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Abstract. An oriented Riemannian 4-manifold is said to be half-conformally-flat

if its conformal curvature W is either self-dual or anti-self-dual as a bundle-valued
2-form. We review a construction [18] of compact half-conformally-flat manifolds
with semi-free isometric S1-action, starting from the Green’s function of a collection
of points in a hyperbolic 3-manifold. If the 3-manifold in question is just hyperbolic
space, the resulting 4-manifolds are one-point conformal compactifications of scalar-
flat Kähler surfaces. We then show that any asymptotically Euclidean scalar-flat
Kähler surface with a non-zero conformal Killing field arises from this construction.

§1 Over-view

Imagine that you’re given a smooth oriented compact 4-manifold M , and, per-
haps motivated by pleasant memories of the uniformization theory of surfaces, you
try to find a conformally-flat metric g on it. You’d thus be looking for a Riemann-
ian metric g which, relative to some atlas of charts {xα : Uα−→Vα ⊂ R4} for M , is
of the form

g = fα

4∑
j=1

(dxj
α)⊗2

on each open set Uα, where fα is some positive smooth function. Generally speak-
ing, you’d be out of luck, for the following reason: the conformal curvature1 W of
such a metric must vanish, whereas, for an arbitrary Riemannian metric g on M ,
the signature σ = b+ − b− of M is given by

σ =
1

12π2

∫
M

(‖W+‖
2 − ‖W−‖

2) dvol,

so the existence of a conformally-flat metric on M implies that σ = 0. Here W± is
the self-dual (respectively, anti-self-dual) piece of the Weyl tensor, as defined by

W± :=
1

2
(W ± ?W ) ,

where the Hodge-star operator ? treats W as a bundle-valued 2-form.
Since the above problem is, generally speaking, hopeless, one should perhaps

try to settle for a metric with as little conformal curvature W as allowed by the
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topology. A good measure of the the total amount of conformal curvature present
is given by the L2-norm

A(g) :=

∫
M

‖W‖2 dvol =

∫
M

(‖W+‖
2 + ‖W−‖

2) dvol

of the Weyl tensor, because, unlike other norms you might be tempted to apply,
this one has the virtue that it is conformally invariant — A(g) = A(f · g) for any
smooth positive function f . But A(g) ≥ 12π2|σ|, with equality iff either W+ ≡ 0
or W− ≡ 0, in which case the conformal Riemannian manifold (M, [g]) is said to be
half-conformally-flat. The cases W+ ≡ 0 and W− ≡ 0 are more specifically called
anti-self-dual and self-dual, respectively; they differ, of course, only by a choice of
the orientation.

The two simplest examples of compact self-dual manifolds are provided by the
Riemannian symmetric spaces S4 and CP2, oriented in the usual manner. The half-
conformal-flatness of the latter example has, fundamentally, nothing at all to do
with its Kähler structure, to such an extent that the following general observation
now seem rather surprising: a Kähler manifold of complex dimension 2 is anti-self-

dual with respect to the standard orientation iff its scalar curvature is identically
zero [8].

A particularly compelling reason for the study of half-conformally-flat 4-manifolds
comes from the Penrose twistor construction [2] [24]. Let (M, g) be an orientable
Riemannian 4-manifold, and let F → M be the principal SO(4)-bundle of orthonor-
mal frames determining the same orientation on M . Let Z = F/U(2), which is a
bundle over M with typical fiber S2 = SO(4)/U(2). Then the smooth 6-manifold
Z carries a natural almost-complex structure J : TZ → TZ, J2 = −1, which leaves
invariant both the tangent spaces of each fiber and the horizontal spaces of the
metric connection of g. Indeed, let us notice that, by construction, Z is exactly
the space of almost-complex structures  : TM → TM compatible with the given
metric and orientation, and so, thinking of the g-horizontal subspace of TZ as the
pull-back of TM to Z, there is thus a tautological way to let J act on the horizontal
sub-bundle of TZ. In the vertical directions, on the other hand, J will simply act as
the standard complex structure on S2, namely rotation by +90◦. Provided that we
give the fibers the correct orientation in defining this almost-complex structure J ,
the entire construction turns out, rather surprisingly, to be conformally invariant ,
meaning that J remains completely unchanged if the given Riemannian metric g
is replaced by αg, where α : M→R+ is any smooth positive function. This con-
struction of an almost-complex manifold for each conformal Riemannian manifold
may thus be thought of as a higher-dimensional analogue of the correspondence be-
tween conformal Riemannian 2-manifolds and complex 1-manifolds. However, the
almost-complex manifold (Z, J) will not, in general be a complex manifold— there
need not be an atlas of charts for Z relative to which J identically becomes mul-
tiplication by i in C

