Mass in

Kahler Geometry

Claude LeBrun
Stony Brook University

New Perspectives in Differential Geometry
INdAM, Rome I. November 19, 2015



Joint work with



Joint work with

Hans-Joachim Hein
University of Maryland



Joint work with

Hans-Joachim Hein
University of Maryland

e-print: arXiv:1507.08885 |math.DG]



Definition. A complete, non-compact Rieman-
nian n-manifold (M", g)

@




Definition. A complete, non-compact Rieman-
nian n-manifold (M", g)




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Euclidean




Definition. A complete, non-compact Rieman-

nian n-manifold (M™, g) is called asymptotically
Euclidean (AFE)




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M

—




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M

such that M — K s diffeo-
morphic to R"™ — D"

BN

TN

= :




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

/i\

= :

N N

gjr =0+ O(|z) 727°)



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

/i\

= :

N N

gk =61 + O(|z' 7279
Digj1. = O(lz|~27%)



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

////f\\\\\

= :

N N

|-
%k:5k+0@ﬂ )
Digj, = O(|lz|"27), se L



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

N
= 0
N N

|-
9k = Ok + O(W )
Digj, = O(|lz|"27), se L



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

SN
= 0

N N

|-
9k = Ok + O(W )
Digj, = O(|lz|"27), se L



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

TN
= s

N N

N

|-
9k = Ok + O(W )
Digj, = O(|lz|"27), se L



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

SN
= 0

N N

|-
9k = Ok + O(W )
Digj, = O(|lz|"27), se L



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

TN
= s

N N

N

|-
9k = Ok + O(W )
Digj, = O(|lz|"27), se L



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each  “end” 15 diffeo-

morphic to R"™ — D™ in such a manner that

TN
= s

N N

N

|-
9k = Ok + O(W )
Digj, = O(|lz|"27), se L



Definition. Complete, non-compact n-manifold
(M™, g) is asymptotically locally Euclidean




Definition. Complete, non-compact n-manifold
(M™, g) is asymptotically locally Euclidean (ALFE)




Definition. Complete, non-compact n-manifold
(M™, g) is asymptotically locally Euclidean (ALFE)
if 3 compact set K C M




Definition. Complete, non-compact n-manifold

(M™, g) is asymptotically locally Euclidean (ALFE)
if 3 compact set K C M such that M — K =~

L;(R™ = D"™) /T,




Definition. Complete, non-compact n-manifold
(M™, g) is asymptotically locally Euclidean (ALFE)
if 3 compact set K C M such that M — K =~
[ [;(R"™ — D™)/1';, where I'; C SO(n),




Definition. Complete, non-compact n-manifold

(M™, g) is asymptotically locally Euclidean (ALFE)
if 3 compact set K C M such that M — K =~

[ [;(R"™ — D™)/1';, where I'; C SO(n),

ANk




Definition. Complete, non-compact n-manifold
(M™, g) is asymptotically locally Euclidean (ALFE)
if 3 compact set K C M such that M — K =~
[ [;(R"™ — D™)/1';, where I'; C SO(n),




Definition. Complete, non-compact n-manifold
(M™, g) is asymptotically locally Euclidean (ALFE)
if 3 compact set K C M such that M — K =~
[ [;(R"™ — D™)/1';, where I'; C SO(n), such that

ik =0+ O(|z| 727°)
Digjp =O(|z["27%), selL’



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

m(M, g) = Yiii — Giij)



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

m(M, g) = 9ij.i — 9iij) v



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

m(M,g) = / (G55 — gii.j) Vg
(o)



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

m(M,g) = lim / (G55 — gii.5) Vg
(o)

0— 00



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
0= i G [ i o




Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
0= i G [ i o

where



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
0= i G [ i o

where
e X(0) ~ ST,



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
0= i G [ i o

where

o Y(o) ~ ST, is given by |Z| = o;



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

M — ; AU |
m( 79) Q;mm n— 1)77/”/2 /Z(Q) [92],@ gl’&,j} Vo

where
o Y(o) ~ ST, is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

M — ; AU |
m( 79) Q;mm n— 1)7Tn/2 /Z(Q) [92],@ gl’&,]} Vo

where
o Y(o) ~ ST, is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-from induced by the
Fuclidean metric.



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
0= i G [ i o

where
o Y(o) ~ ST, is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-from induced by the
Fuclidean metric.

Seems to depend on choice of coordinates!



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

M — ; AU |
m( 79) Q;mm n— 1)7Tn/2 /Z(Q) [92],@ gl’&,]} Vo

where
o Y(o) ~ ST, is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-from induced by the
Fuclidean metric.



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

M — ; AU |
m( 79) Q;mm n— 1)7Tn/2 /Z(Q) [92],7, gll,j} Vo

where
o Y(o) ~ ST, is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-from induced by the
Fuclidean metric.

Bartnik (1986):



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

M — ; AU |
m( 79) Q;mm n— 1)7Tn/2 /Z(Q) [92],7, gll,j} Vo

where
o Y(o) ~ ST, is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-from induced by the
Fuclidean metric.

Bartnik (1986): With weak fall-off conditions;



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

M — ; AU |
m( 79) Q;mm n— 1)7Tn/2 /Z(g) [92],@ ng,]} Vo

where
o Y(o) ~ ST, is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-from induced by the
Fuclidean metric.

11
gjk:5k+0(|l‘! )
Digj, = O(|z|"27), se L



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

M — ; AU |
m( 79) Q;mm n— 1)7Tn/2 /Z(Q) [92],7, gll,j} Vo

where
o Y(o) ~ ST, is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-from induced by the
Fuclidean metric.

