The Geometry of 4-Manifolds:

Curvature in the Balance

II

Claude LeBrun Stony Brook University

Centro di Ricerca Matematica Ennio De Giorgi, Pisa, Italia. Il 9 giugno 2022.

On Riemannian *n*-manifold (M, g), $n \ge 4$,

 $Riemann = Weyl \oplus Ricci$

On Riemannian *n*-manifold (M, g), $n \ge 4$,

 $Riemann = Weyl \oplus trace-free Ricci \oplus scalar$

On Riemannian *n*-manifold (M, g), $n \ge 4$,

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c} \delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^{a}{}_{[c} \delta^{b]}_{d]}$$

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c} \delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^{a}{}_{[c} \delta^{b]}_{d]}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W =Weyl curvature

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

 W^a_{bcd} unchanged if $g \rightsquigarrow \hat{g} = u^2 g$.

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

$$W^a_{bcd}$$
 unchanged if $g \rightsquigarrow \hat{g} = u^2 g$.

But $\exists u$ such that $\hat{r} = 0$ at any given $p \in M$.

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

 W^a_{bcd} unchanged if $g \rightsquigarrow \hat{g} = u^2 g$.

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

Proposition. Assume $n \ge 4$. Then (M^n, g) locally conformally flat $\iff W \equiv 0$.

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^{a}{}_{[c}\delta^{b]}_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c} \delta^{b]}_{d]} + \frac{2}{n(n-1)} \mathbf{s} \delta^a_{[c} \delta^b_{d]}$$

where

s = scalar curvature

 \dot{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

Warning: When n = 3, story is different.

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

Warning: When n = 3, story is different.

W always 0, but g usually not conformally flat.

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

Warning: When n = 3, story is different.

W always 0, but g usually not conformally flat.

Cotton tensor $C = \nabla \wedge (\mathring{r} - \frac{s}{12}g)$ obstruction.

$$\mathcal{R}^{ab}{}_{cd} = W^{ab}{}_{cd} + \frac{4}{n-2} \mathring{r}^{[a}{}_{[c}\delta^{b]}_{d]} + \frac{2}{n(n-1)} s \delta^a_{[c}\delta^b_{d]}$$
 where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

W = Weyl curvature (conformally invariant)

Proposition. Assume $n \ge 4$. Then (M^n, g) locally conformally flat $\iff W \equiv 0$.

For metrics on fixed M^n ,

 $\mathscr{W}:\mathcal{G}_M\longrightarrow\mathbb{R}$

$$\mathcal{W}(g) = \int_{M} |W_g|^{n/2} d\mu_g$$

$$\mathscr{W}(g) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$W([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

$$\mathscr{W}: \mathcal{G}_M/(C^{\infty})^+ \longrightarrow \mathbb{R}$$

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

Basic problems: For given smooth compact M,

$$\mathscr{W}([g]) = \int_{M} |W_{g}|^{n/2} d\mu_{g}$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

Basic problems: For given smooth compact M,

• Are there any critical points?

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

only depends on the conformal class

$$[g] = \{u^2g \mid u : M \xrightarrow{C^{\infty}} \mathbb{R}^+\}.$$

Measures deviation [g] from conformal flatness.

Basic problems: For given smooth compact M,

- Are there any critical points?
- Can we classify them?

For M^4 ,

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{r}^{cd}) W_{acbd}$$

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

Solutions called Bach-flat metrics.

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

Solutions called Bach-flat metrics.

Bianchi \Longrightarrow Any Einstein (M^4, g) is Bach-flat.

For M^4 ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^2 d\mu_g$$

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{\mathbf{r}}^{cd}) W_{acbd}$$

called Bach tensor.

Solutions called Bach-flat metrics.

Bianchi \Longrightarrow Any Einstein (M^4, g) is Bach-flat.

Of course, conformally Einstein good enough!

For M^n ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

For M^n ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

has degenerate Euler-Lagrange equation

$$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$

when n > 4.

For M^n ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

has degenerate Euler-Lagrange equation

$$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$

when n > 4.

Einstein metrics are usually not critical points.

For M^n ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

has degenerate Euler-Lagrange equation

$$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$

when n > 4.

Einstein metrics are usually not critical points.

Calabi-Yau \times flat on $K3 \times T^{\ell}$ never critical

For M^n ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

has degenerate Euler-Lagrange equation

$$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$

when n > 4.

Einstein metrics are usually not critical points.

Calabi-Yau \times flat on $K3 \times T^{\ell}$ never critical

when $\ell > 0$,

For M^n ,

$$\mathscr{W}([g]) = \int_{M} |W_g|^{n/2} d\mu_g$$

has degenerate Euler-Lagrange equation

$$|W_g|^{(n-4)/2}(\nabla\nabla\nabla\cdot W + \cdots) = 0$$

when n > 4.

Einstein metrics are usually not critical points.

Calabi-Yau \times flat on $K3 \times T^{\ell}$ never critical

when $\ell > 0$, because $\mathscr{W} \propto \operatorname{Vol}(T^{\ell})!$

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No!

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds are also Bach-flat.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

 $W_{+} := \frac{1}{2}(W + \star W)$ called self-dual Weyl tensor.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $\Leftrightarrow W = -\star W$.