3 = R
6. Instead, the relevant integrability condition turns out

to W− = 0. When Z is the space of almost-complex structures on M compatible
with the given metric and the conjugate orientation on M , the tautological almost
complex structure on the twistor space is integrable if and only if W+ = 0. In
short, every half-conformally-flat 4-manifold determines a complex 3-fold Z, called
its twistor space, and this complex 3-manifold in turn completely encodes the con-
formal geometry of the original manifold. For example, the twistor space of S4 is
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CP3, whereas the twistor space of CP2 is the flag-manifold

F = {([z1, z2, z3], [w1, w2, w3]) ∈ CP2 × CP2|z · w = 0} .

Which smooth compact 4-manifolds M admit half-conformally-flat metrics? Cer-
tainly not all; for example, neither S2 × S2 nor CP2#CP2 admit such metrics,
since these manifolds have signature zero, which would force any putative half-
conformally-flat metric to be conformally-flat — whereas [17] the only simply-
connected conformally-flat manifold is S4! There is a reasonable hope, however,
that, for any M , its connected sum M#mCP2, m � 0, with a sufficiently large
number of complex projective planes might always admit such metrics. While this
remains beyond the scope of current technology, a panoply of interlocking methods
[26] [6] [7] [18] [19] [20] has evolved in the past several years for the construction
of self-dual metrics on connected sums of self-dual manifolds. The present article
will focus on a particularly elementary and explicit construction of this type, but
which is limited to the case of metrics with an isometric S1-action.

§2 Constructing Self-Dual Manifolds

Suppose that (Mfree, g) is a self-dual 4-manifold with a free isometric circle

action generated by a Killing field ξ, and let ξ[ = g(ξ, ·) be the corresponding 1-
form. We may then equip the 3-manifold X := M/S1 with the unique metric h for
which the canonical projection π becomes a Riemannian submersion; i.e. such that

π∗h = (g −
ξ[ ⊗ ξ[

‖ξ‖2
) .

Let β be the unique 1-form on X such that

π∗β =
−d‖ξ‖2 + 2 ? ξ[ ∧ dξ[

2‖ξ‖2
,

and define a connection D on X by

Dvw := ∇vw + β(v)w + β(w)v − g(v, w)β#,

where β = h(β#, ·) and ∇ is the Riemannian connection of h. If we replace g by
αg, where α is any S1-invariant function on M , then the connection D and the
conformal class [h] remain unchanged. By construction, the torsion-free connection
D preserves the conformal structure [h] in the sense that parallel transport preserves
angles, and is thus a so-called Weyl connection:

(2.1) Dh = ω ⊗ h ,

where ω = −2β. The hypothesis that (M, g) is self-dual then has the consequence
that the symmetrization of the Ricci tensor rD of D is a multiple of h; i.e. there is
a function λ : X → R such that

(2.2) rD(v, w) + rD(w, v) = λh(v, w) ∀ v, w .
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We will call a 3-manifold X equipped with a conformal metric h and a connection
D satisfying (2.1) and (2.2) an Einstein-Weyl manifold. Such geometries were first
studied by Elie Cartan [4], but their relation to self-dual 4-manifolds was first
recognized by Hitchin [12]. Several critical further observations described below
were then made by Jones and Tod [14].

In order to reconstruct a self-dual 4-manifold from an Einstein-Weyl geometry,
we need an extra piece of information, namely the function V = ‖ξ‖−1. If we think
of M → X as a circle bundle, we may equip it with a connection θ whose horizontal
spaces are the g-orthogonal complements of the fibers. The self-duality of g then
implies that the curvature of θ is given by

dθ = ?(d − β)V .

