Mass in

Kähler Geometry

Claude LeBrun
Stony Brook University

31st Annual Geometry Festival
Princeton University, April 8, 2016
Joint work with
Joint work with

Hans-Joachim Hein
University of Maryland
Joint work with

Hans-Joachim Hein
University of Maryland

Joint work with

Hans-Joachim Hein
University of Maryland

Definition. A complete, non-compact Riemannian n-manifold (M^n, g)
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that each component of $M - K$ is diffeomorphic to \mathbb{R}^n. If $n \geq 3$.
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean
Definition. A complete, non-compact Riemannian \(n \)-manifold \((M^n, g)\) is called asymptotically Euclidean (AE)
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that $M - K$ is diffeomorphic to $\mathbb{R}^n - D^n$.
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that $M - K$ is diffeomorphic to $\mathbb{R}^n - D^n$ in such a manner that

$$g_{jk} = \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon})$$
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that $M - K$ is diffeomorphic to $\mathbb{R}^n - D^n$ in such a manner that

\begin{align*}
g_{jk} &= \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon}) \\
g_{jk,\ell} &= O(|x|^{-\frac{n}{2} - \varepsilon})
\end{align*}
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that $M - K$ is diffeomorphic to $\mathbb{R}^n - D^n$ in such a manner that

\[
g_{jk} = \delta_{jk} + O(|x|^{1-n/2-\varepsilon})
g_{jk,\ell} = O(|x|^{-n/2-\varepsilon}), \quad s \in L^1
\]
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that each component of $M - K$ is diffeomorphic to $\mathbb{R}^n - D^n$ in such a manner that

\[
g_{jk} = \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon})
\]

\[
g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad s \in L^1
\]
Definition. A complete, non-compact Riemannian \(n \)-manifold \((M^n, g)\) is called asymptotically Euclidean (AE) if there is a compact set \(K \subset M \) such that each component of \(M - K \) is diffeomorphic to \(\mathbb{R}^n - D^n \) in such a manner that

\[
\begin{align*}
g_{jk} &= \delta_{jk} + O(|x|^{1-n/2-\varepsilon}) \\
g_{jk,\ell} &= O(|x|^{-n/2-\varepsilon}), \quad s \in L^1
\end{align*}
\]
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that each component of $M - K$ is diffeomorphic to $\mathbb{R}^n - D^n$ in such a manner that

\[
g_{jk} = \delta_{jk} + O(|x|^{1-\frac{n}{2}-\varepsilon})
\]

\[
g_{jk,\ell} = O(|x|^{-\frac{n}{2}-\varepsilon}), \quad s \in L^1
\]
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that each component of $M - K$ is diffeomorphic to $\mathbb{R}^n - D^n$ in such a manner that

\[
g_{jk} = \delta_{jk} + O(|x|^{1-n/2-\varepsilon})
\]

\[
g_{jk,\ell} = O(|x|^{-n/2-\varepsilon}), \quad s \in L^1
\]
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that each component of $M - K$ is diffeomorphic to $\mathbb{R}^n - D^n$ in such a manner that

$$g_{jk} = \delta_{jk} + O(|x|^{1-\frac{n}{2} - \varepsilon})$$

$$g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad s \in L^1$$
Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that each “end” is diffeomorphic to $\mathbb{R}^n - D^n$ in such a manner that

\[
g_{jk} = \delta_{jk} + O(|x|^{1-\frac{n}{2} - \varepsilon})
\]

\[
g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad s \in L^1
\]
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE)
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE) if \exists compact set $K \subset M$
Definition. Complete, non-compact \(n \)-manifold \((M^n, g)\) is asymptotically locally Euclidean (ALE) if \(\exists\) compact set \(K \subset M\) such that \(M - K \approx \bigsqcup_i (\mathbb{R}^n - D^n)/\Gamma_i\),
Definition. Complete, non-compact \(n \)-manifold \((M^n, g) \) is asymptotically locally Euclidean (ALE) if \(\exists \) compact set \(K \subset M \) such that \(M - K \approx \bigsqcup_i (\mathbb{R}^n - D^n)/\Gamma_i \), where \(\Gamma_i \subset \text{SO}(n) \),
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE) if \exists compact set $K \subset M$ such that $M - K \approx \bigsqcup_i (\mathbb{R}^n - D^n)/\Gamma_i$, where $\Gamma_i \subset \text{SO}(n)$,
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE) if there exists a compact set $K \subset M$ such that $M - K \cong \bigsqcup_i (\mathbb{R}^n - D^n)/\Gamma_i$, where $\Gamma_i \subset \text{SO}(n)$,
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE) if \exists compact set $K \subset M$ such that $M - K \cong \bigsqcup_i (\mathbb{R}^n - D^n)/\Gamma_i$, where $\Gamma_i \subset \text{SO}(n)$, such that

\[g_{jk} = \delta_{jk} + O(|x|^{1-n/2-\varepsilon}) \]

\[g_{jk,\ell} = O(|x|^{-n/2-\varepsilon}), \quad s \in L^1 \]
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \left[g_{ij,i} - g_{ii,j} \right]$$
Definition. The mass (at a given end) of an ALE \(n \)-manifold is defined to be

\[
m(M, g) := [g_{ij,i} - g_{ii,j}] \nu^j
\]
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \int_{\Sigma(\rho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\rho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\rho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} [g_{ij,i} - g_{ii,j}] \nu^j \alpha_E$$

where
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n - 1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$
Definition. The mass (at a given end) of an \(ALE \) \(n \)-manifold is defined to be

\[
m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n - 1)\pi^{n/2}} \int_{\Sigma(\varrho)} [g_{ij,i} - g_{ii,j}] \nu^j \alpha_E
\]

where

- \(\Sigma(\varrho) \approx S^{n-1}/\Gamma_i \) is given by \(|\vec{x}| = \varrho|;\)

\[
\Sigma(\varrho) \approx S^{n-1}/\Gamma_i \text{ is given by } |\vec{x}| = \varrho;
\]
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} [g_{ij,i} - g_{ii,j}] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ν is the outpointing Euclidean unit normal;
Definition. The mass (at a given end) of an ALE \(n \)-manifold is defined to be

\[
m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E
\]

where

- \(\Sigma(\varrho) \approx S^{n-1}/\Gamma_i \) is given by \(|\vec{x}| = \varrho \);
- \(\nu \) is the outpointing Euclidean unit normal;
- and
- \(\alpha_E \) is the volume \((n-1)\)-form induced by the Euclidean metric.
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

• $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\bar{x}| = \varrho$;

• ν is the outpointing Euclidean unit normal; and

• α_E is the volume $(n - 1)$-form induced by the Euclidean metric.

Seems to depend on choice of coordinates!
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n - 1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ν is the outpointing Euclidean unit normal; and
- α_E is the volume $(n - 1)$-form induced by the Euclidean metric.
Definition. The mass (at a given end) of an ALE \(n \)-manifold is defined to be

\[
m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n - 1)\pi^{n/2}} \int \Sigma(\varrho) [g_{ij,i} - g_{ii,j}] \nu^j \alpha_E
\]

where

- \(\Sigma(\varrho) \approx S^{n-1}/\Gamma_i \) is given by \(|\vec{x}| = \varrho \);
- \(\nu \) is the outpointing Euclidean unit normal; and
- \(\alpha_E \) is the volume \((n - 1)\)-form induced by the Euclidean metric.

Bartnik/Chruściel (1986):
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ν is the outpointing Euclidean unit normal; and
- α_E is the volume $(n-1)$-form induced by the Euclidean metric.

Bartnik/Chruściel (1986): With weak fall-off conditions,
Definition. The mass (at a given end) of an ALE \(n \)-manifold is defined to be

\[
m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} [g_{ij,i} - g_{ii,j}] \nu^j \alpha_E
\]

where

- \(\Sigma(\varrho) \approx S^{n-1}/\Gamma \) is given by \(|\vec{x}| = \varrho\);
- \(\nu \) is the outpointing Euclidean unit normal; and
- \(\alpha_E \) is the volume \((n-1)\)-form induced by the Euclidean metric.

\[
g_{jk} = \delta_{jk} + O(|x|^{1-n/2-\varepsilon})
\]

\[
g_{jk,\ell} = O(|x|^{-n/2-\varepsilon}), \quad s \in L^1
\]
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} [g_{ij,i} - g_{ii,j}] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ν is the outpointing Euclidean unit normal;
- and
- α_E is the volume $(n-1)$-form induced by the Euclidean metric.

Bartnik/Chruściel (1986): With weak fall-off conditions, the mass is well-defined
Definition. The mass (at a given end) of an \(ALE \) \(n \)-manifold is defined to be

\[
m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E
\]

where

- \(\Sigma(\varrho) \approx S^{n-1}/\Gamma_i \) is given by \(|\vec{x}| = \varrho \);
- \(\nu \) is the outpointing Euclidean unit normal;
- \(\alpha_E \) is the volume \((n-1) \)-form induced by the Euclidean metric.

Bartnik/Chruściel (1986): With weak fall-off conditions, the mass is well-defined & coordinate independent.
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} [g_{ij,i} - g_{ii,j}] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ν is the outpointing Euclidean unit normal; and
- α_E is the volume $(n - 1)$-from induced by the Euclidean metric.

