### The Einstein-Maxwell Equations

and

Conformally Kähler Geometry

Claude LeBrun Stony Brook University

Vanderbilt University, 5/18/15





Oriented Riemannian  $(M^4, h)$ 

$$d\mathbf{F} = 0$$

$$dF = 0$$
$$d \star F = 0$$

$$dF = 0$$

$$d \star F = 0$$

$$\begin{bmatrix} \mathbf{r} + F \circ F \end{bmatrix}_0 = 0$$

### Einstein-Maxwell equations:

$$dF = 0$$

$$d \star F = 0$$

$$\begin{bmatrix} r + F \circ F \end{bmatrix}_0 = 0$$

for h and F,

#### Einstein-Maxwell equations:

$$dF = 0$$

$$d \star F = 0$$

$$\begin{bmatrix} r + F \circ F \end{bmatrix}_0 = 0$$

for h and F, where

r = Ricci tensor of h,

#### Einstein-Maxwell equations:

$$dF = 0$$

$$d \star F = 0$$

$$\begin{bmatrix} r + F \circ F \end{bmatrix}_0 = 0$$

for h and F, where

r = Ricci tensor of h,

$$(F \circ F)_{jk} = F_j{}^{\ell}F_{\ell k},$$

#### Einstein-Maxwell equations:

$$dF = 0$$

$$d \star F = 0$$

$$\begin{bmatrix} r + F \circ F \end{bmatrix}_0 = 0$$

for h and F, where

r = Ricci tensor of h,

$$(F \circ F)_{jk} = F_j{}^{\ell}F_{\ell k},$$

means "trace-free part."

#### Einstein-Maxwell equations:

$$dF = 0$$

$$d \star F = 0$$

$$\begin{bmatrix} r + F \circ F \end{bmatrix}_0 = 0$$

for h and F, where

r = Ricci tensor of h,

$$(F \circ F)_{jk} = F_j{}^{\ell}F_{\ell k},$$

means "trace-free part."

 $\dim M = 4 \Longrightarrow \text{scalar curvature } s = \text{constant.}$ 

#### Einstein-Maxwell equations:

$$dF = 0$$

$$d \star F = 0$$

$$\begin{bmatrix} r + F \circ F \end{bmatrix}_0 = 0$$

for h and F.

#### Einstein-Maxwell equations:

$$dF = 0$$

$$d \star F = 0$$

$$\begin{bmatrix} r + F \circ F \end{bmatrix}_0 = 0$$

for h and F.

First two equations: F is harmonic 2-form.

#### Einstein-Maxwell equations:

$$dF = 0$$

$$d \star F = 0$$

$$\begin{bmatrix} r + F \circ F \end{bmatrix}_0 = 0$$

for h and F.

First two equations: F is harmonic 2-form.

Physics: F = electromagnetic field.

#### Einstein-Maxwell equations:

$$dF = 0$$

$$d \star F = 0$$

$$\begin{bmatrix} r + F \circ F \end{bmatrix}_0 = 0$$

for h and F.

First two equations: F is harmonic 2-form.

Physics: F = electromagnetic field.

If  $F \equiv 0$ , equations say h is Einstein.

#### Einstein-Maxwell equations:

$$dF = 0$$

$$d \star F = 0$$

$$\begin{bmatrix} r + F \circ F \end{bmatrix}_0 = 0$$

for h and F.

First two equations: F is harmonic 2-form.

Physics: F = electromagnetic field.

If  $F \equiv 0$ , equations say h is Einstein.

Physics: h = gravitational field.

Let  $(M^4, h, J)$  be  $\operatorname{csc} K$ :

Let  $(M^4, h, J)$  be  $\operatorname{csc} K$ :

Kähler surface with

s = constant.

Let  $(M^4, h, J)$  be  $\operatorname{csc} K$ :

Kähler surface with

s = constant.

Set

$$F = \frac{1}{2}\omega + \mathring{\rho}$$

Let  $(M^4, h, J)$  be  $\operatorname{csc} K$ :

Kähler surface with

s = constant.

Set

$$F = \frac{1}{2}\omega + \mathring{\rho}$$

where  $\omega = \text{K\"{a}hler form}$ ,

Let  $(M^4, h, J)$  be cscK:

Kähler surface with

s = constant.

Set

$$F = \frac{1}{2}\omega + \mathring{\rho}$$

where  $\omega = \text{K\"{a}hler form}$ ,

 $\stackrel{\circ}{\rho} = \rho - \frac{s}{4}\omega$  primitive part of Ricci form.

Let  $(M^4, h, J)$  be cscK:

Kähler surface with

s = constant.

Set

$$F = \frac{1}{2}\omega + \mathring{\rho}$$

where  $\omega = \text{K\"{a}hler form}$ ,

 $\mathring{\rho} = \rho - \frac{s}{4}\omega$  primitive part of Ricci form.

Then (h, F) solves Einstein-Maxwell equations.

Let  $(M^4, h, J)$  be cscK:

Kähler surface with

s = constant.

Set

$$F = \frac{1}{2}\omega + \mathring{\rho}$$

where  $\omega = \text{K\"{a}hler form}$ ,

 $\mathring{\rho} = \rho - \frac{s}{4}\omega$  primitive part of Ricci form.

Then (h, F) solves Einstein-Maxwell equations.

Purely 4-dimensional phenomenon.

The Lie group SO(4) is not simple:

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented  $(M^4, g)$ ,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented 
$$(M^4, g)$$
,  $\Longrightarrow$ 

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented  $(M^4, g)$ ,  $\Longrightarrow$ 

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where  $\Lambda^{\pm}$  are  $(\pm 1)$ -eigenspaces of

$$\star: \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented  $(M^4, g)$ ,  $\Longrightarrow$ 

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where  $\Lambda^{\pm}$  are  $(\pm 1)$ -eigenspaces of

$$\star: \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

 $\Lambda^+$  self-dual 2-forms.

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented 
$$(M^4, g)$$
,  $\Longrightarrow$ 

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where  $\Lambda^{\pm}$  are  $(\pm 1)$ -eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

 $\Lambda^+$  self-dual 2-forms.

 $\Lambda^-$  anti-self-dual 2-forms.

Lemma. Suppose  $M^4$  connected and oriented, equipped with  $C^3$  metric h and  $C^1$  2-form F.

