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“Does every smooth compact manifold admit
a best metric!”

— René Thom, c¢. 1960

“What is best?”
— Socrates, ¢. 400 BC

“An optimal metric would seem to mean the
least curved one.”

— Marcel Berger

“Huh?”

— Anonymous
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Trade-oft: small curvature «—— big volume.
Need scale-invariant measure of curvature!

Natural choice: Riemannian functional

g — Klg)i= [ IRl duy

Definition (Berger). Let M™ be a smooth com-
pact n-manifold, n > 3. A Riemannian metric
g on M will be called an optimal metric if ot is
an absolute minimizer of the functional IC.
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In dimension four,

g Ko) = [ Ry
M

cf. Yang-Mills functional; Calabi’s functionals.

Berger’s motivation: Einstein metrics.

Definition. A Riemannian metric 1s said to be
Einstein ¢f ot has constant Ricci curvature — i.e.

r= Ag

for some constant A € R.
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Proposition (Berger). Let (M*, g) be a compact
Einstein 4-manifold. Then g is an optimal met-
ric. Moreover, every other optimal metric g on
M s also Einstein.

This statement is false in every other dimension!
Standard S2F*1 §2k+1 « 83 not optimal. . .
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What'’s so special about dimension 47

The Lie group SO(4) is not simple:

50(4) = s50(3) @ s0(3).
On oriented (M4, g), —
A =AtoA~
where AF are (£1)-eigenspaces of
%A% — A2,
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°

splits into 4 irreducible pieces:

[ )

W_|_-|—1—82 r

s = scalar curvature
I = trace-free Ricci curvature
W = self-dual Weyl curvature (conformally invariant)

W _ = anti-self-dual Weyl curvature !
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(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

4-dimensional Hirzebruch signature formula

1
=5 | (W2 = W_P?) du

for signature 7(M) = by (M) — b_(M).
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= sex () + [ P,
M

Berger:  Einstein = optimal.
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Definition. A Riemannian metric g on a smooth
oriented 4-manifold M is called anti-self-dual (ASD)
if 1t satisfies

W_|_ = 0.
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Definition. A Riemannian metric g on a smooth
oriented 4-manifold M is called anti-self-dual (ASD)
if 1t satisfies
W_|_ = (.
If also
s=0
then called scalar-flat anti-self-dual (SFASD).
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Proposition (Lafontaine). If smooth compact ori-
ented M* carries SFASD metric g, then g is op-

timal; and every other optimal metric g on M
is SFASD, too.

Also get topological obstruction:

5° ) I
(2x +37)(M) = — y o7 T2AWa]" = = | dug

< 0.

Reverse Hitchin-Thorpe!
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Connected sum:

K3 = Kummer-Kahler-Kodaira manifold.

X X
T4

2
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Proposition. Let M* be simply connected smooth
compact. If M admits a scalar-flat anti-self-dual
metric, then

o \ is homeomorphic to kCPs, k > 5; or
o \ is diffeomorphic to CPy#kCPy, k > 10; or
o VI 1s diffeomorphic to K 3.

Weitzenbock formula =
by (M) = dim{p € T(AT) | Vo = 0}.

Lafontaine:

(2x + 37)(M) < 0.

Enriques, Kodaira, Donaldson, Freedman.
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Theorem A. Simply connected smooth compact
M* actually admits a scalar-flat anti-self-dual
metric if

o \ is diffeomorphic to kCPs, k > 5; or
o \/ is diffeomorphic to CPy#kCPs, k > 10; or
o VI is diffeomorphic to K3.

Corollary. These M* admit optimal metrics.

For M4 =+ K3, optimal, but not Einstein.



Corollary. A compact simply connected topolog-
ical 4-manifold M carries a smooth structure for
which there 1s a compatible SFASD metric g iff
M 1s homeomorphic to

® k@g, k > 5,’
® Cpg#k@% k > 10,’ or
o /(3.
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Theorem A. Simply connected smooth compact
M* actually admits a scalar-flat anti-self-dual
metric if

o \ is diffeomorphic to kCPs, k > 5; or
o \/ is diffeomorphic to CPy#kCPs, k > 10; or
o VI is diffeomorphic to K3.

Pieces of proof:

Yau (1978)
Kim-LeBrun-Pontecorvo (1993)
Singer-Rollin (2004)

LeBrun (2004)

LeBrun-Maskit (2008)
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S

(d+d*)p = V*Vip —2W i (p,-) + =¥

shows A ASD metrics with s > 0.

But when b4 (M) = 0, key is to find
family g¢ of ASD metrics s.t. s changes sign.



Proposition. For any integer k > 5, the con-
nected sum

kCPy = CPo# - - - #CPy
)s

admats 1-parameter family of ASD conformal met-
rics [g¢], t € [—1,1], such that

e dg_1 € |g_1] with s < 0; and
e 19y € |g1] with s > 0.
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Twistor picture of anti-selt-duality condition:

Oriented (M?, g) e (Z,J).
7 =S\, J:TZ -TZ,J>=—1.