We may invert this construction as follows: let (X, [h],D) be an Einstein-Weyl
3-manifold, and let V : X → R be a positive solution of the elliptic equation

d ? (d − β)V = 0 .

Assume, in addition, that the closed 2-form 1
2π ? (d − β)V represents an integral

class in the de Rham cohomology H2(X). Then, by the Chern-Weil theorem, there
is a circle-bundle π : M → X which admits a connection θ whose curvature is
dθ = ?(d − β)V . Then, for any positive function µ on M , the metric

g = µ(π∗h + V −2θ ⊗ θ)

is self-dual. Often one takes µ = V , so that the above expression becomes

g = π∗V h + V −1θ ⊗ θ .

Example 2.3 Take X to be R
3 punctured at n points p1, . . . , pn, with h the

Euclidean metric and D the usual flat connection, and let V be the sum of their
Green’s functions:

V =

n∑
j=1

1

2rj
,

where rj is the Euclidean distance from pj . Then 1
2π ? dV has integral −1 on a

small sphere around any one of the puncture points pj ; since such spheres generate
H2(R

3 − {p1, . . . , pn}), we conclude that [ 1
2π ? dV ] is an integral de Rham class.

We can therefore consider the circle bundle Mfree → (R3 − {p1, . . . , pn}) with
connection 1-form θ whose curvature is ?dV . There is then a self-dual metric on
M given by

g = V h + V −1θ ⊗ θ .

This is the metric of Gibbons and Hawking [9]. If we add n points p̂1, . . . , p̂n to
Mfree to obtain a new space M which comes equipped with a circle action having
p̂1, . . . , p̂n as its fixed points and a projection M → R3, then M admits a unique
smooth structure such that g extends to M as a smooth Riemannian metric:

M = Mfree ∪ {p̂1, . . . , p̂n}
↓ ↓ ↓

R3 = (R3 − {p1, . . . , pn}) ∪ {p1, . . . , pn}
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Moreover, the resulting Riemannian manifold is complete and, by virtue of special
properties of the Einstein-Weyl space R3, actually Ricci-flat Kähler. With a little
care, this construction can easily be generalized to the case of infinitely many
(sparsely located) centers [1].
Example 2.4 [18]. Let (X, h,D) be hyperbolic 3-space H3 punctured at n points
p1, ..., pn, where D is the Riemannian connection. We again build V from the
Green’s functions of the given points:

(2.5) V = 1 +

n∑
j=1

1

e2ρj − 1
,

where ρj denotes the hyperbolic distance from pj . Then [ 1
2π ? dV ] is again an

integral class, and we can define a circle bundle Mfree → (H3 −{p1, . . . , pn}) with
connection 1-form θ whose curvature is ?dV . Let ρ denote the hyperbolic distance
from any reference point. The metric

(2.6) g = (sech2 ρ) (π∗V h + V −1θ ⊗ θ)

is then self-dual, and, because of our choice of conformal gauge, may be smoothly
compactified by adding a 2-sphere and n points p̂1, . . . , p̂n. Indeed, let B denote
the closed unit ball in R3, and identify the interior of B with H3 via the Poincaré
conformal model. Then M = Mfree ∪S2∪{p1, . . . , pn} can be made into a smooth
4-manifold with circle-action in such a manner that S2 ∪ {p1, . . . , pn} is the fixed
point set and B is the orbit space, so that the projection to B is as follows:

M = Mfree ∪ S2 ∪ {p̂1, . . . , p̂n}
↓ ↓ ↓ ↓
B = (H3 − {p1, . . . , pn}) ∪ ∂B ∪ {p1, . . . , pn}

Calculations similar to those involved in the analysis of Example (2.3) then show

Theorem 2.7. The metric g of equation (2.6) has non-negative scalar curvature,

and extends to M to yield a compact self-dual 4-manifold diffeomorphic to the n-fold

connected sum CP2# · · ·#CP2.