Lemma. Suppose  $M^4$  connected and oriented, equipped with  $C^3$  metric h and  $C^1$  2-form F. If  $F^+ \not\equiv 0$ , then (h, F) solves Einstein-Maxwell iff

Lemma. Suppose  $M^4$  connected and oriented, equipped with  $C^3$  metric h and  $C^1$  2-form F. If  $F^+ \not\equiv 0$ , then (h, F) solves Einstein-Maxwell iff

$$dF^{+} = 0$$

$$s = const$$

$$\mathring{r} = -2F^{+} \circ F^{-}.$$

Lemma. Suppose  $M^4$  connected and oriented, equipped with  $C^3$  metric h and  $C^1$  2-form F. If  $F^+ \not\equiv 0$ , then (h, F) solves Einstein-Maxwell iff

$$dF^{+} = 0$$

$$s = const$$

$$\mathring{r} = -2F^{+} \circ F^{-}.$$

Idea due to Apostolov-Calderbank-Gauduchon.

$$H^2(\mathbf{M}, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

$$H^2(\mathbf{M}, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since  $\star$  is involution of RHS,  $\Longrightarrow$ 

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

$$H^2(\mathbf{M}, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since  $\star$  is involution of RHS,  $\Longrightarrow$ 

$$H^2(M,\mathbb{R}) = \mathcal{H}_q^+ \oplus \mathcal{H}_q^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms.

$$H^2(\mathbf{M}, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since  $\star$  is involution of RHS,  $\Longrightarrow$ 

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms.

Decomposition is conformally invariant.

The numbers

$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$

are important homotopy invariants of M.



$$H^2(M,\mathbb{R})$$



$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$



$$H^2(M,\mathbb{R})$$



 $H^2(M,\mathbb{R})$ 



$$H^2(M,\mathbb{R})$$



 $H^2(M,\mathbb{R})$ 



$$H^2(M,\mathbb{R})$$

We will say the metric g is adapted to  $\Omega$  if the harmonic form  $\omega$  representing  $\Omega$  with respect to g is self-dual.

We will say the metric g is adapted to  $\Omega$  if the harmonic form  $\omega$  representing  $\Omega$  with respect to g is self-dual.

A Riemannian analog of Kähler class:

We will say the metric g is adapted to  $\Omega$  if the harmonic form  $\omega$  representing  $\Omega$  with respect to g is self-dual.

A Riemannian analog of Kähler class:

**Definition.** In above situation, set

 $\mathcal{G}_{\Omega} := \{ \Omega \text{-adapted metrics } g \in \mathcal{G} \}.$ 

We will say the metric g is adapted to  $\Omega$  if the harmonic form  $\omega$  representing  $\Omega$  with respect to g is self-dual.

A Riemannian analog of Kähler class:

**Definition.** In above situation, set

$$\mathcal{G}_{\Omega} := \{ \Omega \text{-adapted metrics } g \in \mathcal{G} \},$$

where 
$$\mathcal{G} = \left\{ C^{\infty} \text{ metrics on } \mathbf{M} \right\}.$$

We will say the metric g is adapted to  $\Omega$  if the harmonic form  $\omega$  representing  $\Omega$  with respect to g is self-dual.

A Riemannian analog of Kähler class:

**Definition.** In above situation, set

$$\mathcal{G}_{\Omega} := \{ \Omega \text{-adapted metrics } g \in \mathcal{G} \}.$$

**Remark** Notice, however, that

$$\mathcal{G}_{\Omega} = \mathcal{G}_{\lambda\Omega}$$

for any  $\lambda \in \mathbb{R}^{\times}$ . Moreover,  $\mathcal{G}_{\Omega}$  invariant under  $\mathrm{Diff}_{0}(M)$  and conformal rescalings.

 $\mathcal{G}_{\Omega} \subset \mathcal{G}$  is a Fréchet submanifold of finite codimension  $b_{-}(M)$ . Moreover,  $\mathcal{G}_{\Omega} \neq \emptyset$  for an open dense set of such  $\Omega$ .

 $\mathcal{G}_{\Omega} \subset \mathcal{G}$  is a Fréchet submanifold of finite codimension  $b_{-}(M)$ . Moreover,  $\mathcal{G}_{\Omega} \neq \emptyset$  for an open dense set of such  $\Omega$ .

Open: Donaldson.

 $\mathcal{G}_{\Omega} \subset \mathcal{G}$  is a Fréchet submanifold of finite codimension  $b_{-}(M)$ . Moreover,  $\mathcal{G}_{\Omega} \neq \emptyset$  for an open dense set of such  $\Omega$ .

Open: Donaldson. Dense: Gay-Kirby

 $\mathcal{G}_{\Omega} \subset \mathcal{G}$  is a Fréchet submanifold of finite codimension  $b_{-}(M)$ . Moreover,  $\mathcal{G}_{\Omega} \neq \emptyset$  for an open dense set of such  $\Omega$ .

Open: Donaldson. Dense: Gay-Kirby

For any  $g \in \mathcal{G}_{\Omega}$ ,

 $\mathcal{G}_{\Omega} \subset \mathcal{G}$  is a Fréchet submanifold of finite codimension  $b_{-}(M)$ . Moreover,  $\mathcal{G}_{\Omega} \neq \emptyset$  for an open dense set of such  $\Omega$ .

Open: Donaldson. Dense: Gay-Kirby

For any  $g \in \mathcal{G}_{\Omega}$ , let  $\omega \in \Omega$  harmonic rep,

 $\mathcal{G}_{\Omega} \subset \mathcal{G}$  is a Fréchet submanifold of finite codimension  $b_{-}(M)$ . Moreover,  $\mathcal{G}_{\Omega} \neq \emptyset$  for an open dense set of such  $\Omega$ .

Open: Donaldson. Dense: Gay-Kirby

For any  $g \in \mathcal{G}_{\Omega}$ , let  $\omega \in \Omega$  harmonic rep, and

$$\mathcal{H}_g^- = \{ \varphi \in \Gamma(\Lambda^-) \mid d\varphi = 0 \}$$

Proposition. For any 
$$\Omega \in H^2(M, \mathbb{R})$$
 with  $\Omega^2 > 0$ ,

 $\mathcal{G}_{\Omega} \subset \mathcal{G}$  is a Fréchet submanifold of finite codimension  $b_{-}(M)$ . Moreover,  $\mathcal{G}_{\Omega} \neq \emptyset$  for an open dense set of such  $\Omega$ .

