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r=Ah

for some constant A € R.

A called Einstein constant.

Has same sign as the scalar curvature
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Recognition Problem:

Suppose M"™ admits Einstein metric A.
What, if anything, does h then tell us about M7

Can we recognize M by looking at h?

When n = 3, h has constant sectional curvature!

So M has universal cover 52, R3. H?. ..

But when n > 5, situation seems hopeless.

{Einstein metrics on S™} /~ is highly disconnected.

When n = 4, situation is more encouraging. . .
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& (M) = {Einstein h}/(Diffeos x RT)

Known to be connected for certain 4-manifolds:
M = T K3,  HYD, CHyT.

Berger, Hitchin, Besson-Courtois-Gallot, L.
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Four Dimensions is Exceptional

When n = 4, Einstein metrics are genuinely non-
trivial: not typically spaces of constant curvature.

There are beautiful and subtle global obstructions
to the existence of Einstein metrics on 4-manifolds.

But might allow for geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

One key question:

Does enough rigidity really hold in dimension four
to make this a genuine geometrization?
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Symplectic 4-manifolds:

A laboratory for exploring Einstein metrics.
Kahler geometry is a rich source of examples.

[f M admits a Kahler metric, it of course admits a
symplectic form w.

On such manifolds, Seiberg-Witten theory mimics
Kahler geometry when treating non-Kahler metrics.

Some Suggestive Questions. If (M*, w) is a
symplectic 4-manifold, when does M* admit an

FEinstein metric h (unrelated to w)? What if we
also require A > 07
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Calabi/Yau: Admits Ricci-flat Kéhler metrics.
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<— 4 almost complex-structure .J with V.J = 0
and g(J-, J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
closed 2-form w such that g = w(-, J-).

dw =0

w non-degenerate closed 2-form: symplectic form
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Einstein metric h with A > 0 if and only if
((CPQ#/C@Q, 0 <k<Sg,
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T4 )2, T )23, T )2y, T | Zs,
T (Zy ® L), T/ (23 © Z3), o T/ (Zy @ Ly).

Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surtace, Hyper-elliptic surtfaces.
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(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each Del Pezzo (M?,.J) admits a com-
patible conformally Kahler Einstein metric, and
this metric 1s unique up to automorphisms.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber.

Uniqueness: Bando-Mabuchi 87, L, "12.
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Basic problem:
Understand all Einstein metrics on Del Pezzos.

[s Einstein moduli space connected?

Progress to date:
Natural characterization of known Einstein metrics.

Exactly one connected component of moduli space.
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On oriented (M4, h),
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AT self-dual 2-forms.
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Also because of this ...



Hodge theory:

H*(M,R)={p e D(A°) | dp =0, d*p =0}



Hodge theory:

H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} & H;



Hodge theory:

H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} & H;

where

My ={p € T(A\Y) | dp = 0}

self-dual & anti-self-dual harmonic forms.



Hodge theory:

H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} & H;

where

My ={p € T(A\Y) | dp = 0}

self-dual & anti-self-dual harmonic forms.

Notice these spaces are conformally invariant.



Hodge theory:

H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} & H;

where

Hy ={p e T(A") | dyp = 0}
self-dual & anti-self-dual harmonic forms.
Notice these spaces are conformally invariant.
More generally, their dimensions

bs (M) = dimH

are completely metric-independent, and
are oriented homotopy invariants of M.
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Theorem (L. '15). Let (M, h) be a smooth com-
pact oriented Einstein 4-manifold that carries a
self-dual harmonic 2-form w such that

W (w,w) >0

everywhere on M. Then M 1s diffeomorphic to a
Del Pezzo surface, and h is conformally Kahler,
with Einstetn constant A > 0.

Conversely, every Del Pezzo surface admits Ein-
stein metrics with W (w, w) > 0.

Indeed, all known Einstein metrics on Del Pezzo
surfaces have have this property. They are

e the Kahler-Einstein metrics with A > 0:
o the Page metric on CPy#CP>: and

o the CLW metric on CPy#2CPs.
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Every del Pezzo surface has by =1. <

Up to sign, V h, d! selt-dual harmonic 2-form w:

dw = 0, *W = W, /wQ—l.
M

This allows us to associate the scalar quantity
W (w,w)

with any metric 4 on such a manifold.