When n = 0, 1, this construction produces the standard metrics on S4 and CP2,
respectively. When n = 2, we instead get the self-dual metrics on CP2#CP2 first
found in [26].

Example 2.8 [19], [20], [15]. Let Y be a hyperbolic 3-manifold with smooth
conformal compactification Y , meaning that we assume that Y is a smooth compact
3-manifold-with-boundary such that Y = Y − ∂Y , and the hyperbolic metric h of

Y is of the form h = f−2ĥ for ĥ a smooth Riemannian metric on Y and f a
non-degenerate defining function of the boundary ∂Y ; by Thurston’s main theorem
[29], the class of Y admitting structures of this kind includes “most” atoroidal 3-
manifolds-with-boundary. Let p1, . . . , pn ∈ Y be given, let Gj be the corresponding
Green’s functions, and set X = Y −{p1, . . . , pn}. Then we can mimic the previous
construction of compact self-dual 4-manifolds by taking

V = 1 +

n∑
j=1

Gj ,
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trying to find a circle-bundle with connection 1-form θ whose curvature is ?dV ,
setting

g = f2 (π∗V h + V −1θ ⊗ θ) ,

and compactifying by adding a copy of ∂Y and n isolated fixed points {p̂1, . . . , p̂n}.
The only catch lies in showing that [ 1

2π ? dV ] is an integral cohomology class —
and, indeed, this will usually only be true for some special configurations of points!
Nonetheless, one can verify the integrality condition in many cases. For example,
if Y is a handle-body, the integrality condition is automatically verified, and one
may use this to construct explicit self-dual metrics on arbitrary connected sums of
S1 × S3’s and CP2’s. On the other hand, if Y = Sg × R, where Sg is a compact
surface of genus g ≥ 2, one finds that the integrability condition is non-trivial, but,
by restricting ones choice of point-configurations, the construction can be made to
yield self-dual metrics on (S2 × Sg)#nCP2 provided that n 6= 1.

§3 Twistor Spaces

All the self-dual manifolds described in the previous section of course are asso-
ciated with complex 3-manifolds, namely their twistor spaces, and these complex
manifolds completely encode the conformal geometry of each self-dual 4-manifold,
providing a higher-dimensional analog of the familiar dictionary between Riemann
surfaces and complex curves. The fact that the metrics in question have confor-
mal Killing fields is then reflected by a C∗-action on their twistor spaces. At least
locally, one can then construct the quotient of the twistor space by this action,
thereby producing a complex surface, called the minitwistor space [14], which cor-
responds to the Einstein-Weyl quotient geometry [12]. Let us now examine our key
examples in this light. We begin with the Gibbons-Hawking metrics of example
(2.3), the twistor spaces of which were discovered by Hitchin [10]. The relevant
Einstein-Weyl geometry is in this case that of Euclidean 3-space, and the corre-
sponding mini-twistor space [13] is TCP1. Let O(k) → TCP1 denote the pull-back
of the degree k line-bundle over CP1 via the canonical projection. The data points
p1, . . . , pn ∈ R3 specify n sections of TCP1 → CP1, and these are the zero loci
of n sections P1, . . . , Pn of O(2). In the total space of the rank 2 vector bundle

O(n) ⊕O(n), let Z̃ denote the hypersurface

xy =
n∏

j=1

Pj ,

where x and y refer to the two factors of O(n)⊕O(n). The twistor space Z of the
Gibbons-Hawking metric is then given by a “small resolution” of this 3-dimensional
complex algebraic variety, meaning that each singular point is replaced by a rational
curve. For an important generalization of this class of twistor spaces, see [16].