Open: Donaldson. Dense: Gay-Kirby

For any  $g \in \mathcal{G}_{\Omega}$ , let  $\omega \in \Omega$  harmonic rep, and

$$\mathcal{H}_g^- = \{ \varphi \in \Gamma(\Lambda^-) \mid d\varphi = 0 \}$$

Then

$$T_g \mathcal{G}_{\Omega} = \{ \omega \circ \varphi \mid \varphi \in \mathcal{H}_g^- \}_{L_g^2}^{\perp}$$

Proposition. For any 
$$\Omega \in H^2(M, \mathbb{R})$$
 with  $\Omega^2 > 0$ ,

 $\mathcal{G}_{\Omega} \subset \mathcal{G}$  is a Fréchet submanifold of finite codimension  $b_{-}(M)$ . Moreover,  $\mathcal{G}_{\Omega} \neq \emptyset$  for an open dense set of such  $\Omega$ .

Open: Donaldson. Dense: Gay-Kirby

For any  $g \in \mathcal{G}_{\Omega}$ , let  $\omega \in \Omega$  harmonic rep, and

$$\mathcal{H}_g^- = \{ \varphi \in \Gamma(\Lambda^-) \mid d\varphi = 0 \}$$

Then

$$T_g \mathcal{G}_{\Omega} = \{ \omega \circ \varphi \mid \varphi \in \mathcal{H}_g^- \}_{L_g^2}^{\perp} \subset \Gamma(\odot^2 T^* M).$$

For M chosen smooth compact 4-manifold, recall  $\mathcal{G} = \{ \text{ smooth metrics } g \text{ on } M \}.$ 

For M chosen smooth compact 4-manifold, recall

$$\mathcal{G} = \{ \text{ smooth metrics } g \text{ on } M \}.$$

Einstein-Hilbert action functional

$$\mathfrak{S}: \mathcal{G} \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_{M} s_{g} d\mu_{g}$$

For M chosen smooth compact 4-manifold, recall

$$\mathcal{G} = \{ \text{ smooth metrics } g \text{ on } M \}.$$

normalized

Einstein-Hilbert action functional

$$\mathfrak{S}: \mathcal{G} \longrightarrow \mathbb{R}$$

$$g \longmapsto V^{-1/2} \int_{M} \mathbf{s}_{g} d\mu_{g}$$

For M chosen smooth compact 4-manifold, recall

$$\mathcal{G} = \{ \text{ smooth metrics } g \text{ on } M \}.$$

normalized

Einstein-Hilbert action functional

$$\mathfrak{S}: \mathcal{G} \longrightarrow \mathbb{R}$$

$$g \longmapsto V^{-1/2} \int_{M} s_{g} d\mu_{g}$$

where V = Vol(M, g) inserted to make scale-invariant.

For M chosen smooth compact 4-manifold, recall

$$\mathcal{G} = \{ \text{ smooth metrics } g \text{ on } M \}.$$

Einstein metrics = critical points of normalized Einstein-Hilbert action functional

$$\mathfrak{S}: \mathcal{G} \longrightarrow \mathbb{R}$$

$$g \longmapsto V^{-1/2} \int_{M} s_{g} d\mu_{g}$$

where V = Vol(M, g) inserted to make scale-invariant.

Given  $\Omega \in H^2(M, \mathbb{R})$  with  $\Omega^2 > 0$ ,

Given  $\Omega \in H^2(M, \mathbb{R})$  with  $\Omega^2 > 0$ , now consider restricted Einstein-Hilbert functional

Given  $\Omega \in H^2(M, \mathbb{R})$  with  $\Omega^2 > 0$ , now consider restricted Einstein-Hilbert functional

$$\mathfrak{S}|_{\mathcal{G}_{\Omega}}:\mathcal{G}_{\Omega}\longrightarrow\mathbb{R}$$

$$g\longmapsto V^{-1/2}\int_{M}s_{g}d\mu_{g}.$$

Given  $\Omega \in H^2(M, \mathbb{R})$  with  $\Omega^2 > 0$ , now consider restricted Einstein-Hilbert functional

$$\mathfrak{S}|_{\mathcal{G}_{\Omega}}:\mathcal{G}_{\Omega}\longrightarrow\mathbb{R}$$

$$g\longmapsto V^{-1/2}\int_{M}s_{g}d\mu_{g}.$$

**Proposition.** An  $\Omega$ -adapted metric h is a critical point of  $\mathfrak{S}|_{\mathcal{G}_{\Omega}}$ 

Given  $\Omega \in H^2(M, \mathbb{R})$  with  $\Omega^2 > 0$ , now consider restricted Einstein-Hilbert functional

$$\mathfrak{S}|_{\mathcal{G}_{\Omega}}:\mathcal{G}_{\Omega}\longrightarrow\mathbb{R}$$

$$g\longmapsto V^{-1/2}\int_{M}s_{g}d\mu_{g}.$$

**Proposition.** An  $\Omega$ -adapted metric h is a critical point of  $\mathfrak{S}|_{\mathcal{G}_{\Omega}}$  iff (h, F) solves the Einstein-Maxwell equations

Given  $\Omega \in H^2(M, \mathbb{R})$  with  $\Omega^2 > 0$ , now consider restricted Einstein-Hilbert functional

$$\mathfrak{S}|_{\mathcal{G}_{\Omega}}:\mathcal{G}_{\Omega}\longrightarrow\mathbb{R}$$

$$g\longmapsto V^{-1/2}\int_{M}s_{g}d\mu_{g}.$$

**Proposition.** An  $\Omega$ -adapted metric h is a critical point of  $\mathfrak{S}|_{\mathcal{G}_{\Omega}}$  iff (h, F) solves the Einstein-Maxwell equations for some F with  $F^+ \in \Omega$ .

## Remarkable fact:

Let  $(M^4, h, J)$  be  $\operatorname{csc} K$ :

Kähler surface with

$$s = \text{constant}.$$

Set

$$F = \frac{1}{2}\omega + \mathring{\rho}$$

Then (h, F) solves Einstein-Maxwell equations.

**Theorem** (L'10). Let M be the underlying smooth 4-manifold of a compact complex surface.

• If M of Kähler type,

Theorem (L'10). Let M be the underlying smooth 4-manifold of a compact complex surface.

• If M of Kähler type, then M carries Einstein-Maxwell solutions (h, F).

- If M of Kähler type, then M carries Einstein-Maxwell solutions (h, F).
- If M is not of Kähler type

- If M of Kähler type, then M carries Einstein-Maxwell solutions (h, F).
- If M is not of Kähler type and has  $p_q = 0$ ,

- If M of Kähler type, then M carries Einstein-Maxwell solutions (h, F).
- If M is not of Kähler type and has  $p_g = 0$ , then M carries no Einstein-Maxwell solutions.