Chruściel-type fall-off:

$$g_{jk} - \delta_{jk} \in C^1_{-\tau}, \quad \tau > \frac{n - 2}{2}$$
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\tilde{x}| = \varrho$;
- ν is the outpointing Euclidean unit normal;
- and
- α_E is the volume $(n-1)$-form induced by the Euclidean metric.

Bartnik-type fall-off:

$$g_{jk} - \delta_{jk} \in W^{2,q}_{-\tau}, \quad \tau > \frac{n-2}{2}, \quad q > n$$
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} [g_{ij,i} - g_{ii,j}] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ν is the outpointing Euclidean unit normal; and
- α_E is the volume $(n-1)$-form induced by the Euclidean metric.

Bartnik-type fall-off \implies

$$g_{jk} - \delta_{jk} \in C^{1,\alpha}_{-\tau}, \quad \tau > \frac{n-2}{2}.$$
Definition. The mass (at a given end) of an ALE n-manifold is defined to be

$$m(M, g) := \lim_{\varrho \to \infty} \frac{\Gamma(n/2)}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} [g_{ij,i} - g_{ii,j}] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ν is the outpointing Euclidean unit normal;
- α_E is the volume $(n-1)$-form induced by the Euclidean metric.

Bartnik/Chruściel (1986): With weak fall-off conditions, the mass is well-defined & coordinate independent.
Motivation:
Motivation:

When $n = 3$, ADM mass in general relativity.
Motivation:

When \(n = 3 \), ADM mass in general relativity. Reads off “apparent mass” from strength of the gravitational field far from an isolated source.
Motivation:

When \(n = 3 \), ADM mass in general relativity.

Reads off “apparent mass” from strength of the gravitational field far from an isolated source.
Motivation:

When $n = 3$, ADM mass in general relativity.

Reads off “apparent mass” from strength of the gravitational field far from an isolated source.
Motivation:

When $n = 3$, ADM mass in general relativity.

Reads off “apparent mass” from strength of the gravitational field far from an isolated source.

In any dimension, reproduces “mass” of $t = 0$ hypersurface in $(n + 1)$-dimensional Schwarzschild
Motivation:

When $n = 3$, ADM mass in general relativity.

Reads off “apparent mass” from strength of the gravitational field far from an isolated source.

In any dimension, reproduces “mass” of $t = 0$ hypersurface in $(n + 1)$-dimensional Schwarzschild

$$g = - \left(1 - \frac{2m}{\rho^{n-2}}\right) dt^2 + \left(1 - \frac{2m}{\rho^{n-2}}\right)^{-1} d\rho^2 + \rho^2 h_{S^{n-1}}$$
Motivation:

When $n = 3$, ADM mass in general relativity.

Reads off “apparent mass” from strength of the gravitational field far from an isolated source.

In any dimension, reproduces “mass” of $t = 0$ hypersurface in $(n + 1)$-dimensional Schwarzschild

$$g = \left(1 - \frac{2m}{\rho^{n-2}}\right)^{-1} d\rho^2 + \rho^2 h_{S^{n-1}}$$
Motivation:

When $n = 3$, ADM mass in general relativity.

Reads off “apparent mass” from strength of the gravitational field far from an isolated source.

In any dimension, reproduces “mass” of $t = 0$ hypersurface in $(n + 1)$-dimensional Schwarzschild

$$g = \left(1 - \frac{2m}{\rho^{n-2}}\right)^{-1} d\rho^2 + \rho^2 h_{S^{n-1}}$$

Burns metric on \mathbb{C}^2
Motivation:

When $n = 3$, ADM mass in general relativity.

Reads off “apparent mass” from strength of the gravitational field far from an isolated source.

In any dimension, reproduces “mass” of $t = 0$ hypersurface in $(n + 1)$-dimensional Schwarzschild

$$g = \left(1 - \frac{2m}{\varrho^{n-2}}\right)^{-1} d\varrho^2 + \varrho^2 h_{S^{n-1}}$$

Burns metric on $\mathbb{C}^2 \subset \mathbb{C}^2 \times \mathbb{CP}_1$
Motivation:

When $n = 3$, ADM mass in general relativity. Reads off “apparent mass” from strength of the gravitational field far from an isolated source.
Motivation:

When $n = 3$, ADM mass in general relativity.

Reads off “apparent mass” from strength of the gravitational field far from an isolated source.

In any dimension, reproduces “mass” of $t = 0$ hypersurface in $(n + 1)$-dimensional Schwarzschild

$$g = \left(1 - \frac{2m}{\varrho^{n-2}}\right)^{-1} d\varrho^2 + \varrho^2 h_{S^{n-1}}$$

Burns metric on $\widetilde{\mathbb{C}^2} \subset \mathbb{C}^2 \times \mathbb{CP}_1$
Motivation:

When $n = 3$, ADM mass in general relativity.

Reads off “apparent mass” from strength of the gravitational field far from an isolated source.

In any dimension, reproduces “mass” of $t = 0$ hypersurface in $(n + 1)$-dimensional Schwarzschild

$$
g = \left(1 - \frac{2m}{\varrho^{n-2}}\right)^{-1} d\varrho^2 + \varrho^2 h_{S^{n-1}}$$

Scalar-flat-Kähler Burns metric on $\mathbb{C}^2 \subset \mathbb{C}^2 \times \mathbb{CP}_1$
Motivation:
When $n = 3$, ADM mass in general relativity.
Reads off “apparent mass” from strength of the gravitational field far from an isolated source.

In any dimension, reproduces “mass” of $t = 0$ hypersurface in $(n + 1)$-dimensional Schwarzschild

\[
g = \left(1 - \frac{2m}{\varrho^{n-2}}\right)^{-1} d\varrho^2 + \varrho^2 h_{S^{n-1}}
\]

Scalar-flat-Kähler Burns metric on $\widetilde{\mathbb{C}}^2 \subset \mathbb{C}^2 \times \mathbb{CP}_1$:

\[
\omega = \frac{i}{2} \partial \bar{\partial} [u + 3m \log u],
\]
Motivation:

When $n = 3$, ADM mass in general relativity.

Reads off “apparent mass” from strength of the gravitational field far from an isolated source.

In any dimension, reproduces “mass” of $t = 0$ hypersurface in $(n + 1)$-dimensional Schwarzschild

$$g = \left(1 - \frac{2m}{\varrho^{n-2}}\right)^{-1} d\varrho^2 + \varrho^2 h_{S^{n-1}}$$

Scalar-flat-Kähler Burns metric on $\widetilde{\mathbb{C}}^2 \subset \mathbb{C}^2 \times \mathbb{C}\mathbb{P}_1$:

$$\omega = \frac{i}{2} \partial \bar{\partial} [u + 3m \log u] , \quad u = |z_1|^2 + |z_2|^2$$
Motivation:

When \(n = 3 \), ADM mass in general relativity.

Reads off “apparent mass” from strength of the gravitational field far from an isolated source.

In any dimension, reproduces “mass” of \(t = 0 \) hypersurface in \((n + 1)\)-dimensional Schwarzschild

\[
g = \left(1 - \frac{2m}{\varrho^{n-2}}\right)^{-1} d\varrho^2 + \varrho^2 h g_{n-1}
\]

Scalar-flat-Kähler Burns metric on \(\widetilde{\mathbb{C}^2} \subset \mathbb{C}^2 \times \mathbb{C}\mathbb{P}_1 \):

\[
\omega = \frac{i}{2} \partial \bar{\partial} [u + 3m \log u], \quad u = |z_1|^2 + |z_2|^2
\]

also has mass \(m \).
Positive Mass Conjecture:
Positive Mass Conjecture:

Any AE manifold
Positive Mass Conjecture:

Any AE manifold with $s \geq 0$
Positive Mass Conjecture:

Any AE manifold with $s \geq 0$ has $m \geq 0$.
Positive Mass Conjecture:

Any AE manifold with $s \geq 0$ has $m \geq 0$.

Physical intuition:
Positive Mass Conjecture:
Any AE manifold with $s \geq 0$ has $m \geq 0$.

Physical intuition:
Local matter density ≥ 0
Positive Mass Conjecture:

Any AE manifold with $s \geq 0$ has $m \geq 0$.

Physical intuition:

Local matter density $\geq 0 \implies$ total mass ≥ 0.
Positive Mass Conjecture:

Any AE manifold with $s \geq 0$ has $m \geq 0$.
Positive Mass Conjecture:
Any AE manifold with $s \geq 0$ has $m \geq 0$.

Schoen-Yau 1979:
Positive Mass Conjecture:
Any AE manifold with $s \geq 0$ has $m \geq 0$.

Schoen-Yau 1979:
Proved in dimension $n \leq 7$.
Positive Mass Conjecture:
Any AE manifold with $s \geq 0$ has $m \geq 0$.

Schoen-Yau 1979:
Proved in dimension $n \leq 7$.

Witten 1981:
Positive Mass Conjecture:

Any AE manifold with $s \geq 0$ has $m \geq 0$.

Schoen-Yau 1979:

Proved in dimension $n \leq 7$.

Witten 1981:

Proved for spin manifolds
Positive Mass Conjecture:
Any AE manifold with $s \geq 0$ has $m \geq 0$.

Schoen-Yau 1979:
Proved in dimension $n \leq 7$.

Witten 1981:
Proved for spin manifolds (implicitly, for any n).
Positive Mass Conjecture:
Any AE manifold with $s \geq 0$ has $m \geq 0$.

Schoen-Yau 1979:
Proved in dimension $n \leq 7$.