We now turn to the manifolds given by example (2.4). In this case, the rele-
vant Einstein-Weyl geometry is that of hyperbolic 3-space, and the corresponding
minitwistor space is CP1 × CP1. Let O(k, `) denote the unique holomorphic line-
bundle over CP1×CP1 with degree k on the first factor and degree ` on the second,
and let the data points p1, . . . , pn ∈ H3 correspond to the zero loci of n sections
P1, . . . , Pn ∈ Γ(CP1×CP1,O(1, 1)). Let B denote the total space of the CP2-bundle

(3.1) B := CP(O(n − 1, 1) ⊕O(1, n − 1) ⊕O)
π
−→ CP1 × CP1 ,
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and define an algebraic variety Z̃ ⊂ B by the equation

(3.2) xy = t2
n∏

j=1

Pj ,

where x ∈ O(n − 1, 1), y ∈ O(1, n − 1), and t ∈ O := O(0, 0). The twistor space

Z of the metric constructed in example (2.4) is then obtained from Z̃ by making
small resolutions of the singular points and blowing down the surfaces x = t = 0
and y = t = 0 to CP1’s. Notice that Hitchin’s twistor spaces are degenerations of
these.

These twistor spaces thus turn out to be Moishezon spaces, meaning that they
are bimeromorphic to smooth projective varieties; for example, when n = 2, the
above twistor space is bimeromorphic to a resolution of the intersection of two
hyper-quadrics in CP5 with four ordinary double points [26]. For n > 3 one can
also show [5][22] that their generic small deformations are not even bimeromorphic
to Kähler manifolds, so that one observes from these twistor examples a rather un-
expected phenomenon of broader interest: the class of compact complex manifolds
bimeromorphic to Kähler is not stable under deformation of complex structure.

§4 Scalar-Flat Kähler Surfaces with Symmetry

As mentioned in §1, an interesting class of half-conformally-flat 4-manifolds is
given by the scalar-flat Kähler surfaces — i.e. complex 2-manifolds with Kähler
metrics with scalar curvature ≡ 0. A beautiful characterization of such metrics in
terms of their twistor spaces was found by Pontecorvo [25]. Namely, the complex
structure J , as well as the conjugate complex structure −J , are, by definition,
sections of the twistor fibration. These are “conjugate,” in the sense that they
are interchanged by the antipodal map on each fiber of the twistor fibration. (This
fiber-wise antipodal map is an anti-holomorphic involution of the twistor space, and
will henceforth be called the “real structure.” ) The integrability condition on J
then implies that the image of each of these two sections are complex hypersurfaces,
say Σ and Σ, in the twistor space Z. The fact that the metric is Kähler then implies
that the line bundle (ΣΣ)2 is isomorphic to the anti-canonical bundle K−1 of the
twistor space Z; the crux of the argument is that the Kähler form, being parallel,
corresponds by the Penrose transform [11] to a holomorphic section of K−1/2, and
the zero-locus of this section is, by inspection, Σ

∐
Σ. Conversely, if a holomorphic

section of K−1/2 is invariant under the real structure of a twistor space, it defines a
scalar-flat Kähler metric in the conformal class on the open subset of the 4-manifold
over which the given holomorphic section has two distinct zeroes on each twistor
fiber.

A remarkable consequence of this is the following: a self-dual manifold arising
as in Example (2.3) or (2.4) is automatically conformally isometric to a number
of different scalar-flat Kähler surfaces! Indeed, as we saw in §3, the corresponding
twistor spaces Z admit C∗-actions for which the stable quotient is either TCP1

or CP1 × CP1. But this means that a section of K−1/2 on TCP1 or CP1 × CP1,
respectively, will pull back as section of K−1/2 on Z. Since these complex surfaces
admit many half-anti-canonical divisors, the claim follows. For applications of these
ideas to the construction of compact scalar-flat Kähler surfaces via Example (2.5),
see [20].
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Let us now focus on the twistor spaces (3.2) arising from example (2.4), in which
there are two distinguished families of effective divisors, corresponding to the two
factors of the projection π : Z̃ → CP1×CP1 in (3.1). These two families, henceforth
denoted by |D| and |D|, are interchanged by the real structure. The intersection
of any such divisor D with its conjugate D is just a fiber of the projection π;
moreover, it is a real twistor line, corresponding to the twistor fiber of a point of
the fixed 2-sphere of the circle action on nCP2. When this twistor line is removed,
the resulting space N is the blow-up of C2 at n-points along a complex line in C2.
When the conformal factor (sech2 ρ) in (2.6) is replaced by e2B , where B : H3 → R

is the Busemann function of any geodesic, the resulting metric

(4.1) e2B(π∗V h + V −1θ ⊗ θ),

where V is given by (2.5), is a scalar-flat Kähler metric on N . (Of course, the
orientation on N is opposite that of M .) Moreover, the S1-action is carried over to
N to a conformal action. It turns out that these properties completely characterize
our metrics:

Theorem 4.2. Suppose that N is a complete scalar-flat Kähler surface. If the

metric is asymptotically Euclidean and admits a non-trivial conformal Killing field,

it is isometric to (4.1).