This gives CSCK orbifold.



This gives CSCK orbifold.

Replace  $\mathbb{C}^2/\mathbb{Z}_2$  with Eguchi-Hansen metrics.



This gives CSCK orbifold.

Replace  $\mathbb{C}^2/\mathbb{Z}_2$  with Eguchi-Hansen metrics.

Arrezzo-Pacard  $\Rightarrow \exists$  CSCK metric.



This gives CSCK orbifold.

Replace  $\mathbb{C}^2/\mathbb{Z}_2$  with Eguchi-Hansen metrics.

Arrezzo-Pacard  $\Rightarrow \exists$  CSCK metric.

Systematic study: Yujen Shu's thesis.

- If M of Kähler type, then M carries Einstein-Maxwell solutions (h, F).
- If M is not of Kähler type and has  $p_g = 0$ , then M carries no Einstein-Maxwell solutions.

Theorem (L'10). Let M be the underlying smooth 4-manifold of a compact complex surface.

- If M of Kähler type, then M carries Einstein-Maxwell solutions (h, F).
- If M is not of Kähler type and has  $p_g = 0$ , then M carries no Einstein-Maxwell solutions.

Einstein-Maxwell deeply related to Kähler!

Question If M is the underlying 4-manifold of a compact complex surface,

Question If M is the underlying 4-manifold of a compact complex surface, is every Einstein-Maxwell metric on M actually cscK?

Question If M is the underlying 4-manifold of a compact complex surface, is every Einstein-Maxwell metric on M actually cscK?

However, the answer is No!

Question If M is the underlying 4-manifold of a compact complex surface, is every Einstein-Maxwell metric on M actually cscK?

However, the answer is No!

Theorem. Both  $\mathbb{CP}_2 \# \mathbb{CP}_2$ 

Question If M is the underlying 4-manifold of a compact complex surface, is every Einstein-Maxwell metric on M actually cscK?

However, the answer is No!

**Theorem.** Both  $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$  and  $S^2 \times S^2$ 

Question If M is the underlying 4-manifold of a compact complex surface, is every Einstein-Maxwell metric on M actually cscK?

However, the answer is No!

Theorem. Both  $\mathbb{CP}_2\#\overline{\mathbb{CP}_2}$  and  $S^2\times S^2$  admit Einstein-Maxwell metrics

Question If M is the underlying 4-manifold of a compact complex surface, is every Einstein-Maxwell metric on M actually cscK?

However, the answer is No!

Theorem. Both  $\mathbb{CP}_2\#\overline{\mathbb{CP}}_2$  and  $S^2\times S^2$  admit Einstein-Maxwell metrics which are not cscK.

Question If M is the underlying 4-manifold of a compact complex surface, is every Einstein-Maxwell metric on M actually cscK?

However, the answer is No!

**Theorem.** Both  $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$  and  $S^2 \times S^2$  admit families of Einstein-Maxwell metrics which are not  $\operatorname{csc} K$ .

Question If M is the underlying 4-manifold of a compact complex surface, is every Einstein-Maxwell metric on M actually cscK?

However, the answer is No!

Theorem. Both  $\mathbb{CP}_2\#\overline{\mathbb{CP}}_2$  and  $S^2\times S^2$  admit families of Einstein-Maxwell metrics which are not cscK.

We will show this using yet other Kählerian ideas.

**Definition.** Let  $(M^4, J)$  be a complex surface.

**Definition.** Let  $(M^4, J)$  be a complex surface. An Einstein-Maxwell solution (h, F) on (M, J) is called strongly Hermitian

**Definition.** Let  $(M^4, J)$  be a complex surface. An Einstein-Maxwell solution (h, F) on (M, J) is called strongly Hermitian if h and F are both J-invariant: We will study only a special class of solutions:

**Definition.** Let  $(M^4, J)$  be a complex surface. An Einstein-Maxwell solution (h, F) on (M, J) is called strongly Hermitian if h and F are both J-invariant:

$$egin{aligned} h &= h(J\cdot, J\cdot), \ F &= F(J\cdot, J\cdot). \end{aligned}$$

Theorem. Let (h, F) be a strongly Hermitian Einstein-Maxwell solution Theorem. Let (h, F) be a strongly Hermitian Einstein-Maxwell solution on compact complex surface  $(M^4, J)$ .

**Theorem.** Let (h, F) be a strongly Hermitian Einstein-Maxwell solution on compact complex surface  $(M^4, J)$ . Then  $\exists$  Kähler metric g on (M, J),

**Theorem.** Let (h, F) be a strongly Hermitian Einstein-Maxwell solution on compact complex surface  $(M^4, J)$ . Then  $\exists K \ddot{a}hler metric g on <math>(M, J)$ , and a holomorphy potential f > 0

**Theorem.** Let (h, F) be a strongly Hermitian Einstein-Maxwell solution on compact complex surface  $(M^4, J)$ . Then  $\exists$  Kähler metric g on (M, J), and a holomorphy potential f > 0 such that  $h = f^{-2}g$ ,

Holomorphy potential:

$$\nabla_{\bar{\mu}} \nabla^{\nu} f = 0$$

Holomorphy potential:

$$\nabla_{\bar{\mu}} \nabla_{\bar{\nu}} f = 0$$

Holomorphy potential: f real  $\Longrightarrow$ 

$$J^*(\nabla \nabla f) = \nabla \nabla f$$

Holomorphy potential: f real  $\Longrightarrow$ 

 $J\nabla f$  Killing

Conversely, if Kähler surface  $(M^4, g, J)$  carries holomorphy potential f > 0

Conversely, if Kähler surface  $(M^4, g, J)$  carries holomorphy potential f > 0 such that  $h = f^{-2}g$  has constant scalar curvature,

Conversely, if Kähler surface  $(M^4, g, J)$  carries holomorphy potential f > 0 such that  $h = f^{-2}g$  has constant scalar curvature, then  $\exists ! \ F$  with  $F^+ = \omega$ 

Conversely, if Kähler surface  $(M^4, g, J)$  carries holomorphy potential f > 0 such that  $h = f^{-2}g$  has constant scalar curvature, then  $\exists ! \ F$  with  $F^+ = \omega$  such that (h, F) solves the Einstein-Maxwell equations.

Conversely, if Kähler surface  $(M^4, g, J)$  carries holomorphy potential f > 0 such that  $h = f^{-2}g$  has constant scalar curvature, then  $\exists ! \ F$  with  $F^+ = \omega$  such that (h, F) solves the Einstein-Maxwell equations.

$$F = \omega + \frac{\left[f\rho + 2i\,\partial\bar{\partial}f\right]_0}{2f^3}$$

 $\mathbb{CP}_1$ -bundles over  $\mathbb{CP}_1$ .