Witten 1981:
Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:
Positive Mass Conjecture:
Any AE manifold with $s \geq 0$ has $m \geq 0$.

Schoen-Yau 1979:
Proved in dimension $n \leq 7$.

Witten 1981:
Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:
Conjectured true in ALE case, too.
Positive Mass Conjecture:
Any AE manifold with $s \geq 0$ has $m \geq 0$.

Schoen-Yau 1979:
Proved in dimension $n \leq 7$.

Witten 1981:
Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:
Conjectured true in ALE case, too.

L 1986:
Positive Mass Conjecture:
Any AE manifold with $s \geq 0$ has $m \geq 0$.

Schoen-Yau 1979:
Proved in dimension $n \leq 7$.

Witten 1981:
Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:
Conjectured true in ALE case, too.

L 1986:
ALE counter-examples.
Positive Mass Conjecture:
Any AE manifold with $s \geq 0$ has $m \geq 0$.

Schoen-Yau 1979:
Proved in dimension $n \leq 7$.

Witten 1981:
Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:
Conjectured true in ALE case, too.

L 1986:
ALE counter-examples.
Scalar-flat Kähler metrics
Positive Mass Conjecture:
Any AE manifold with \(s \geq 0 \) has \(m \geq 0 \).

Schoen-Yau 1979:
Proved in dimension \(n \leq 7 \).

Witten 1981:
Proved for spin manifolds (implicitly, for any \(n \)).

Hawking-Pope 1978:
Conjectured true in ALE case, too.

L 1986:
ALE counter-examples.
Scalar-flat Kähler metrics
on line bundles \(L \to \mathbb{CP}_1 \) of Chern-class \(\leq -3 \).
Mass of ALE Kähler manifolds?
Mass of ALE Kähler manifolds?

Scalar-flat Kähler case?
Mass of ALE Kähler manifolds?

Scalar-flat Kähler case?

Lemma.
Mass of ALE Kähler manifolds?

Scalar-flat Kähler case?

Lemma. Any ALE Kähler manifold
Mass of ALE Kähler manifolds?

Scalar-flat Kähler case?

Lemma. Any ALE Kähler manifold has only one end.
Mass of ALE Kähler manifolds?

Scalar-flat Kähler case?

Lemma. Any ALE Kähler manifold has only one end.
Mass of \textbf{ALE Kähler} manifolds?

Scalar-flat Kähler case?

\textbf{Lemma.} \textit{Any ALE Kähler manifold has only one end.}

\[n = 2m \geq 4 \]
Mass of ALE Kähler manifolds?

Scalar-flat Kähler case?

Lemma. *Any ALE Kähler manifold has only one end.*

Several different proofs are known.
Mass of **ALE Kähler** manifolds?

Scalar-flat Kähler case?

Lemma. *Any ALE Kähler manifold has only one end.*

Several different proofs are known.

Several are analytic:
Mass of ALE Kähler manifolds?

Scalar-flat Kähler case?

Lemma. Any ALE Kähler manifold has only one end.

Several different proofs are known.

Several are analytic:

each end is pseudo-convex at infinity.
Mass of **ALE Kähler** manifolds?

Scalar-flat Kähler case?

Lemma. Any **ALE Kähler manifold** has only **one end**.

Several different proofs are known.

Several are analytic:

each end is pseudo-convex at infinity.

Another is more topological:
Mass of ALE Kähler manifolds?

Scalar-flat Kähler case?

Lemma. *Any ALE Kähler manifold has only one end.*

Several different proofs are known.

Several are analytic:

each end is pseudo-convex at infinity.

Another is more topological:

intersection form on H^2 of compactification.
Mass of ALE Kähler manifolds?

Scalar-flat Kähler case?

Lemma. *Any ALE Kähler manifold has only one end.*
Mass of **ALE Kähler** manifolds?

Scalar-flat Kähler case?

Lemma. *Any ALE Kähler manifold has only one end.*

Upshot:
Mass of ALE Kähler manifolds?

Scalar-flat Kähler case?

Lemma. Any ALE Kähler manifold has only one end.

Upshot:

Mass of an ALE Kähler manifold is unambiguous.
Mass of **ALE Kähler** manifolds?

Scalar-flat Kähler case?

Lemma. *Any ALE Kähler manifold has only one end.*

Upshot:

Mass of an ALE Kähler manifold is unambiguous.

Does not depend on the choice of an end!
We begin with the scalar-flat Kähler case.
We begin with the scalar-flat Kähler case.

Theorem A.
We begin with the scalar-flat Kähler case.

Theorem A. *The mass*
We begin with the scalar-flat Kähler case.

Theorem A. *The mass of an ALE*
We begin with the scalar-flat Kähler case.

Theorem A. The mass of an ALE scalar-flat Kähler manifold
We begin with the scalar-flat Kähler case.

Theorem A. The mass of an ALE scalar-flat Kähler manifold is a topological invariant.
We begin with the scalar-flat Kähler case.

Theorem A. The mass of an ALE scalar-flat Kähler manifold is a topological invariant.

That is, \(m(M, g, J) \)
We begin with the scalar-flat Kähler case.

Theorem A. The mass of an ALE scalar-flat Kähler manifold is a topological invariant. That is, $m(M, g, J)$ is completely determined by
We begin with the scalar-flat Kähler case.

Theorem A. The mass of an ALE scalar-flat Kähler manifold is a topological invariant. That is, \(m(M, g, J) \) is completely determined by

- the smooth manifold \(M \),
We begin with the scalar-flat Kähler case.

Theorem A. The mass of an ALE scalar-flat Kähler manifold is a topological invariant. That is, $m(M, g, J)$ is completely determined by
- the smooth manifold M,
- the first Chern class $c_1 = c_1(M, J) \in H^2(M)$ of the complex structure, and
We begin with the scalar-flat Kähler case.

Theorem A. The mass of an ALE scalar-flat Kähler manifold is a topological invariant. That is, \(m(M, g, J) \) is completely determined by

- the smooth manifold \(M \),
- the first Chern class \(c_1 = c_1(M, J) \in H^2(M) \) of the complex structure, and
- the Kähler class \([\omega] \in H^2(M) \) of the metric.
We begin with the scalar-flat Kähler case.

Theorem A. The mass of an ALE scalar-flat Kähler manifold is a topological invariant.

That is, $m(M, g, J)$ is completely determined by

- the smooth manifold M,
- the first Chern class $c_1 = c_1(M, J) \in H^2(M)$ of the complex structure, and
- the Kähler class $[\omega] \in H^2(M)$ of the metric.

In fact, we will see that there is an explicit formula for the mass in terms of these data!
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition.
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example,
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold.
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely,
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE scalar-flat Kähler manifold
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE scalar-flat Kähler manifold with zero mass
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE scalar-flat Kähler manifold with zero mass must be Ricci-flat.
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE scalar-flat Kähler manifold with zero mass must be Ricci-flat. The answer is, No!
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE scalar-flat Kähler manifold with zero mass must be Ricci-flat. The answer is, No!

Theorem B.
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE scalar-flat Kähler manifold with zero mass must be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topological types
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE scalar-flat Kähler manifold with zero mass must be Ricci-flat. The answer is, No!

Theorem B. *There are infinitely many topological types of ALE*
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE scalar-flat Kähler manifold with zero mass must be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topological types of ALE scalar-flat Kähler surfaces
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE scalar-flat Kähler manifold with zero mass must be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topological types of ALE scalar-flat Kähler surfaces that have zero mass,
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE scalar-flat Kähler manifold with zero mass must be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topological types of ALE scalar-flat Kähler surfaces that have zero mass, but are not Ricci-flat.
The explicit formula reproduces the mass in cases where it previously had been laboriously computed from the definition. But it also allows one to quickly read it off quite generally.

For example, the mass is zero for an ALE Ricci-flat Kähler manifold. Arezzo asked whether, conversely, an ALE scalar-flat Kähler manifold with zero mass must be Ricci-flat. The answer is, No!

Theorem B. There are infinitely many topological types of ALE scalar-flat Kähler surfaces that have zero mass, but are not Ricci-flat.

(Discovered independently by Rollin, Singer, & Şuvaina, using different methods.)
Explicit formula depends on a topological fact:
Explicit formula depends on a topological fact:

Lemma.
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold
Explicit formula depends on a topological fact:

Lemma. Let \((M, g)\) be any ALE manifold of real dimension \(n \geq 4\).
Explicit formula depends on a topological fact:

Lemma. Let \((M, g)\) be any ALE manifold of real dimension \(n \geq 4\). Then the natural map
Explicit formula depends on a topological fact:

Lemma. Let \((M, g)\) be any ALE manifold of real dimension \(n \geq 4\). Then the natural map

\[
H^2_c(M) \to H^2_{dR}(M)
\]
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real dimension $n \geq 4$. Then the natural map

$$H^2_c(M) \to H^2_{dR}(M)$$

is an isomorphism.
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real dimension $n \geq 4$. Then the natural map

$$H^2_c(M) \to H^2_{dR}(M)$$

is an isomorphism.

Here

$$H^p_c(M) := \frac{\ker d : \mathcal{E}^p_c(M) \to \mathcal{E}^{p+1}_c(M)}{d\mathcal{E}^{p-1}_c(M)}$$
Explicit formula depends on a topological fact:

Lemma. Let \((M, g)\) be any ALE manifold of real dimension \(n \geq 4\). Then the natural map

\[H^2_c(M) \rightarrow H^2_{dR}(M) \]

is an isomorphism.