Proof: When N is asymptotically Euclidean, it can be conformally compactified
by adding one point at infinity, henceforth called o. After a change of orientation,
the conformal curvature of the resulting compact conformal Riemannian manifold
M is self-dual. Let ℘ : Z → M , be the twistor fibration. Thus Z is a compact
complex manifold.

Over M\{o}, the twistor fibration has two sections, namely the complex struc-
ture J on N and its conjugate −J . The integrability of J implies that the images
Σ and Σ of these sections are complex submanifolds of Z. Let D and D respec-
tively denote the closures of Σ and Σ. Since D\Σ is contained in the twistor line
Lo = ℘−1(o) of the point at infinity, D ∪ Lo is ∗-analytic in the sense of Mumford
[23], and hence a subvariety of Z. Thus D ⊂ Z is a complex hypersurface. The
same applies to D.

We already know that the divisor D is nonsingular away from the twistor line Lo.
On the other hand, a generic twistor fiber intersects D transversely in a single point,
so the homological intersection number D·Lo is 1. Let z ∈ Z be any point. Through
z passes a 2-complex-parameter family of CP1’s with normal bundle O(1) ⊕ O(1)
and representing the fiber homology class. The tangent spaces of these curves fill
out an open cone in TzZ. In particular, through every point of z ∈ D passes such
a CP1 meeting D in precisely one point. Fix another point z′ on such a curve, and
consider the 2-parameter family of nearby CP1’s through z′. Each such curve meets
D in one point. This provides a holomorphic chart for a neighborhood of z ∈ D.
Hence the divisor D is a nonsingular surface.

Let us consider the divisor Σ + Σ in the twistor space Z\Lo of our original non-
compact complex surface. By Pontecorvo’s theorem [25], the fact that the metric is

scalar-flat Kähler implies that there is a line bundle isomorphism ΣΣ ∼= K− 1

2 . Let
φ ∈ Γ(Z\Lo, (DD)∗ ⊗ K− 1

2 ) be the section which realizes this isomorphism. Since
Lo ⊂ Z has complex codimension 2, this section extends across Lo by Hartog’s
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theorem. But the extended section is non-zero away from the codimension 2 set
Lo, and hence is everywhere nonzero. This shows that

(4.3) DD ∼= K− 1

2 .

After this observation, we can show that the surface D contains Lo. If not,
both D and D intersect Lo transversely in one point each, and these points are
interchanged by Σ. Thus D∩D = ∅, and we can apply Pontecorvo’s theorem [25] to
conclude that there is a scalar-flat Kähler metric on M in the fixed conformal class.
This metric and our original Kähler metric g on N = M\{o} are thus conformally
related and Kähler with respect to the same complex structure J . Since the complex
dimension of N is > 1, the conformal factor is therefore constant. This would then
imply that (M, g) is incomplete, which is a contradiction.

To finish our proof, we will need the following

Proposition 2.5. The surface D is isomorphic to CP2 blown up at a collinear

collection of points.

Proof. With the isomorphism (4.3), we apply the adjunction formula on D to find
the canonical class on D in terms of the restriction of the divisor classes of D and
D. Then applying the same formula to Lo as a divisor on D, we find that the self-
intersection of this real twistor line is equal to one. It follows that D is a rational
surface (see e.g. [3, proposition V.4.3]). In particular,

h1(D,O) = 0.

With the last equality and the following exact sequence on D:

0 → O → O(Lo) → OLo
(1) → 0,

we find that the twistor line Lo is in a net of rational curves. The associated map
of this complete linear system exhibits the divisor D as the blow up of CP2.