 $\mathbb{CP}_1$ -bundles over  $\mathbb{CP}_1$ .

Up to biholomorphism,

 $\mathbb{CP}_1$ -bundles over  $\mathbb{CP}_1$ .

Up to biholomorphism,

$$\Sigma_k := \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(k))$$

 $\mathbb{CP}_1$ -bundles over  $\mathbb{CP}_1$ .

Up to biholomorphism,

$$\Sigma_k := \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(k))$$

where  $k \in \mathbb{N}$ .

 $\mathbb{CP}_1$ -bundles over  $\mathbb{CP}_1$ .

Up to biholomorphism,

$$\Sigma_k := \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(k))$$

where  $k \in \mathbb{N}$ .

Up to diffeomorphism,

 $\mathbb{CP}_1$ -bundles over  $\mathbb{CP}_1$ .

Up to biholomorphism,

$$\Sigma_k := \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(k))$$

where  $k \in \mathbb{N}$ .

Up to diffeomorphism,

$$\Sigma_k \approx \begin{cases} \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2, & \text{if } k \text{ is odd; or } \end{cases}$$

 $\mathbb{CP}_1$ -bundles over  $\mathbb{CP}_1$ .

Up to biholomorphism,

$$\Sigma_k := \mathbb{P}(\mathcal{O} \oplus \mathcal{O}(k))$$

where  $k \in \mathbb{N}$ .

Up to diffeomorphism,

$$\Sigma_k \approx \begin{cases} \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2, & \text{if } k \text{ is odd; or} \\ S^2 \times S^2, & \text{if } k \text{ is even.} \end{cases}$$

Theorem. Let  $(M, J) = \sum_{k}$  be the k<sup>th</sup> Hirzebruch surface,

Theorem. Let  $(M, J) = \Sigma_k$  be the  $k^{\text{th}}$  Hirzebruch surface, with its fixed complex structure,

**Theorem.** Let  $(M, J) = \Sigma_k$  be the  $k^{\text{th}}$  Hirzebruch surface, with its fixed complex structure, and let  $\Omega$  be any Kähler class on (M, J).

**Theorem.** Let  $(M, J) = \Sigma_k$  be the  $k^{\text{th}}$  Hirzebruch surface, with its fixed complex structure, and let  $\Omega$  be any Kähler class on (M, J). Then  $\exists K \ddot{a}hler \ g \in \Omega$ 

Moreover, if  $k \geq 2$ ,

Moreover, if  $k \geq 2$ , there is a unique such g

Moreover, if  $k \geq 2$ , there is a unique such g which is also U(2)-invariant,

Moreover, if  $k \geq 2$ , there is a unique such g which is also U(2)-invariant, and this g is never extremal.

**Theorem.** Let  $\Omega$  be a Kähler class

# Theorem. Let $\Omega$ be a Kähler class on $(M, J) = \Sigma_0$

$$(M, \mathbf{J}) = \Sigma_0 = \mathbb{CP}_1 \times \mathbb{CP}_1$$

$$(M, \mathbf{J}) = \Sigma_0 = \mathbb{CP}_1 \times \mathbb{CP}_1$$

for which the area of one factor  $\mathbb{CP}_1$ 

$$(M, \mathbf{J}) = \Sigma_0 = \mathbb{CP}_1 \times \mathbb{CP}_1$$

for which the area of one factor  $\mathbb{CP}_1$  is more than double the area of the other.

$$(M, J) = \Sigma_0 = \mathbb{CP}_1 \times \mathbb{CP}_1$$

for which the area of one factor  $\mathbb{CP}_1$  is more than double the area of the other. Then  $\Omega$  contains a pair of Kähler metrics

$$(M, J) = \Sigma_0 = \mathbb{CP}_1 \times \mathbb{CP}_1$$

for which the area of one factor  $\mathbb{CP}_1$  is more than double the area of the other. Then  $\Omega$  contains a pair of Kähler metrics which engender two geometrically distinct Einstein-Maxwell solutions.

Theorem. Let  $(M, J) = \Sigma_1$ 

Theorem. Let  $(M, J) = \Sigma_1 \approx \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$ 

$$\Omega = u\mathcal{L} - v\mathcal{E}$$

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

be a Kähler class,

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

be a Kähler class, where  $\mathcal{L}$  and  $\mathcal{E}$  are respectively

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

be a Kähler class, where  $\mathcal{L}$  and  $\mathcal{E}$  are respectively the Poincaré duals of a projective line

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

be a Kähler class, where  $\mathcal{L}$  and  $\mathcal{E}$  are respectively the Poincaré duals of a projective line and the exceptional curve. Thus u > v > 0.

• If  $u/v \leq 9$ ,

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

be a Kähler class, where  $\mathcal{L}$  and  $\mathcal{E}$  are respectively the Poincaré duals of a projective line and the exceptional curve. Thus u > v > 0.

• If  $u/v \leq 9$ , there is only one  $g \in \Omega$ 

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

be a Kähler class, where  $\mathcal{L}$  and  $\mathcal{E}$  are respectively the Poincaré duals of a projective line and the exceptional curve. Thus u > v > 0.

• If  $u/v \leq 9$ , there is only one  $g \in \Omega$  conformal to an Einstein-Maxwell h.

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

be a Kähler class, where  $\mathcal{L}$  and  $\mathcal{E}$  are respectively the Poincaré duals of a projective line and the exceptional curve. Thus u > v > 0.

• If  $u/v \leq 9$ , there is only one U(2)-invariant  $g \in \Omega$  conformal to an Einstein-Maxwell h.

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

- If  $u/v \leq 9$ , there is only one U(2)-invariant  $g \in \Omega$  conformal to an Einstein-Maxwell h.
- If u/v > 9, there are three geometrically distinct  $g \in \Omega$

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

- If  $u/v \leq 9$ , there is only one U(2)-invariant  $g \in \Omega$  conformal to an Einstein-Maxwell h.
- If u/v > 9, there are three geometrically distinct  $g \in \Omega$  which are conformal to Einstein-Maxwell metrics h;

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

- If  $u/v \leq 9$ , there is only one U(2)-invariant  $g \in \Omega$  conformal to an Einstein-Maxwell h.
- If u/v > 9, there are three geometrically distinct  $g \in \Omega$  which are conformal to Einstein-Maxwell metrics h; however, two of the resulting Einstein-Maxwell h are isometric,

$$\Omega = u\mathcal{L} - v\mathcal{E} \in H^2(M, \mathbb{R})$$

- If  $u/v \leq 9$ , there is only one U(2)-invariant  $g \in \Omega$  conformal to an Einstein-Maxwell h.
- If u/v > 9, there are three geometrically distinct  $g \in \Omega$  which are conformal to Einstein-Maxwell metrics h; however, two of the resulting Einstein-Maxwell h are isometric, in an orientation-reversing manner.