Here

\[H^p_c(M) := \frac{\ker d : \mathcal{E}^p_c(M) \rightarrow \mathcal{E}^{p+1}_c(M)}{d \mathcal{E}^{p-1}_c(M)} \]

where

\[\mathcal{E}^p_c(M) := \{ \text{Smooth, compactly supported } p\text{-forms on } M \} \].
Explicit formula depends on a topological fact:

Lemma. Let \((M, g)\) be any ALE manifold of real dimension \(n \geq 4\). Then the natural map

\[H^2_c(M) \to H^2_{dR}(M) \]

is an isomorphism.
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real dimension $n \geq 4$. Then the natural map

$$H^2_c(M) \to H^2_{dR}(M)$$

is an isomorphism.

If just one end:
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real dimension $n \geq 4$. Then the natural map

$$H^2_C(M) \to H^2_{dR}(M)$$

is an isomorphism.

If just one end:

Compactify M as $\overline{M} = M \cup (S^{n-1}/\Gamma)$.
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real dimension $n \geq 4$. Then the natural map

$$H^2_c(M) \to H^2_{dR}(M)$$

is an isomorphism.

If just one end:

Compactify M as $\overline{M} = M \cup (S^{n-1}/\Gamma)$.

Then $H^p_c(M) = H^p(\overline{M}, \partial \overline{M})$.
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real dimension $n \geq 4$. Then the natural map

$$H^2_c(M) \to H^2_{dR}(M)$$

is an isomorphism.

If just one end:

Compactify M as $\overline{M} = M \cup (S^{n-1}/\Gamma)$.

Then $H^p_c(M) = H^p(\overline{M}, \partial \overline{M})$.

Exact sequence of pair:
Explicit formula depends on a topological fact:

Lemma. Let \((M, g)\) be any ALE manifold of real dimension \(n \geq 4\). Then the natural map
\[
H^2_c(M) \to H^2_{dR}(M)
\]
is an isomorphism.

If just one end:

Compactify \(M\) as \(\overline{M} = M \cup (S^{n-1}/\Gamma)\).

Then \(H^p_c(M) = H^p(\overline{M}, \partial \overline{M})\).

Exact sequence of pair:
\[
H^1(\partial \overline{M}) \to H^2(\overline{M}, \partial \overline{M}) \to H^2(\overline{M}) \to H^2(\partial \overline{M})
\]
Explicit formula depends on a topological fact:

Lemma. Let \((M, g)\) be any ALE manifold of real dimension \(n \geq 4\). Then the natural map

\[H^2_c(M) \rightarrow H^2_{dR}(M) \]

is an isomorphism.

If just one end:

Compactify \(M\) as \(\overline{M} = M \cup (S^{n-1} / \Gamma)\).

Then \(H^p_c(M) = H^p(\overline{M}, \partial \overline{M})\).

Exact sequence of pair:

\[H^1(S^{n-1} / \Gamma) \rightarrow H^2_c(M) \rightarrow H^2(M) \rightarrow H^2(S^{n-1} / \Gamma) \]
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real dimension $n \geq 4$. Then the natural map

$$H^2_c(M) \rightarrow H^2_{dR}(M)$$

is an isomorphism.
Explicit formula depends on a topological fact:

Lemma. Let \((M, g)\) be any ALE manifold of real dimension \(n \geq 4\). Then the natural map

\[H^2_c(M) \to H^2_{dR}(M) \]

is an isomorphism.

Definition.
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real dimension $n \geq 4$. Then the natural map

$$H^2_c(M) \to H^2_{dR}(M)$$

is an isomorphism.

Definition. If (M, g, J) is any ALE Kähler manifold,
Explicit formula depends on a topological fact:

Lemma. Let \((M, g)\) be any ALE manifold of real dimension \(n \geq 4\). Then the natural map

\[
H^2_c(M) \to H^2_{dR}(M)
\]

is an isomorphism.

Definition. If \((M, g, J)\) is any ALE Kähler manifold, we will use
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real dimension $n \geq 4$. Then the natural map

$$H^2_c(M) \rightarrow H^2_{dR}(M)$$

is an isomorphism.

Definition. If (M, g, J) is any ALE Kähler manifold, we will use

$$\clubsuit : H^2_{dR}(M) \rightarrow H^2_c(M)$$
Explicit formula depends on a topological fact:

Lemma. Let \((M, g)\) be any ALE manifold of real dimension \(n \geq 4\). Then the natural map

\[H^2_c(M) \to H^2_{dR}(M) \]

is an isomorphism.

Definition. If \((M, g, J)\) is any ALE Kähler manifold, we will use

\[\blacklozenge : H^2_{dR}(M) \to H^2_c(M) \]

to denote the inverse of the natural map.
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real dimension $n \geq 4$. Then the natural map

$$H^2_c(M) \to H^2_{dR}(M)$$

is an isomorphism.

Definition. If (M, g, J) is any ALE Kähler manifold, we will use

$$\clubsuit : H^2_{dR}(M) \to H^2_c(M)$$

to denote the inverse of the natural map

$$H^2_c(M) \to H^2_{dR}(M)$$
Explicit formula depends on a topological fact:

Lemma. Let (M, g) be any ALE manifold of real dimension $n \geq 4$. Then the natural map

$$H^2_c(M) \to H^2_{dR}(M)$$

is an isomorphism.

Definition. If (M, g, J) is any ALE Kähler manifold, we will use

$$\clubsuit : H^2_{dR}(M) \to H^2_c(M)$$

to denote the inverse of the natural map

$$H^2_c(M) \to H^2_{dR}(M)$$

induced by the inclusion of compactly supported smooth forms into all forms.
We can now state our mass formula:

Theorem C.
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\)
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\)
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold (M, g, J) of complex dimension m has mass given by

$$m(M, g) = -\langle c_1, [\omega]_m \rangle (2^m - 1) \pi^{m-1} + (m-1)! 4(2^m - 1) \pi^m \int_M s_g d\mu_g$$
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\left\langle c_1, \left[\omega_{m-1}\right]\right\rangle (2m-1)\pi^{m-1} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M s_g d\mu_g
\]
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\langle \, c_1, [\omega] \, \rangle_{m-1} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M s_g d\mu_g
\]
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\langle \clubsuit(c_1), [\omega]^{m-1} \rangle + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M s_g d\mu_g
\]
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\frac{\langle \clubsuit (c_1), [\omega]^{m-1} \rangle}{(2m - 1) \pi^{m-1}} + \frac{(m - 1)!}{4(2m - 1) \pi^m} \int_M s_g d\mu_g
\]
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\frac{\langle \clubsuit (c_1), [\omega]^{m-1} \rangle}{(2m - 1) \pi^{m-1}} + \frac{(m - 1)!}{4(2m - 1) \pi^m} \int_M s_g d\mu_g
\]

where
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\frac{\langle ♣(c_1), [\omega]^{m-1}\rangle}{(2m - 1)\pi^{m-1}} + \frac{(m - 1)!}{4(2m - 1)\pi^m} \int_M s_g d\mu_g
\]

where

- \(s = \text{scalar curvature};\)
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\frac{\langle \bullet (c_1), [\omega]^{m-1} \rangle}{(2m - 1)\pi^{m-1}} + \frac{(m - 1)!}{4(2m - 1)\pi^m} \int_M s_g d\mu_g
\]

where

- \(s = \text{scalar curvature}\);
- \(d\mu = \text{metric volume form}\);
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\frac{\langle \bullet(c_1), [\omega]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M s_g d\mu_g
\]

where

- \(s = \text{scalar curvature}\);
- \(d\mu = \text{metric volume form}\);
- \(c_1 = c_1(M, J) \in H^2(M)\) is first Chern class;
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\frac{\langle ♣(c_1), [ω]^{m-1} \rangle}{(2m - 1)\pi^{m-1}} + \frac{(m - 1)!}{4(2m - 1)\pi^m} \int_M s_g dμ_g
\]

where

- \(s = \text{scalar curvature};\)
- \(dμ = \text{metric volume form};\)
- \(c_1 = c_1(M, J) \in H^2(M) \text{ is first Chern class};\)
- \([ω] \in H^2(M) \text{ is Kähler class of } (g, J); \text{ and}\)
We can now state our mass formula:

Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\frac{\langle \bullet (c_1), [\omega]^{m-1} \rangle}{(2m - 1)\pi^{m-1}} + \frac{(m - 1)!}{4(2m - 1)\pi^m} \int_M s_g d\mu_g
\]

where

- \(s = \) scalar curvature;
- \(d\mu = \) metric volume form;
- \(c_1 = c_1(M, J) \in H^2(M)\) is first Chern class;
- \([\omega] \in H^2(M)\) is Kähler class of \((g, J)\); and
- \(\langle , \rangle\) is pairing between \(H_c^2(M)\) and \(H^{2m-2}(M)\).
\[m(M, g) = -\langle \clubsuit (c_1), [\omega]^{m-1} \rangle \frac{(m - 1)!}{(2m - 1) \pi^{m-1}} + \frac{(m - 1)!}{4(2m - 1) \pi^m} \int_M s_g d\mu_g \]
\[
\frac{4\pi^m (2m-1)}{(m-1)!} m(M, g) = -\frac{4\pi}{(m-1)!} \langle \clubsuit (c_1), [\omega]^{m-1} \rangle + \int_M sg d\mu_g
\]
For a compact Kähler manifold \((M^{2m}, g, J)\),

\[
\int_M s_g d\mu_g = \frac{4\pi}{(m - 1)!} \langle c_1, [\omega]^{m-1} \rangle
\]
For a compact Kähler manifold \((M^{2m}, g, J)\),

\[
0 = -\frac{4\pi}{(m-1)!}\langle c_1, [\omega]^{m-1}\rangle + \int_M s_g d\mu_g
\]
For an ALE Kähler manifold \((M^{2m}, g, J)\),

\[
m(M, g) = -\frac{\langle \heart(c_1), [\omega]^{m-1} \rangle}{(2m - 1)\pi^{m-1}} + \frac{(m - 1)!}{4(2m - 1)\pi^m} \int_M s_g d\mu_g
\]
For an ALE Kähler manifold \((M^{2m}, g, J)\),

\[
\frac{4\pi^m(2m-1)}{(m-1)!} m(M, g) = -\frac{4\pi}{(m-1)!}\langle \clubsuit (c_1), [\omega]^{m-1}\rangle + \int_M s_g d\mu_g
\]

So the mass is a “boundary correction” to the topological formula for the total scalar curvature.
Theorem C. Any ALE Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\frac{\langle \clubsuit (c_1), [\omega]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M s_g d\mu_g
\]
Corollary. Any ALE scalar-flat Kähler manifold (M, g, J) of complex dimension m has mass given by

$$m(M, g) = -\frac{\langle ♣(c_1), [\omega]^{m-1}\rangle}{(2m - 1)\pi^{m-1}}.$$
Corollary. Any ALE scalar-flat Kähler manifold \((M, g, J)\) of complex dimension \(m\) has mass given by

\[
m(M, g) = -\frac{\langle \diamondsuit (c_1), [\omega]^{m-1} \rangle}{(2m - 1)\pi^{m-1}}.
\]

So Theorem A is an immediate consequence!
Rough Idea of Proof:
Rough Idea of Proof:

Special Case: Suppose
Rough Idea of Proof:

Special Case: Suppose

- $m = 2$, $n = 4$;
Rough Idea of Proof:

Special Case: Suppose

- $m = 2$, $n = 4$;
- Scalar flat: $s \equiv 0$; and
Rough Idea of Proof:

Special Case: Suppose

- $m = 2$, $n = 4$;
- Scalar flat: $s \equiv 0$; and
- Complex structure J standard at infinity:
Rough Idea of Proof:

Special Case: Suppose

- $m = 2, n = 4$;
- Scalar flat: $s \equiv 0$; and
- Complex structure J standard at infinity:

$$ (M - K, J) \approx_{\text{bih}} \left(\mathbb{C}^2 - \overline{B^4} \right)/\Gamma. $$
Rough Idea of Proof:

Special Case: Suppose

- $m = 2$, $n = 4$;
- Scalar flat: $s \equiv 0$; and
- Complex structure J standard at infinity:

\[(M - K, J) \approx_{\text{bih}} (\mathbb{C}^2 - \overline{B^4})/\Gamma.\]

Since g is Kähler, the complex coordinates
Rough Idea of Proof:

Special Case: Suppose

- \(m = 2, \ n = 4; \)
- Scalar flat: \(s \equiv 0; \) and
- Complex structure \(J \) standard at infinity:
 \[(M - K, J) \approx_{\text{bih}} (\mathbb{C}^2 - \overline{B^4})/\Gamma. \]

Since \(g \) is Kähler, the complex coordinates

\[(z^1, z^2) = (x^1 + ix^2, x^3 + ix^4) \]

are harmonic.
Rough Idea of Proof:

Special Case: Suppose

- $m = 2$, $n = 4$;
- Scalar flat: $s \equiv 0$; and
- Complex structure J standard at infinity:

$$(M - K, J) \approx_{\text{bih}} (\mathbb{C}^2 - \overline{B}^4)/\Gamma.$$

Since g is Kähler, the complex coordinates

$$(z^1, z^2) = (x^1 + ix^2, x^3 + ix^4)$$

are harmonic. So x^j are harmonic, too, and
Rough Idea of Proof:

Special Case: Suppose

- \(m = 2, \ n = 4; \)
- Scalar flat: \(s \equiv 0; \) and
- Complex structure \(J \) standard at infinity:

\[
(M - K, J) \approx_{\text{bih}} (\mathbb{C}^2 - \overline{B^4})/\Gamma.
\]

Since \(g \) is Kähler, the complex coordinates

\[
(z^1, z^2) = (x^1 + ix^2, x^3 + ix^4)
\]

are harmonic. So \(x^j \) are harmonic, too, and

\[
g^{jk} (g_{j\ell,k} - g_{jk,\ell}) \nu^\ell \alpha_E = -\star d \log \left(\sqrt{\det g} \right) + O(\varrho^{-3-\varepsilon}).
\]
\[m(M, g) = - \lim_{\epsilon \to \infty} \frac{1}{12\pi^2} \int_{S_\epsilon/\Gamma} \star d \left(\log \sqrt{\det g} \right) \]
\[m(M, g) = - \lim_{\epsilon \to \infty} \frac{1}{12\pi^2} \int_{S_{\epsilon}/\Gamma} \star d \left(\log \sqrt{\det g} \right) \]

Now set \(\theta = \frac{i}{2}(\partial - \bar{\partial}) \left(\log \sqrt{\det g} \right) \), so that
$$m(M, g) = - \lim_{\rho \to \infty} \frac{1}{12\pi^2} \int_{S_\rho/\Gamma} \star d \left(\log \sqrt{\det g} \right)$$

Now set $$\theta = \frac{i}{2} (\partial - \bar{\partial}) \left(\log \sqrt{\det g} \right)$$, so that

$$\rho = d\theta$$

is Ricci form, and
\[m(M, g) = - \lim_{\rho \to \infty} \frac{1}{12\pi^2} \int_{S_\rho/\Gamma} \star d \left(\log \sqrt{\det g} \right) \]

Now set \(\theta = \frac{i}{2} (\partial - \bar{\partial}) \left(\log \sqrt{\det g} \right) \), so that

\[\rho = d\theta \]

is Ricci form, and

\[-\star d \log \left(\sqrt{\det g} \right) = 2 \theta \wedge \omega. \]
\[m(M, g) = - \lim_{\sigma \to \infty} \frac{1}{12\pi^2} \int_{S_\sigma/\Gamma} \star d \left(\log \sqrt{\det g} \right) \]

Now set \(\theta = \frac{i}{2} (\partial - \bar{\partial}) \left(\log \sqrt{\det g} \right) \), so that

\[\rho = d\theta \]

is Ricci form, and

\[-\star d \log \left(\sqrt{\det g} \right) = 2 \theta \wedge \omega. \]

Thus

\[m(M, g) = - \lim_{\sigma \to \infty} \frac{1}{6\pi^2} \int_{S_\sigma/\Gamma} \theta \wedge \omega \]
\[m(M, g) = - \lim_{\varrho \to \infty} \frac{1}{12\pi^2} \int_{S_\varrho/\Gamma} \star d \left(\log \sqrt{\det g} \right) \]

Now set \(\theta = \frac{i}{2}(\partial - \bar{\partial}) \left(\log \sqrt{\det g} \right) \), so that

\[\rho = d\theta \]

is Ricci form, and

\[-\star d \log \left(\sqrt{\det g} \right) = 2 \theta \wedge \omega. \]

Thus

\[m(M, g) = - \lim_{\varrho \to \infty} \frac{1}{6\pi^2} \int_{S_\varrho/\Gamma} \theta \wedge \omega \]

However, since \(s = 0 \),

\[d(\theta \wedge \omega) = \rho \wedge \omega = \frac{s}{4} \omega^2 = 0. \]
\[m(M, g) = - \lim_{\varrho \to \infty} \frac{1}{12\pi^2} \int_{S_\varrho/\Gamma} \star d \left(\log \sqrt{\det g} \right) \]

Now set \(\theta = \frac{i}{2} (\partial - \bar{\partial}) \left(\log \sqrt{\det g} \right) \), so that

\[\rho = d\theta \]

is Ricci form, and

\[-\star d \log \left(\sqrt{\det g} \right) = 2 \theta \wedge \omega. \]

Thus

\[m(M, g) = - \frac{1}{6\pi^2} \int_{S_\varrho/\Gamma} \theta \wedge \omega \]
Let $f : M \to \mathbb{R}$ be smooth cut-off function:
Let $f : M \to \mathbb{R}$ be smooth cut-off function:
Let $f : M \to \mathbb{R}$ be smooth cut-off function:
\[f \equiv 0 \text{ away from end}, \]
Let $f : M \to \mathbb{R}$ be smooth cut-off function:

- $\equiv 0$ away from end,
- $\equiv 1$ near infinity.
Let \(f : M \to \mathbb{R} \) be smooth cut-off function:

- \(\equiv 0 \) away from end,
- \(\equiv 1 \) near infinity.