Now the naturality of the twistor construction insures that any conformal au-
tomorphism of a self-dual manifold M induces a holomorphic automorphism of its
twistor space. A conformal Killing field therefore lifts to a holomorphic vector
field on Z. If this holomophic vector field is not tangent to D, we conclude that
dim|D| ≥ 1; similarly for |D|. In this case, we may then apply (3.1) in [27] to con-
clude our result. Otherwise, our one-parametergroup of conformal transformation
of M induces holomorphic transformations of Z preserving on D.

Since a holomorphic transformation homotopic to the identity must leave any
exceptional divisor fixed, the transformation to D descends to be a transformation
to CP2 leaving the blown up points fixed. As the twistor line at infinity is also
invariant, there is an additional pair of fixed points, say, p and q. This is possible
only if all these fixed points lie on two lines. As the line joining p and q does not
contain any points of blowing up, all the blown up points are collinear. �

When all the blown up points are collinear, the system |D| on the surface D
contains at least one member, namely the proper transform of the line containing
all the blown up points. This is so because the isomorphism (4.3) implies that the
divisor class of D is linearly equivalent to the proper transform of the line passing
through all points of blowing up.
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The restriction of the twistor fibration to D induces an isomorphism of first
homotopy groups between D and M , since this map is a diffeomorphism away
from the twistor line at infinity, which it contracts to a point. Thus M is simply-
connected. But, by the Penrose transform, we therefore have h1(Z,O) = b1(M) = 0
[11]. The exact sequence

0 → O → D → OD(D) → 0,

on the twistor space now tells us that the linear system |D| on Z has dimension
one. According to theorem (3.1) in [27], the metric on M is therefore conformal to
the metric (4.1). Moreover, the two complex structures agree. Since two Kähler
metrics in the same conformal class on a connected complex surface can only differ
by a homothety, the proof of our main theorem is finished. �

Remark 4.4 The first part of the above proof can easily be adapted to prove the
following more general result: Let M be an asymptotically Euclidean, scalar-flat

Kähler surface, perhaps with many ends. Then M is biholomorphic to C2 blown up

at a finite number of points. In particular, such a manifold can only have one end,
and is automatically simply connected. The reason for the “one end” conclusion
is that any real twistor line “at infinity” will have self-intersection 1 in the surface
D; yet two distinct real twistor lines must be disjoint! Surface classification thus
excludes the possibility of the surface D containing two real twistor lines.
Remark 4.5 If M is just anti-self-dual Hermitian instead of scalar-flat Kähler,
theorem (4.2) will still hold provided one imposes the additional hypothesis that
M be simply connected. Indeed, without any assumptions whatsoever, the isomor-
phism (4.3) generalizes to become DD ∼= K− 1

2 F where F is a holomorphic line
bundle with vanishing Chern class. The assumption of simple connectivity then
forces the torsion bundle F to be trivial. One can then once again apply Pon-
tecorvo’s theorem. However, scalar-flat anti-self-dual Hermitian counter examples
with fundamental group Z may be easily constructed by removing a point from a
Hopf surface S3 × S1.
Remark 4.6 The Kähler metric (4.1) was originally found [18] by the method of
Kähler reduction. The present theorem of course shows that this (or any other)
method will not lead to other asymptotically Euclidean solutions. Nevertheless,
there are many other complete Kähler surfaces of constant scalar curvature which
may be found by this approach [20] and its generalizations [28].
Remark 4.7 The metrics (4.1) can of course be conformally compactified so as to
yield self-dual metrics on connected-sums of complex projective planes, and the cor-
responding compact 4-manifolds automatically admit an isometric circle-action. An
interesting generalization of the problem solved in this section would thus be that of
classifying compact self-dual 4-manifolds with non-trivial isometric S1-action. The
first author has recently succeeded in proving that, provided the action is assumed
to be semi-free, any such manifold must either arise as in Example (2.4), or else
be conformally flat; however, it also seems certain that there will exist classes of
examples for which the semi-free hypothesis will fail.
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