj) € Z.

Can do if k£ # 1.
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Construction of ASD 4-manifolds:

Choose P — (X —{p1,...,pr}) circle bundle with
connection form 6 such that

df = xdV/ .
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Construction of ASD 4-manifolds:
g=Ff(1-Vh+ V¢
M:PU{ﬁl,...,ﬁk}Uay

Fuchsian case: (X x S?)#kCPy scalar-flat Kihler
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Theorem A. Consider 4-manifolds M = ¥ x 52,
where Y. compact Riemann surface of genus g4.

Then ¥ even g > 0, 3 family |g¢], t € [0,1], of
locally-conformally-flat classes on M, such that

e 1 scalar-flat Kdhler metric gg € |gol; but
o B almost-Kdihler metric g € [g1].
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