![Diagram of a smooth cut-off function with a transition from 0 to 1 as the radius approaches the "end".](image-url)
Let $f : M \to \mathbb{R}$ be a smooth cut-off function:
\[f \equiv 0 \text{ away from end}, \]
\[f \equiv 1 \text{ near infinity}. \]
Let $f : M \to \mathbb{R}$ be smooth cut-off function:

\[\equiv 0\] away from end,
\[\equiv 1\] near infinity.
Let $f : M \to \mathbb{R}$ be smooth cut-off function:

$\equiv 0$ away from end,
$\equiv 1$ near infinity.
Let \(f : M \to \mathbb{R} \) be smooth cut-off function:
\[
\equiv 0 \text{ away from end},
\equiv 1 \text{ near infinity}.
\]
Let $f : M \to \mathbb{R}$ be smooth cut-off function:
\[\equiv 0 \text{ away from end},\]
\[\equiv 1 \text{ near infinity}.\]
Let $f : M \to \mathbb{R}$ be smooth cut-off function:

- $\equiv 0$ away from end,
- $\equiv 1$ near infinity.

Set

$$\psi := \rho - d(f\theta)$$
Let \(f : M \to \mathbb{R} \) be smooth cut-off function:
\[
\equiv 0 \text{ away from end,} \\
\equiv 1 \text{ near infinity.}
\]

Set
\[
\psi := \rho - d(f \theta)
\]

Compactly supported, because \(d\theta = \rho \) near infinity.
Let $f : M \to \mathbb{R}$ be smooth cut-off function:
- $\equiv 0$ away from end,
- $\equiv 1$ near infinity.

Set

$$\psi := \rho - d(f \theta)$$

$$[\psi] = \clubsuit([\rho]) = 2\pi \clubsuit(c_1) \in H^2_c(M)$$
Let $f : M \to \mathbb{R}$ be smooth cut-off function:

$\equiv 0$ away from end,
$\equiv 1$ near infinity.

Set

$$\psi := \rho - d(f \theta)$$

$$[\psi] = \heart([\rho]) = 2\pi \heart(c_1) \in H^2_c(M)$$

$$\langle 2\pi \heart(c_1), \omega \rangle = \int_M \psi \wedge \omega$$
Let \(f : M \to \mathbb{R} \) be smooth cut-off function:
\[\equiv 0 \quad \text{away from end}, \]
\[\equiv 1 \quad \text{near infinity}. \]

Set
\[
\psi := \rho - d(f\theta)
\]
\[
[\psi] = \bullet([\rho]) = 2\pi \bullet(c_1) \in H_c^2(M)
\]
\[
\langle 2\pi \bullet(c_1), \omega \rangle = \int_{M_\rho} \psi \wedge \omega
\]
where \(M_\rho \) defined by radius \(\leq \rho \).
Let \(f : M \to \mathbb{R} \) be smooth cut-off function:
\[\equiv 0 \text{ away from end,} \]
\[\equiv 1 \text{ near infinity.} \]

Set
\[\psi := \rho - d(f\theta) \]
\[[\psi] = \clubsuit([\rho]) = 2\pi \clubsuit(c_1) \in H^2_c(M) \]
\[\langle 2\pi \clubsuit(c_1), \omega \rangle = \int_{M_\rho} \psi \wedge \omega \]
Let $f : M \to \mathbb{R}$ be smooth cut-off function:
- $\equiv 0$ away from end,
- $\equiv 1$ near infinity.

Set

$$\psi := \rho - d(f\theta)$$

$$[\psi] = \clubsuit([\rho]) = 2\pi \clubsuit(c_1) \in H^2_c(M)$$

$$\langle 2\pi \clubsuit(c_1), \omega \rangle = \int_{M_{\rho}} [\rho - d(f\theta)] \wedge \omega$$
Let $f : M \to \mathbb{R}$ be smooth cut-off function:

$\equiv 0$ away from end,

$\equiv 1$ near infinity.

Set

$$\psi := \rho - d(f \theta)$$

$$[\psi] = \spadesuit([\rho]) = 2\pi \spadesuit(c_1) \in H^2_c(M)$$

$$\langle 2\pi \spadesuit(c_1), \omega \rangle = -\int_{M_\rho} d(f \theta \wedge \omega)$$

because scalar-flat $\implies \rho \wedge \omega = 0.$
Let $f : M \to \mathbb{R}$ be smooth cut-off function:

- $\equiv 0$ away from end,
- $\equiv 1$ near infinity.

Set

$$
\psi := \rho - d(f \theta)
$$

$$
[\psi] = \clubsuit([\rho]) = 2\pi \clubsuit(c_1) \in H^2_c(M)
$$

$$
\langle 2\pi \clubsuit(c_1), \omega \rangle = -\int_{M_\rho} d(f \theta \wedge \omega)
$$
Let \(f : M \to \mathbb{R} \) be smooth cut-off function:

\[\equiv 0 \text{ away from end}, \]
\[\equiv 1 \text{ near infinity}. \]

Set

\[\psi := \rho - d(f \theta) \]

\[[\psi] = \clubsuit([\rho]) = 2\pi \clubsuit(c_1) \in H^2_c(M) \]

\[\langle 2\pi \clubsuit(c_1), \omega \rangle = - \int_{\partial M_\rho} f \theta \wedge \omega \]

by Stokes’ theorem.
Let $f : M \to \mathbb{R}$ be smooth cut-off function:

<table>
<thead>
<tr>
<th>Equivalent near</th>
</tr>
</thead>
<tbody>
<tr>
<td>away from end,</td>
</tr>
<tr>
<td>near infinity.</td>
</tr>
</tbody>
</table>

Set

$$
\psi := \rho - d(f \theta)
$$

$$
[\psi] = \clubsuit([\rho]) = 2\pi \clubsuit(c_1) \in H^2_c(M)
$$

$$
\langle 2\pi \clubsuit(c_1), \omega \rangle = -\int_{\partial M_\rho} \theta \wedge \omega
$$

by Stokes’ theorem.
Let $f : M \to \mathbb{R}$ be smooth cut-off function:
- $\equiv 0$ away from end,
- $\equiv 1$ near infinity.

Set

$$\psi := \rho - d(f\theta)$$

$$[\psi] = \clubsuit([\rho]) = 2\pi \clubsuit(c_1) \in H^2_c(M)$$

$$\langle 2\pi \clubsuit(c_1), \omega \rangle = -\int_{S_{\rho}/\Gamma} \theta \wedge \omega$$

by Stokes’ theorem.
Let \(f : M \to \mathbb{R} \) be smooth cut-off function:
\[
\equiv 0 \text{ away from end,} \\
\equiv 1 \text{ near infinity.}
\]

Set
\[
\psi := \rho - d(f \theta)
\]
\[
[\psi] = \clubsuit([\rho]) = 2\pi \clubsuit(c_1) \in H^2_c(M)
\]
\[
\langle 2\pi \clubsuit(c_1), \omega \rangle = -\int_{S_\rho/\Gamma} \theta \wedge \omega
\]
by Stokes’ theorem.
Let \(f : M \to \mathbb{R} \) be smooth cut-off function:
\[\equiv 0 \text{ away from end}, \]
\[\equiv 1 \text{ near infinity}. \]

Set
\[\psi := \rho - d(f\theta) \]

\[[\psi] = \wedge([\rho]) = 2\pi \wedge(c_1) \in H^2_c(M) \]

\[\langle 2\pi \wedge(c_1), \omega \rangle = -\int_{S_\rho/\Gamma} \theta \wedge \omega \]

by Stokes’ theorem.

So
\[m(M, g) = -\frac{1}{6\pi^2} \int_{S_\rho/\Gamma} \theta \wedge \omega \]
Let \(f : M \to \mathbb{R} \) be smooth cut-off function:
\[
\equiv 0 \text{ away from end},
\equiv 1 \text{ near infinity}.
\]

Set
\[
\psi := \rho - d(f \theta)
\]
\[
[\psi] = \bigotimes([\rho]) = 2\pi \bigotimes(c_1) \in H^2_c(M)
\]
\[
\langle 2\pi \bigotimes(c_1), \omega \rangle = -\int_{S_\rho/\Gamma} \theta \wedge \omega
\]
by Stokes’ theorem.

So
\[
m(M, g) = -\frac{1}{3\pi} \langle \bigotimes(c_1), \omega \rangle
\]
Let $f : M \to \mathbb{R}$ be smooth cut-off function:

\begin{align*}
\equiv 0 \text{ away from end}, \\
\equiv 1 \text{ near infinity}.
\end{align*}

Set

$$\psi := \rho - d(f \theta)$$

$$[\psi] = \spadesuit([\rho]) = 2\pi \spadesuit(c_1) \in H^2_c(M)$$

$$\langle 2\pi \spadesuit(c_1), \omega \rangle = -\int_{S_\rho / \Gamma} \theta \wedge \omega$$

by Stokes’ theorem.

So

$$m(M, g) = -\frac{1}{3\pi} \langle \spadesuit(c_1), \omega \rangle$$

as claimed.
We assumed:
We assumed:

- $m = 2$;
- $s \equiv 0$; and
- Complex structure J standard at infinity.
General case:
General case:

- General $m \geq 2$:
General case:

- General $m \geq 2$: straightforward...
General case:

- General $m \geq 2$: straightforward...
- $s \neq 0$, compensate by adding $\int s \, d\mu$...
General case:

- General $m \geq 2$: straightforward...
- $s \neq 0$, compensate by adding $\int s \, d\mu$...
- If $m > 2$, J is always standard at infinity.
General case:

- General $m \geq 2$: straightforward...
- $s \neq 0$, compensate by adding $\int s \, d\mu$...
- If $m > 2$, J is always standard at infinity.
- If $m = 2$ and AE, J is still standard at infinity.
General case:

- General $m \geq 2$: straightforward...
- $s \neq 0$, compensate by adding $\int s \, d\mu$...
- If $m > 2$, J is always standard at infinity.
- If $m = 2$ and AE, J is still standard at infinity.
- If $m = 2$ and ALE, J can be non-standard at ∞.
General case:

- General $m \geq 2$: straightforward...
- $s \neq 0$, compensate by adding $\int s \, d\mu$...
- If $m > 2$, J is always standard at infinity.
- If $m = 2$ and AE, J is still standard at infinity.
- If $m = 2$ and ALE, J can be non-standard at ∞.