Theorem (Atiyah-Hitchin-Singer). (Z, J) is a com-
plex 3-manafold iff W = 0.
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But most ASD conformal classes on compact M
will not contain metric with s = 0.

Problem <= sign of Yamabe constant.

<= sign Ag for Yamabe Laplacian

(A +5/6)
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Proposition. For any integer k > 5, the con-
nected sum

kCPy = CPo# - - - #CPy
)s

admats 1-parameter family of ASD conformal met-
rics [g¢], t € [—1,1], such that

e dg_1 € |g_1] with s < 0; and
e 19y € |g1] with s > 0.

Strategy:

e Find such metrics on related orbifold.

e Then smooth singularities.
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where

V =X/Dy

X = (87 x SH- - 4(8% x S




Lemma. 3 smooth family g¢, t € [—=1,1], on V
S.t.

o Vt, g¢ conformally flat orbifold metric; and

o Vi, sq, has same sign as t, everywhere.
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Lemma. 3 smooth family g¢, t € [—=1,1], on V
S.t.

o Vt, g¢ conformally flat orbifold metric; and

o Vi, sq, has same sign as t, everywhere.

Now we take these lemons, and make lemonade!
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V = (SYZo)#(SYZy), >3

Four orbifold singularities. Models: C? /T, for

—1 0
0 —1

| 2mifl
o | = Zy: generator 0 2w/t

| p2mi /L 0
o | = Zy: generator 0 o2/t

o [' = Zy: generator < > (two of these)
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Key objective:
replace orbifold singularities ~~» ASD ALE spaces.

ik =0 +0(0?)

<_01 _Ol> ~» Eguchi-Hanson |O(—2) — CP{]

627Ti/€ 0
0 2t | 7 LeBrun [O(—¢) — CPy]
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Gibbons-Hawking A,_; spaces:

Construct manifold by plumbing together 2-spheres

PAVVEIN

each with tubular neighborhood diffeo to 7% 52

intersection pattern dual to Dynkin diagram Ay_1

o o o o ©o:-:--0 °

Minimal resolution of rational double-point

xy:zg
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Gibbons-Hawking A, | metrics:

Metric explicit, hyper-Kahler ALE:

9o = Uldz® + dy? + dz?) + U™ L(dt + 6)*
AU =0, d«3g=du

Data: configuration of £ points p1,...,pp € R,

where p; = Euclidean distance to p;.
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Line Bundle Metrics:
Defined on total space of O(—¢) — CP;
Metric scalar-flat Kahler ALE, cohomogeneity one.

On complement of zero section, explicitly given by

dgz

2 2 2 2
JIB=———+0 (9 + 05+ Fy(0)0 )
Fy(o) bre )

for o > 1, where

{017 =1,2,3} left-invariant co-frame on S,



Eguchi-Hanson Metric:



Eguchi-Hanson Metric:

Intersection of these two constructions:



Eguchi-Hanson Metric:
Intersection of these two constructions:

Exactly the ¢ = 2 case of either GH or LB.



Eguchi-Hanson Metric:
Intersection of these two constructions:
Exactly the ¢ = 2 case of either GH or LB.

Lives on T%*S%.
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Obstruction: Surjectivity of
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Gluing theory: Floer, Taubes, et. al.

EH GH,

EH LB,

Lemma. ker DW.* = 0 for V & for orbifold
compactifications of relevant ALE spaces.
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ASD gluing:

Gluing theory: Floer, Taubes, et. al.

EH GH,

EH LB,

Then find metrics with s of desired sign in con-
structed conformal classes.

s < 0 very easy.

s > 0 much more delicate.



Theorem A. Simply connected smooth compact
M* actually admits a scalar-flat anti-self-dual
metric if

o \ is diffeomorphic to kCPs, k > 5; or
o \/ is diffeomorphic to CPy#kCPs, k > 10; or
o VI is diffeomorphic to K3.
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Theorem. For all k < 8, CPy#kCPsy admits an
FEinstein metric. Such a metric s optimal.

Pieces of proof:

Page (1979)

Tian-Yau (1987)
Chen-LeBrun-Weber (2007)

Conformal geometry crucial to last case!
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Theorem A also tells us that
CPy#kCP,
admits optimal metrics it £ > 10.

However. . .

Proposition. There is no optimal metric on CPo#9ICPs.
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Similarly:

Theorem. If j > 2 and k = 9j, the smooth
simply connected 4-manaifold jCPo#ECIPy does
not admit optimal metrics.

Key is to produce a sequence of metrics g; on
smooth compact oriented M 4 for which

/SQd,LL — 0 and /]W+|2d,u — 0.

g2

K(g) = —87°(x+37)(M)+2 /M (24 + 2|W+2> djig
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Moral:

4-manifolds need not carry optimal metrics.

Geometrization of 3-manifolds:
Wrong question!

Can 4-manifolds be canonically decomposed into,
say,

e optimal and

e collapsed pieces?