**Theorem.** For these metrics on  $\Sigma_1 \approx \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$ 

Theorem. For these metrics on  $\Sigma_1 \approx \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$  there is a unique value of u/v

Theorem. For these metrics on  $\Sigma_1 \approx \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$  there is a unique value of u/v

 $for \ which \ the \ Einstein-Maxwell$   $metric \ h \ becomes \ Page's \ Einstein \ metric.$ 

Theorem. For these metrics on  $\Sigma_1 \approx \mathbb{CP}_2 \# \mathbb{CP}_2$  there is a unique value of u/v,

 $\approx 3.18393$ , for which the Einstein-Maxwell metric h becomes Page's Einstein metric.

Theorem. For these metrics on  $\Sigma_1 \approx \mathbb{CP}_2 \# \mathbb{CP}_2$  there is a unique value of u/v, given by

$$\frac{u}{v} = \left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{-1/2} + 2\sqrt{\left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{1/2} - \left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{2}}$$

and so  $\approx 3.18393$ , for which the Einstein-Maxwell metric h becomes Page's Einstein metric.

Theorem. For these metrics on  $\Sigma_1 \approx \mathbb{CP}_2 \# \mathbb{CP}_2$  there is a unique value of u/v, given by

$$\frac{u}{v} = \left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{-1/2} + 2\sqrt{\left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{1/2} - \left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{2}}$$

and so  $\approx 3.18393$ , for which the Einstein-Maxwell metric h becomes Page's Einstein metric. For other values of u/v,

Theorem. For these metrics on  $\Sigma_1 \approx \mathbb{CP}_2 \# \mathbb{CP}_2$ there is a unique value of u/v, given by

$$\frac{u}{v} = \left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{-1/2} + 2\sqrt{\left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{1/2} - \left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{2}}$$

and so  $\approx 3.18393$ , for which the Einstein-Maxwell metric h becomes Page's Einstein metric. For other values of u/v, the Kähler metrics  $g \in \Omega$  are not extremal,

Theorem. For these metrics on  $\Sigma_1 \approx \mathbb{CP}_2 \# \mathbb{CP}_2$  there is a unique value of u/v, given by

$$\frac{u}{v} = \left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{-1/2} + 2\sqrt{\left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{1/2} - \left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{2}}$$

and so  $\approx 3.18393$ , for which the Einstein-Maxwell metric h becomes Page's Einstein metric. For other values of u/v, the Kähler metrics  $g \in \Omega$  are not extremal, so the Einstein-Maxwell metrics h are not Bach-flat,

Theorem. For these metrics on  $\Sigma_1 \approx \mathbb{CP}_2 \# \mathbb{CP}_2$  there is a unique value of u/v, given by

$$\frac{u}{v} = \left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{-1/2} + 2\sqrt{\left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{1/2} - \left[\frac{1}{2} \left(\sqrt[3]{1 + \sqrt{2}} - \frac{1}{\sqrt[3]{1 + \sqrt{2}}}\right)\right]^{2}}$$

and so  $\approx 3.18393$ , for which the Einstein-Maxwell metric h becomes Page's Einstein metric. For other values of u/v, the Kähler metrics  $g \in \Omega$  are not extremal, so the Einstein-Maxwell metrics h are not Bach-flat, and hence not even conformally Einstein.

Theorem. Let smooth oriented 4-manifold M

Theorem. Let smooth oriented 4-manifold M be either  $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$ 

Theorem. Let smooth oriented 4-manifold M be either  $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$  or  $S^2 \times S^2$ .

Theorem. Let smooth oriented 4-manifold M be either  $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$  or  $S^2 \times S^2$ . For  $\Omega \in H^2(M, \mathbb{R})$ 

Theorem. Let smooth oriented 4-manifold M be either  $\mathbb{CP}_2\#\overline{\mathbb{CP}}_2$  or  $S^2\times S^2$ . For  $\Omega\in H^2(M,\mathbb{R})$  with  $\Omega^2>0$ , let  $\mathscr{M}_0=\frac{\{Einstein-Maxwell\ (h,F)\ on\ M\}}{2}$ 

$$\mathcal{M}_{\Omega} = \frac{\{Einstein-Maxwell\ (h, F)\ on\ M\mid F^{+} \in \Omega\}}{},$$

$$\mathcal{M}_{\Omega} = \frac{\{Einstein-Maxwell\ (h,F)\ on\ M\mid F^{+}\in\Omega\}}{\mathcal{D}iff_{H}(M)\times\mathbb{R}^{+}},$$

$$\mathcal{M}_{\Omega} = \frac{\{Einstein-Maxwell\ (h,F)\ on\ M\mid F^{+} \in \Omega\}}{\mathcal{D}iff_{H}(M) \times \mathbb{R}^{+}}$$

where  $\mathfrak{Diff}_{H}(M) = diffeomorphisms$  which act trivially on  $H^{2}(M)$ .

$$\mathcal{M}_{\Omega} = \frac{\{Einstein-Maxwell\ (h,F)\ on\ M\mid F^{+} \in \Omega\}}{\mathcal{D}iff_{H}(M) \times \mathbb{R}^{+}}$$

where  $\mathfrak{Diff}_{H}(M) = diffeomorphisms$  which act trivially on  $H^{2}(M)$ .

Then,  $\forall \mathbf{N} \in \mathbb{N}$ ,

$$\mathcal{M}_{\Omega} = \frac{\{Einstein-Maxwell\ (h,F)\ on\ M\mid F^{+} \in \Omega\}}{\mathcal{D}iff_{H}(M) \times \mathbb{R}^{+}}$$

where  $\mathfrak{Diff}_{H}(M) = diffeomorphisms$  which act trivially on  $H^{2}(M)$ .