The last point is serious.
General case:

- General $m \geq 2$: straightforward.
- $s \neq 0$, compensate by adding $\int s \, d\mu$.
- If $m > 2$, J is always standard at infinity.
- If $m = 2$ and AE, J is still standard at infinity.
- If $m = 2$ and ALE, J can be non-standard at ∞.

Example: Eguchi-Hanson.
General case:

- General $m \geq 2$: straightforward...
- $s \neq 0$, compensate by adding $\int s \, d\mu$...
- If $m > 2$, J is always standard at infinity.
- If $m = 2$ and AE, J is still standard at infinity.
- If $m = 2$ and ALE, J can be non-standard at ∞.

Example: Eguchi-Hanson.
General case:

- General $m \geq 2$: straightforward...
- $s \neq 0$, compensate by adding $\int s \, d\mu$...
- If $m > 2$, J is always standard at infinity.
- If $m = 2$ and AE, J is still standard at infinity.
- If $m = 2$ and ALE, J can be non-standard at ∞.

Example: Eguchi-Hanson.
General case:

- General $m \geq 2$: straightforward...
- $s \neq 0$, compensate by adding $\int s \, d\mu$...
- If $m > 2$, J is always standard at infinity.
- If $m = 2$ and AE, J is still standard at infinity.
- If $m = 2$ and ALE, J can be non-standard at ∞.

Example: Eguchi-Hanson.
General case:

- General $m \geq 2$: straightforward...
- $s \neq 0$, compensate by adding $\int s \, d\mu$...
- If $m > 2$, J is always standard at infinity.
- If $m = 2$ and AE, J is still standard at infinity.
- If $m = 2$ and ALE, J can be non-standard at ∞.

Example: Eguchi-Hanson.
General case:

- General $m \geq 2$: straightforward...
- $s \neq 0$, compensate by adding $\int s \, d\mu$...
- If $m > 2$, J is always standard at infinity.
- If $m = 2$ and AE, J is still standard at infinity.
- If $m = 2$ and ALE, J can be non-standard at ∞.

One argument proceeds by osculation:
General case:

- General \(m \geq 2 \): straightforward...
- \(s \neq 0 \), compensate by adding \(\int s \, d\mu \)...
- If \(m > 2 \), \(J \) is always standard at infinity.
- If \(m = 2 \) and AE, \(J \) is still standard at infinity.
- If \(m = 2 \) and ALE, \(J \) can be non-standard at \(\infty \).

One argument proceeds by osculation:

\[
J = J_0 + O(\varrho^{-3}), \quad \nabla J = O(\varrho^{-4})
\]

in suitable asymptotic coordinates adapted to \(g \).
To understand J at infinity:
To understand J at infinity:

Let \widetilde{M}_∞ be universal over of end M_∞.
To understand J at infinity:

Let \tilde{M}_∞ be universal over the end M_∞.

Cap off \tilde{M}_∞ by adding \mathbb{CP}^{m-1} at infinity.
To understand J at infinity:

Let \tilde{M}_∞ be universal over of end M_∞.

Cap off \tilde{M}_∞ by adding \mathbb{CP}^{m-1} at infinity.

Added hypersurface \mathbb{CP}^{m-1} has normal bundle $\mathcal{O}(1)$.
To understand J at infinity:

Let \tilde{M}_∞ be universal over of end M_∞.

Cap off \tilde{M}_∞ by adding \mathbb{CP}^{m-1} at infinity.

Added hypersurface \mathbb{CP}^{m-1} has normal bundle $\mathcal{O}(1)$.

Belongs to m-dimensional family of hypersurfaces.
To understand J at infinity:

Let \tilde{M}_∞ be universal over of end M_∞.

Cap off \tilde{M}_∞ by adding \mathbb{CP}^{m-1} at infinity.

Added hypersurface \mathbb{CP}^{m-1} has normal bundle $\mathcal{O}(1)$.

Belongs to m-dimensional family of hypersurfaces.

Moduli space carries \mathcal{O} projective structure
To understand J at infinity:

Let \tilde{M}_∞ be universal over end M_∞.

Cap off \tilde{M}_∞ by adding \mathbb{CP}^{m-1} at infinity.

Added hypersurface \mathbb{CP}^{m-1} has normal bundle $\mathcal{O}(1)$.

Belongs to m-dimensional family of hypersurfaces.

Moduli space carries \mathcal{O} projective structure with many totally geodesic hypersurfaces.
To understand J at infinity:

Let \tilde{M}_∞ be universal over of end M_∞.

Cap off \tilde{M}_∞ by adding \mathbb{CP}^{m-1} at infinity.

Added hypersurface \mathbb{CP}^{m-1} has normal bundle $\mathcal{O}(1)$.

Belongs to m-dimensional family of hypersurfaces.

Moduli space carries \mathcal{O} projective structure with many totally geodesic hypersurfaces.

So flat if $m \geq 3$.
To understand J at infinity:

Let \tilde{M}_∞ be universal over of end M_∞.

Cap off \tilde{M}_∞ by adding \mathbb{CP}^{m-1} at infinity.

Added hypersurface \mathbb{CP}^{m-1} has normal bundle $\mathcal{O}(1)$.

Belongs to m-dimensional family of hypersurfaces.

Moduli space carries \mathcal{O} projective structure with many totally geodesic hypersurfaces.

So flat if $m \geq 3$.

When $m = 2$, Cotton tensor may be non-zero,
To understand J at infinity:

Let \tilde{M}_∞ be universal over of end M_∞.

Cap off \tilde{M}_∞ by adding \mathbb{CP}^{m-1} at infinity.

Added hypersurface \mathbb{CP}^{m-1} has normal bundle $O(1)$.

Belongs to m-dimensional family of hypersurfaces.

Moduli space carries O projective structure

with many totally geodesic hypersurfaces.

So flat if $m \geq 3$.

When $m = 2$, Cotton tensor may be non-zero, but “flatter” than might naively expect.
To understand J at infinity:
To understand J at infinity:

AE case:

Compactify M itself by adding \mathbb{CP}^{m-1} at infinity.
To understand J at infinity:

AE case:

Compactify M itself by adding \mathbb{CP}_{m-1} at infinity.

Linear system of \mathbb{CP}_{m-1} gives holomorphic map

\[
\overline{M} \rightarrow \mathbb{CP}_m
\]

which is biholomorphism near \mathbb{CP}_{m-1}.
To understand J at infinity:

AE case:

Compactify M itself by adding \mathbb{CP}^{m-1} at infinity.

Linear system of \mathbb{CP}^{m-1} gives holomorphic map $\overline{M} \rightarrow \mathbb{CP}^m$ which is biholomorphism near \mathbb{CP}^{m-1}.

Thus obtain holomorphic map $\Phi : M \rightarrow \mathbb{C}^m$ which is biholomorphism near infinity.
To understand \(J \) at infinity:

AE case:

Compactify \(M \) itself by adding \(\mathbb{CP}^{m-1} \) at infinity.

Linear system of \(\mathbb{CP}^{m-1} \) gives holomorphic map

\[\overline{M} \to \mathbb{CP}^m \]

which is biholomorphism near \(\mathbb{CP}^{m-1} \).

Thus obtain holomorphic map

\[\Phi : M \to \mathbb{C}^m \]

which is biholomorphism near infinity.

This has some interesting consequences...
Theorem D (Positive Mass Theorem).
Theorem D (Positive Mass Theorem). Any AE Kähler manifold with
Theorem D (Positive Mass Theorem). *Any AE Kähler manifold with non-negative scalar curvature*
Theorem D (Positive Mass Theorem). Any AE Kähler manifold with non-negative scalar curvature has non-negative mass:
Theorem D (Positive Mass Theorem). Any AE Kähler manifold with non-negative scalar curvature has non-negative mass:

$$AE \ & \ Kähler \ & \ s \geq 0 \ \implies \ m(M, g) \geq 0.$$
Theorem D (Positive Mass Theorem). *Any AE Kähler manifold with non-negative scalar curvature has non-negative mass:*

\[
AE \& \text{Kähler} \& s \geq 0 \implies m(M, g) \geq 0.
\]

Moreover, \(m = 0 \iff \))
Theorem D (Positive Mass Theorem). Any AE Kähler manifold with non-negative scalar curvature has non-negative mass:

$$AE \& \text{ Kähler} \& s \geq 0 \implies m(M, g) \geq 0.$$

Moreover, $$m = 0 \iff (M, g) \text{ is Euclidean space.}$$
Theorem D (Positive Mass Theorem). *Any* AE Kähler manifold *with non-negative scalar curvature has non-negative mass:*

\[
AE \text{ & Kähler & } s \geq 0 \implies m(M, g) \geq 0.
\]

Moreover, \(m = 0 \iff (M, g) \text{ is Euclidean space.} \)

Proof actually shows something stronger!
Theorem E (Penrose Inequality).