Above result focuses on metrics h for which

W (w,w) >0

everywhere on /M.
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W (w,w) is non-trivially related to scalar curv s,

via Weitzenbock for self-dual harmonic 2-form w:

0=V*Vw — 2W T (w,-) + gw
Taking inner product with w and integrating:

[ wrwwin [ Spa
M M6

In particular, an Einstein metric with A > 0 has

W (w,w) >0

on average. But result requires this everywhere.
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But insisting that
W (w,w)> 0
everywhere trivially implies that
W0 and  w#0

everywhere. In particular, we are assuming from
the start that /M admits a symplectic structure!

Can one prove such a result, assuming only that
W (w,w)> 07

Yes — with a reasonable extra hypothesis on w. ..
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o 1
Z~ ] =1 ST,
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Definition. Let w be a self-dual harmonic 2-
form on a compact oriented Riemannian 4-manifold
(M, h). We will say that w is near-symplectic if
its image in AT — M is transverse to the zero
section.

Theorem (Taubes, et al). If b4 (M)=#£ 0, such forms
exist for an open dense set of metrics h on M.
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W (w,w)> 0, W (w,w)# 0.

Then W (w,w)> 0 everywhere, M is diffeomor-
phic to a Del Pezzo surface, and

h = 5_29

for some extremal Kahler metric g on M with
scalar curvature s > 0.

Conversely, every Del Pezzo surface admaits an
Einstein metric h arising in this way.

Indeed, all known Einstein metrics on Del Pezzo
surfaces arise this way!
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Theorem B. Let (M, h) be a compact oriented
A > 0 Einstein 4-manifold that carries a near-
symplectic self-dual harmonzic 2-form w such that

W (w,w)> 0
everywhere. Then w+# 0, and h is conformal to

an extremal Kahler metric g on M with Kahler
form w. Moreover, M 1is diffeomorphic to

e a Del Pezzo surface,

e a K3 surface,

e an LEnriques surface,

e an Abelian surface, or

e a hyper-elliptic surface.

Conversely, these complex surfaces all admit A > 0
Einstein metrics h of the above type.
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Moral: Taubes’ genericity result does not guarantee
genericity among metrics solving an equation!
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Before discussing Theorems A & B,

consider simpler case when W™ (w,w)> 0.
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First Key Observation:

If W (w,w) > 0, then w # 0 everywhere.
Moreover, dw = 0 and w A w = |w|?du # 0.
So w is a symplectic form.

Rescale h to obtain g with |w| = v/2:
1
RE

This g is almost-Kahler: related to w by

w)h.

g = w('v J)

for some g-preserving almost-complex structure .J.
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Second Key Observation:

By second Bianchi identity;,

h Einstein = W™ = (6IW)" = 0.

|
(OW)pea = =VaWhea = =Vierap + o Vas

Our strategy:

study weaker equation

SWT =0

as proxy for Einstein equation.
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If h = f2¢ satisfies
SWT =0

then ¢ instead satisfies

S(fIWT) =0

which in turn implies the Weitzenbock formula

0= V*V(fWT) + ng+ 6 Wt oWt £ 2f WA

for fIVF € End(AT).
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Proposition. If compact almost-Kahler (M*, g, w)
satisfies O(fW ™) =0 for some f > 0, then
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M

Corollary. Let (M*, g,w) be a compact almost-
Kdihler manifold with W™ (w,w) > 0. If h = f?g
satisfies

SWT =0

for some f > 0, then g 1s a Kahler metric with
scalar curvature s > 0. Moreover, f = c¢/s for
some constant ¢ > 0.
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To prove Theorems A & B,
make this work on X = M — Z.

Key difficulty is integration by parts.

Lemma. There is a constant C', independent of
e € (0,1), but depending on (M, h,w), such that

[ U T hw e — (W 9V & )] diy

< Ce32V0l3) (98X, h),

where X ¢ = {region where |w|, > € }.

e When w near-symplectic, \/ol<3>(8X e, h) ~ €.

Boundary term — 0 as € — 0.

e In examples of Theorem C, Vol(3) (0X ¢, h) ~e.

Boundary term explodes as € — 0.
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for some constant ¢ > 0, or

o ¢ satisfies W =0, and so is ASD.
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In first case, now show that Z = &:
3WH (w,w)]g = sg = cf
W w, W)y = W (w,w)ly,
+ C -7
W=7

W (w,w)] = b |wl],"/?
Right-hand-side not C* if Z # @
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More subtle contradiction if A is just C'*.

*. h o s™2¢g globally on M.



Tanti auguri, e buon compleanno, Max!