Then,  $\forall \mathbf{N} \in \mathbb{N}, \exists \Omega$ 

$$\mathcal{M}_{\Omega} = \frac{\{Einstein-Maxwell\ (h,F)\ on\ M\mid F^{+} \in \Omega\}}{\mathcal{D}iff_{H}(M) \times \mathbb{R}^{+}}$$

where  $\mathfrak{Diff}_{H}(M) = diffeomorphisms$  which act trivially on  $H^{2}(M)$ .

Then,  $\forall \mathbf{N} \in \mathbb{N}$ ,  $\exists \Omega$  such that  $\mathcal{M}_{\Omega}$  has at least  $\mathbf{N}$  connected components.

### Constructions & Proofs

### Prototype:

Take g product metric: axisymmetric  $\oplus$  round.

Take g product metric: axisymmetric  $\oplus$  round.

Take g product metric: axisymmetric  $\oplus$  round.



Take g product metric: axisymmetric  $\oplus$  round.

$$g = \frac{dt^2}{\Phi(t)} + \Phi(t)d\theta^2 + \frac{2}{\mathbf{c}} \mathbf{g}_{S^2}$$

Take g product metric: axisymmetric  $\oplus$  round.

$$g = \frac{dt^2}{\Phi(t)} + \Phi(t)d\theta^2 + \frac{2}{\mathbf{c}} \mathbf{g}_{S^2}$$

$$h = \frac{g}{t^2}$$

Take g product metric: axisymmetric  $\oplus$  round.

Use holomorphy potential f as coordinate t.

$$g = \frac{dt^2}{\Phi(t)} + \Phi(t)d\theta^2 + \frac{2}{\mathbf{c}} \, \mathbf{g}_{S^2}$$

$$h = \frac{g}{t^2}$$

Equation for g to have  $s = \mathbf{d} = \text{const}$ :

Take g product metric: axisymmetric  $\oplus$  round.

Use holomorphy potential f as coordinate t.

$$g = \frac{dt^2}{\Phi(t)} + \Phi(t)d\theta^2 + \frac{2}{\mathbf{c}} \, \mathbf{g_{S^2}}$$

$$h = \frac{g}{t^2}$$

Equation for g to have  $s = \mathbf{d} = \text{const}$ :

$$t^2\Phi'' - 6t\Phi' + 12\Phi = \mathbf{c}t^2 - \mathbf{d}.$$

Take g product metric: axisymmetric  $\oplus$  round.

Use holomorphy potential f as coordinate t.

$$g = \frac{dt^2}{\Phi(t)} + \Phi(t)d\theta^2 + \frac{2}{\mathbf{c}} \, \mathbf{g_{S^2}}$$

$$h = \frac{g}{t^2}$$

Equation for g to have  $s = \mathbf{d} = \text{const}$ :

$$t^2\Phi'' - 6t\Phi' + 12\Phi = \mathbf{c}t^2 - \mathbf{d}.$$

$$\implies \Phi(t) = At^4 + Bt^3 + \frac{\mathbf{c}}{2}t^2 - \frac{\mathbf{d}}{12}$$

$$\Phi(\mathbf{a}) = \Phi(\mathbf{b}) = 0, \quad \Phi'(\mathbf{a}) = -\Phi'(\mathbf{b}) = 2, \quad \Phi'(0) = 0.$$

$$\Phi(t) = \frac{(t - \mathbf{a})(t - \mathbf{b})}{\mathbf{a} - \mathbf{b}} \left[ 2 - \frac{(t - \mathbf{a})(t - \mathbf{b})}{\mathbf{a}b} \right]$$



$$\Phi(t) = \frac{(t - \mathbf{a})(t - \mathbf{b})}{\mathbf{a} - \mathbf{b}} \left[ 2 - \frac{(t - \mathbf{a})(t - \mathbf{b})}{\mathbf{a}b} \right]$$

$$g = (x + \alpha) \left[ \frac{dx^2}{2\Psi} + 2(\sigma_1^2 + \sigma_2^2) \right] + \frac{2\Psi}{x + \alpha} \sigma_3^2$$

$$g = (x + \alpha) \left[ \frac{dx^2}{2\Psi} + 2(\sigma_1^2 + \sigma_2^2) \right] + \frac{2\Psi}{x + \alpha} \sigma_3^2$$

and

$$h = \frac{g}{x^2}$$

$$g = (x + \alpha) \left[ \frac{dx^2}{2\Psi} + 2(\sigma_1^2 + \sigma_2^2) \right] + \frac{2\Psi}{x + \alpha} \sigma_3^2$$

and

$$h = \frac{g}{x^2}$$

where  $\{\sigma_j\}$  left-inv. o.n. coframe on  $S^3 = \mathbf{SU}(2)$ ,

$$g = (x + \alpha) \left[ \frac{dx^2}{2\Psi} + 2(\sigma_1^2 + \sigma_2^2) \right] + \frac{2\Psi}{x + \alpha} \sigma_3^2$$

and

$$h = \frac{g}{x^2}$$

where  $\{\sigma_j\}$  left-inv. o.n. coframe on  $S^3 = \mathbf{SU}(2)$ ,

$$\Psi(x) = \mathfrak{A}x^4 + \mathfrak{B}x^3 + x^2 + \mathfrak{C}x + \frac{\mathfrak{C}\alpha}{2}$$

$$g = (x + \alpha) \left[ \frac{dx^2}{2\Psi} + 2(\sigma_1^2 + \sigma_2^2) \right] + \frac{2\Psi}{x + \alpha} \sigma_3^2$$

and

$$h = \frac{g}{x^2}$$

where  $\{\sigma_j\}$  left-inv. o.n. coframe on  $S^3 = \mathbf{SU}(2)$ ,

$$\Psi(x) = \mathfrak{A}x^4 + \mathfrak{B}x^3 + x^2 + \mathfrak{C}x + \frac{\mathfrak{C}\alpha}{2}$$

generic quartic with  $\Psi''(0) = 2$ .