Let \((M,g,J)\) be an AE Kähler manifold with scalar curvature \(s \geq 0\). Then \((M,J)\) carries a canonical divisor \(D\) that is expressed as a sum \(\sum n_j D_j\) of compact complex hypersurfaces with positive integer coefficients, with the property that \(\bigcup n_j D_j \neq \emptyset\) whenever \((M,J) \neq \mathbb{C}^m\). In terms of this divisor, we then have...
Theorem E (Penrose Inequality). \(\text{Let } (M^{2m}, g, J) \)
Theorem E (Penrose Inequality). Let (M^{2m}, g, J) be an AE Kähler manifold.
Theorem E (Penrose Inequality). Let \((M^{2m}, g, J)\) be an AE Kähler manifold with scalar curvature \(s \geq 0\).
Theorem E (Penrose Inequality). Let \((M^{2m}, g, J)\) be an AE Kähler manifold with scalar curvature \(s \geq 0\). Then \((M, J)\) carries a canonical divisor \(D\).
Theorem E (Penrose Inequality). Let (M^{2m}, g, J) be an AE Kähler manifold with scalar curvature $s \geq 0$. Then (M, J) carries a canonical divisor D that is expressed as a sum $\sum j n_j D_j$.
Theorem E (Penrose Inequality). Let \((M^{2m}, g, J)\) be an AE Kähler manifold with scalar curvature \(s \geq 0\). Then \((M, J)\) carries a canonical divisor \(D\) that is expressed as a sum \(\sum_j n_j D_j\) of compact complex hypersurfaces with positive integer coefficients,
Theorem E (Penrose Inequality). Let \((M^{2m}, g, J)\) be an AE Kähler manifold with scalar curvature \(s \geq 0\). Then \((M, J)\) carries a canonical divisor \(D\) that is expressed as a sum \(\sum_j n_j D_j\) of compact complex hypersurfaces with positive integer coefficients, with the property that \(\bigcup_j D_j \neq \emptyset\) whenever \((M, J) \neq \mathbb{C}^m\).
Theorem E (Penrose Inequality). Let \((M^{2m}, g, J)\) be an AE Kähler manifold with scalar curvature \(s \geq 0\). Then \((M, J)\) carries a canonical divisor \(D\) that is expressed as a sum \(\sum j n_j D_j\) of compact complex hypersurfaces with positive integer coefficients, with the property that \(\bigcup j D_j \neq \emptyset\) whenever \((M, J) \neq \mathbb{C}^m\). In terms of this divisor,
Theorem E (Penrose Inequality). Let (M^{2m}, g, J) be an AE Kähler manifold with scalar curvature $s \geq 0$. Then (M, J) carries a canonical divisor D that is expressed as a sum $\sum_j n_j D_j$ of compact complex hypersurfaces with positive integer coefficients, with the property that $\bigcup_j D_j \neq \emptyset$ whenever $(M, J) \neq \mathbb{C}^m$. In terms of this divisor, we then have

$$m(M, g) \geq \sum \text{Vol}(D_j)$$
Theorem E (Penrose Inequality). Let \((M^{2m}, g, J)\) be an AE Kähler manifold with scalar curvature \(s \geq 0\). Then \((M, J)\) carries a canonical divisor \(D\) that is expressed as a sum \(\sum j \mathbf{n}_j D_j\) of compact complex hypersurfaces with positive integer coefficients, with the property that \(\bigcup j D_j \neq \emptyset\) whenever \((M, J) \neq \mathbb{C}^m\). In terms of this divisor, we then have

\[
m(M, g) \geq \sum \mathbf{n}_j \text{Vol}(D_j)
\]
Theorem E (Penrose Inequality). Let (M^{2m}, g, J) be an AE Kähler manifold with scalar curvature $s \geq 0$. Then (M, J) carries a canonical divisor D that is expressed as a sum $\sum jn_jD_j$ of compact complex hypersurfaces with positive integer coefficients, with the property that $\bigcup_j D_j \neq \emptyset$ whenever $(M, J) \neq \mathbb{C}^m$. In terms of this divisor, we then have

$$m(M, g) \geq \frac{(m - 1)!}{(2m - 1)\pi^{m-1}} \sum n_j \text{Vol}(D_j)$$
Theorem E (Penrose Inequality). Let (M^{2m}, g, J) be an AE Kähler manifold with scalar curvature $s \geq 0$. Then (M, J) carries a canonical divisor D that is expressed as a sum $\sum_j n_j D_j$ of compact complex hypersurfaces with positive integer coefficients, with the property that $\bigcup_j D_j \neq \emptyset$ whenever $(M, J) \neq \mathbb{C}^m$. In terms of this divisor, we then have

$$m(M, g) \geq \frac{(m - 1)!}{(2m - 1)\pi^{m-1}} \sum n_j \text{Vol}(D_j)$$

with $= \iff$
Theorem E (Penrose Inequality). Let (M^{2m}, g, J) be an AE Kähler manifold with scalar curvature $s \geq 0$. Then (M, J) carries a canonical divisor D that is expressed as a sum $\sum_j n_j D_j$ of compact complex hypersurfaces with positive integer coefficients, with the property that $\bigcup_j D_j \neq \emptyset$ whenever $(M, J) \neq \mathbb{C}^m$. In terms of this divisor, we then have

$$m(M, g) \geq \frac{(m - 1)!}{(2m - 1)\pi^{m-1}} \sum n_j \text{Vol}(D_j)$$

with $= \iff (M, g, J)$ is scalar-flat Kähler.
This follows from existence of a holomorphic map

\[\Phi : M \to \mathbb{C}^m \]

which is a biholomorphism near infinity.
This follows from existence of a holomorphic map

\[\Phi : M \to \mathbb{C}^m \]

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

\[\varphi = \Phi^* d\bar{z}^1 \wedge \cdots \wedge d\bar{z}^m \]
This follows from existence of a holomorphic map

$$\Phi : M \rightarrow \mathbb{C}^m$$

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

$$\varphi = \Phi^* dz^1 \wedge \cdots \wedge dz^m$$

of the canonical line bundle
This follows from existence of a holomorphic map
\[\Phi : M \to \mathbb{C}^m \]
which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section
\[\varphi = \Phi^* dz^1 \wedge \cdots \wedge dz^m \]
of the canonical line bundle which vanishes exactly at the critical points of \(\Phi \).
This follows from existence of a holomorphic map

$$\Phi : M \rightarrow \mathbb{C}^m$$

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

$$\varphi = \Phi^* dz^1 \wedge \cdots \wedge dz^m$$

of the canonical line bundle which vanishes exactly at the critical points of Φ.

The zero set of φ, counted with multiplicities, gives us a canonical divisor
This follows from existence of a holomorphic map

\[\Phi : M \rightarrow \mathbb{C}^m \]

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

\[\varphi = \Phi^* dz^1 \wedge \cdots \wedge dz^m \]

of the canonical line bundle which vanishes exactly at the critical points of \(\Phi \).

The zero set of \(\varphi \), counted with multiplicities, gives us a canonical divisor

\[D = \sum n_j D_j \]
This follows from existence of a holomorphic map

\[\Phi : M \to \mathbb{C}^m \]

which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section

\[\varphi = \Phi^* dz^1 \wedge \cdots \wedge dz^m \]

of the canonical line bundle which vanishes exactly at the critical points of \(\Phi \).

The zero set of \(\varphi \), counted with multiplicities, gives us a canonical divisor

\[D = \sum n_j D_j \]

and

\[-\langle \spadesuit (c_1), \frac{\omega^{m-1}}{(m-1)!} \rangle = \sum n_j \text{Vol} (D_j) \]
This follows from existence of a holomorphic map
\[\Phi : M \to \mathbb{C}^m \]
which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section
\[\varphi = \Phi^* dz^1 \wedge \cdots \wedge dz^m \]
of the canonical line bundle which vanishes exactly at the critical points of \(\Phi \).

The zero set of \(\varphi \), counted with multiplicities, gives us a canonical divisor
\[D = \sum n_j D_j \]
and
\[-\langle \clubsuit (c_1), \frac{\omega^{m-1}}{(m-1)!} \rangle = \sum n_j \text{Vol} (D_j) \]
so the mass formula implies the claim.
\[m(M, g) = -\frac{\langle \spadesuit(c_1), [\omega]^{m-1} \rangle}{(2m - 1)\pi^{m-1}} + \frac{(m - 1)!}{4(2m - 1)\pi^m} \int_M s_g d\mu_g \]
\[m(M, g) = -\frac{\langle \spadesuit(c_1), [\omega]^{m-1} \rangle}{(2m - 1)\pi^{m-1}} + \frac{(m - 1)!}{4(2m - 1)\pi^m} \int_M s_g d\mu_g \]
\[m(M, g) = -\frac{\langle \clubsuit (c_1), [\omega]^{m-1} \rangle}{(2m - 1)\pi^{m-1}} + \frac{(m - 1)!}{4(2m - 1)\pi^m} \int_M s_g d\mu_g \]
\[m(M, g) = -\frac{\langle c_1, [\omega]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M s_g d\mu_g \]
\[m(M, g) = -\frac{\langle \bullet(c_1), [\omega]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M s_g d\mu_g \]