Bartnik (1986): With weak fall-off conditions;
the mass is well-defined



Definition. The mass (at a given end) of an
ALE n-manaifold is defined to be

M — ; AU |
m( 79) Q;mm n— 1)7Tn/2 /Z(Q) [92],7, gll,j} Vo

where
o Y(o) ~ ST, is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-from induced by the
Fuclidean metric.

Bartnik (1986): With weak fall-off conditions;
the mass is well-defined & coordinate independent.
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Motivation:
When n = 3, ADM mass in general relativity.

Reads off “apparent mass” from strength of the
oravitational field far from an isolated source.

In any dimension, reproduces “mass’ of ¢ = 0 hy-
persurface in (n 4 1)-dimensional Schwarzschild
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Scalar-flat-Kahler Burns metric on 62 C C?x CP;:

w:%(?@[u%—?)mlogu], u=|21|* + |20f?

also has mass m.
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Scalar-flat Kahler metrics

on line bundles L — CPPy of Chern-class < —3.
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Scalar-flat Kahler case”

Lemma. Any ALE Kahler manifold has only
one end.

Upshot:

Mass of an ALE Kahler manifold is unambiguous.

Does not depend on the choice of an end!
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The explicit formula reproduces the mass in cases
where it previously had been laboriously computed
from the definition. But it also allows one to quickly
read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat
Kahler manifold. Arezzo asked whether, conversely;,
an ALE scalar-flat Kahler manifold with zero mass
must be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topolog-
ical types of ALFE scalar-flat Kahler surfaces that
have zero mass, but are not Ricci-flat.

(Discovered independently by Rollin, Singer, & Suvaina,
using different methods.)
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Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real
dimension n > 4. Then the natural map

HZ(M) — Hjp(M)

1$ an 1somorphism.

Definition. If (M, g, J) is any ALE Kahler man-
ifold, we will use

2 2
& Hin(M)— HZ (M)
to denote the inverse of the natural map
HZ (M) = Hgp(M)

induced by the inclusion of compactly supported
smooth forms into all forms.
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Theorem C. Any ALE Kahler manifold (M, g, J)
of complex dimension m has mass given by

() W™ (m 1)
m(M, g) = = (2m — 1)pm—1 Jr4(2m — 1)x™m /M Sgdilg

where

e s = scalar curvature;

e (/1 = metric volume form;

oc; =c|(M,J)e H*(M) is first Chern class;

o [w] € HX(M) is Kdihler class of (g,J); and

o (. ) is pairing between H2(M) and H*™2(M).



(d(c), [ (m—1)!

M, qg) = — d
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(2m — 1) Am
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e, L [ sy

So the mass is a “boundary correction” to the topo-
logical formula for the total scalar curvature.
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Corollary. Any ALE scalar-flat Kahler mans-
fold (M, g,.J) of complex dimension m has mass
given by

((c1), [w]™ )

(2m — 1)7Tm_1 '

m<Mag) -

So Theorem A is an immediate consequence!
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m(M,g)=— lim — *xd (log \/detg)

0—00 1272 J5 /1
Now set 6 = %(8 — ) (log+/det g), so that

p=df

is Ricci form, and

—*d log (\/det g) =260 Nw.

Thus
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Let f: M — R be smooth cut-off function:
= ( away from end,
= 1 near infinity.

Set
6 = p— d(f6)

(V] = &([p)) = 2nd(c1) € HZ(M)

(2rde(cy), w) = —/ 0N w

S,/T
by Stokes’” theorem.

SO

m(M, g) = ——(#(c1), )

as claimed.
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(General case:

e General m > 2: straightforward. . .

e 5 # 0, compensate by adding [ s d. ..

o [f m > 2, .J is always standard at infinity.

o [f m =2 and AL, J is still standard at infinity.
o [f m =2 and ALE, J can be non-standard at oo.

Argument proceeds by osculation:
J=Jy+0(™’), vJ=0(""

in suitable asymptotic coordinates adapted to g.
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AE case:
Compactity M itself by adding CPP,,,_1 at infinity.

Linear system of CIP,,,_1 gives holomorphic map
M — CP,,

which is biholomorphism near CP,,,_1.

Thus obtain holomorphic map
o.M —C™"

which is biholomorphism near infinity.

This has some interesting consequences. . .
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Theorem D (Positive Mass Theorem). Any AE
Kahler manafold with non-negative scalar curva-
ture has non-negative mass:

AFE & Kdhler & s >0 = m(M,qg) > 0.
Moreover, m = 0 <= (M, g) is Euclidean space.

Proof actually shows something stronger!
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Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then hcwe

m(M,qg) > (2m gy _121& Vol (D

with = <= (M, g, .J) is scalar-flat Kahler.
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This follows from existence of a holomorphic map
o: M —-C"

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section
o= ¥z A A d2™

of the canonical line bundle which vanishes exactly
at the critical points of P.

The zero set of ¢, counted with multiplicities, gives
us a canonical divisor

D = ZHJD]

and

om—1
—(d(c1), (m — 1>'> = anVOl (D])

so the mass formula implies the claim.
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When we were graduate students at Oxtord, Simon
introduced me to holonomy, and quaternion-Kahler
ceometry, eventually leading to a very successful
collaboration many years later.

Ed era lui che mi ha convinto a imparare I'italiano!

But as this audience will attest, I am no isolated
case. Simon’s benign influence on the mathematical
community has extended to countless others.

Thank you, Simon, for enriching so many lives!

Tanti auguri! And Happy Birthday!