$$\Psi(x) = \frac{(\mathbf{b} - x)(x - \mathbf{a})}{\mathbf{b} - \mathbf{a}} [\mathbf{k}(x + \alpha) + E(\mathbf{b} - x)(x - \mathbf{a})]$$

$$\Psi(x) = \frac{(\mathbf{b} - x)(x - \mathbf{a})}{\mathbf{b} - \mathbf{a}} \left[ k(x + \alpha) + E(\mathbf{b} - x)(x - \mathbf{a}) \right]$$

with

$$E = \frac{\mathbf{k}\alpha - (\mathbf{k} + 1)\mathbf{a} - (\mathbf{k} - 1)\mathbf{b}}{\mathbf{a}^2 + 4\mathbf{a}\mathbf{b} + \mathbf{b}^2}$$

$$\Psi(x) = \frac{(\mathbf{b} - x)(x - \mathbf{a})}{\mathbf{b} - \mathbf{a}} \left[ \mathbf{k}(x + \alpha) + E(\mathbf{b} - x)(x - \mathbf{a}) \right]$$

with

$$E = \frac{\mathbf{k}\alpha - (\mathbf{k} + 1)\mathbf{a} - (\mathbf{k} - 1)\mathbf{b}}{\mathbf{a}^2 + 4\mathbf{a}\mathbf{b} + \mathbf{b}^2}$$

and

$$\alpha = \begin{cases} -\frac{\mathbf{ab}}{\mathbf{a} + \mathbf{b}} & \text{for any } k \in \mathbb{Z}^+; \text{ or } \\ & \end{cases}$$

$$\Psi(x) = \frac{(\mathbf{b} - x)(x - \mathbf{a})}{\mathbf{b} - \mathbf{a}} \left[ \mathbf{k}(x + \alpha) + E(\mathbf{b} - x)(x - \mathbf{a}) \right]$$

with

$$E = \frac{\mathbf{k}\alpha - (\mathbf{k} + 1)\mathbf{a} - (\mathbf{k} - 1)\mathbf{b}}{\mathbf{a}^2 + 4\mathbf{a}\mathbf{b} + \mathbf{b}^2}$$

and

$$\alpha = \begin{cases} -\frac{\mathbf{ab}}{\mathbf{a} + \mathbf{b}} & \text{for any } \mathbf{k} \in \mathbb{Z}^+; \text{ or} \\ -\frac{4\mathbf{a}^2\mathbf{b}}{(\mathbf{a} + \mathbf{b})^2} & \text{for } \mathbf{k} = 1. \end{cases}$$

### Einstein-Hilbert Functional:

### Einstein-Hilbert Functional:

Hirzebruch,  $k \ge 1$ :

#### Einstein-Hilbert Functional:

Hirzebruch,  $k \geq 1$ :

$$s_h V_h^{1/2} = 8\pi\sqrt{6} \frac{\mathbf{b}^2 - \mathbf{a}^2 + k\mathbf{a}\mathbf{b}}{\sqrt{k(\mathbf{b}^2 - \mathbf{a}^2)(\mathbf{a}^2 + 4\mathbf{a}\mathbf{b} + \mathbf{b}^2)}}.$$

Tends to  $S^4/\mathbb{Z}_k$  value as  $\mathbf{b}/\mathbf{a} \to \infty$ .

#### Einstein-Hilbert Functional:

Hirzebruch,  $k \geq 1$ :

$$s_h V_h^{1/2} = 8\pi\sqrt{6} \frac{\mathbf{b}^2 - \mathbf{a}^2 + k\mathbf{a}\mathbf{b}}{\sqrt{k(\mathbf{b}^2 - \mathbf{a}^2)(\mathbf{a}^2 + 4\mathbf{a}\mathbf{b} + \mathbf{b}^2)}}.$$

Tends to  $S^4/\mathbb{Z}_k$  value as  $\mathbf{b}/\mathbf{a} \to \infty$ .

Special family, k = 1:

#### Einstein-Hilbert Functional:

Hirzebruch,  $k \geq 1$ :

$$s_h V_h^{1/2} = 8\pi\sqrt{6} \frac{\mathbf{b}^2 - \mathbf{a}^2 + k\mathbf{a}\mathbf{b}}{\sqrt{k(\mathbf{b}^2 - \mathbf{a}^2)(\mathbf{a}^2 + 4\mathbf{a}\mathbf{b} + \mathbf{b}^2)}}.$$

Tends to  $S^4/\mathbb{Z}_k$  value as  $\mathbf{b}/\mathbf{a} \to \infty$ .

Special family, k = 1:

$$s_h V_h^{1/2} = 4\pi \frac{\sqrt{6(3\mathbf{b}^2 + 4\mathbf{a}\mathbf{b} + 5\mathbf{a}^2)}}{(\mathbf{a} + \mathbf{b})}.$$

#### Einstein-Hilbert Functional:

Hirzebruch,  $k \geq 1$ :

$$s_h V_h^{1/2} = 8\pi\sqrt{6} \frac{\mathbf{b}^2 - \mathbf{a}^2 + k\mathbf{a}\mathbf{b}}{\sqrt{k(\mathbf{b}^2 - \mathbf{a}^2)(\mathbf{a}^2 + 4\mathbf{a}\mathbf{b} + \mathbf{b}^2)}}.$$

Tends to  $S^4/\mathbb{Z}_k$  value as  $\mathbf{b}/\mathbf{a} \to \infty$ .

Special family, k = 1:

$$s_h V_h^{1/2} = 4\pi \frac{\sqrt{6(3\mathbf{b}^2 + 4\mathbf{a}\mathbf{b} + 5\mathbf{a}^2)}}{(\mathbf{a} + \mathbf{b})}.$$

Tends to  $\mathbb{CP}_2$  value as  $\mathbf{b}/\mathbf{a} \to \infty$ .

• Existence on other rational surfaces?

- Existence on other rational surfaces?
- Toric solutions?

- Existence on other rational surfaces?
- Toric solutions?
- Isometry group? Matsushima-Lichnerowicz-Calabi?

- Existence on other rational surfaces?
- Toric solutions?
- Isometry group? Matsushima-Lichnerowicz-Calabi?
- Preferred Killing field?

- Existence on other rational surfaces?
- Toric solutions?
- Isometry group? Matsushima-Lichnerowicz-Calabi?
- Preferred Killing field?
- Essentially non-Kähler solutions?

- Existence on other rational surfaces?
- Toric solutions?
- Isometry group? Matsushima-Lichnerowicz-Calabi?
- Preferred Killing field?
- Essentially non-Kähler solutions?
- Hermitian vs. Strongly Hermitian?

- Existence on other rational surfaces?
- Toric solutions?
- Isometry group? Matsushima-Lichnerowicz-Calabi?
- Preferred Killing field?
- Essentially non-Kähler solutions?
- Hermitian vs. Strongly Hermitian?
- Non-Kähler surfaces with  $p_q \neq 0$ ?

- Existence on other rational surfaces?
- Toric solutions?
- Isometry group? Matsushima-Lichnerowicz-Calabi?
- Preferred Killing field?
- Essentially non-Kähler solutions?
- Hermitian vs. Strongly Hermitian?
- Non-Kähler surfaces with  $p_g \neq 0$ ?
- General 4-manifolds?