 $W_{+} := \frac{1}{2}(W + \star W)$ called self-dual Weyl tensor.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $\Leftrightarrow W = W_{-}$.

 $W_{-} := \frac{1}{2}(W - \star W)$ is anti-self-dual Weyl tensor.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Thom-Hirzebruch signature formula:

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Thom-Hirzebruch signature formula:

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Hence

$$\mathscr{W}([g]) = -12\pi^2 \tau(M) + 2\int_M |W_+|^2 d\mu_g$$

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Thom-Hirzebruch signature formula:

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Hence

$$\mathscr{W}([g]) = -12\pi^2 \tau(M) + 2\int_M |W_+|^2 d\mu_g$$

ASD metrics minimize \mathcal{W}, and so are Bach-flat.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Thom-Hirzebruch signature formula:

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Hence

$$\mathscr{W}([g]) = -12\pi^2 \tau(M) + 2 \int_M |W_+|^2 d\mu_g$$

ASD metrics minimize \mathcal{W} , and so are Bach-flat.

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathring{r}^{cd}) W_{acbd}$$

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Thom-Hirzebruch signature formula:

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

Hence

$$\mathscr{W}([g]) = -12\pi^2 \tau(M) + 2 \int_M |W_+|^2 d\mu_g$$

ASD metrics minimize \mathcal{W} , and so are Bach-flat.

$$B_{ab} := 2(\nabla^c \nabla^d + \frac{1}{2} \mathring{r}^{cd})(W_+)_{acbd}$$

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Kähler surfaces:

$$|W_+|^2 = \frac{s^2}{24}$$

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Kähler surfaces:

$$|W_+|^2 = \frac{s^2}{24}$$

What?

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Kähler surfaces:

$$|W_{+}|^2 = \frac{s^2}{24}$$

What? Why?

What's So Special About Dimension Four?

On oriented
$$(M^4, g)$$
, \Longrightarrow
 $\Lambda^2 = \Lambda^+ \oplus \Lambda^-$

Riemann curvature of g

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

Riemann curvature of g

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

Riemann curvature of g

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

 $\mathcal{R}: \Lambda^{1,1} \to \Lambda^{1,1}$

$$\mathcal{R}: \Lambda^{1,1} \to \Lambda^{1,1}$$

because $\nabla J = 0$.

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1})$$

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}$$

Kähler case:

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ \frac{s}{4} \end{pmatrix}$$

Kähler case:

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$W_{+} = \begin{pmatrix} -\frac{s}{12} \\ -\frac{s}{12} \\ \frac{s}{6} \end{pmatrix}$$

Kähler case:

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^-$$

$$\Lambda^{+} = \mathbb{R}\omega \oplus \Re e(\Lambda^{2,0})$$

$$\nabla J = 0 \Longrightarrow \mathcal{R} \in \operatorname{End}(\Lambda^{1,1}) \Longrightarrow$$

$$|W_+|^2 = \frac{s^2}{24}$$

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Kähler surfaces:

$$|W_+|^2 = \frac{s^2}{24}$$

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Kähler surfaces:

$$W_{+} = 0 \Leftrightarrow s = 0$$

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Special constant-scalar-curvature Kähler manifolds.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Special constant-scalar-curvature Kähler manifolds.

Twistor-related ideas \rightsquigarrow understood long before cscK.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Special constant-scalar-curvature Kähler manifolds.

Twistor-related ideas \leadsto understood long before cscK.

If not Ricci-flat Kähler, then

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Special constant-scalar-curvature Kähler manifolds.

Twistor-related ideas → understood long before cscK.

If not Ricci-flat Kähler, then

rational or ruled, with $c_1^2 < 0$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Special constant-scalar-curvature Kähler manifolds.

Twistor-related ideas \leadsto understood long before cscK.

If not Ricci-flat Kähler, then

rational or ruled, with $(2\chi + 3\tau)(M) < 0$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Special constant-scalar-curvature Kähler manifolds.

Twistor-related ideas \leadsto understood long before cscK.

If not Ricci-flat Kähler, then

rational or ruled, with $(2\chi + 3\tau)(M) < 0$.

Violate Hitchin-Thorpe, so $\not\equiv$ Einstein on such M.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Special constant-scalar-curvature Kähler manifolds.

Twistor-related ideas \leadsto understood long before cscK.

If not Ricci-flat Kähler, then

rational or ruled, with $(2\chi + 3\tau)(M) < 0$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Examples: Any scalar-flat Kähler surface (M, g, J).

Special constant-scalar-curvature Kähler manifolds.

Twistor-related ideas \leadsto understood long before cscK.

If not Ricci-flat Kähler, then

rational or ruled, with $(2\chi + 3\tau)(M) < 0$.

L-Singer '93, Kim-L-Pontecorovo '97 Any rational/ruled (M, J) has blow-ups admitting SFK.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Another possibility:

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

$$h = f^{-2}g$$
 Einstein, when $f \neq 0$,

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Another possibility: Double Poincaré-Einstein.

 $h = f^{-2}g$ Einstein, $\lambda < 0$, when $f \neq 0$,

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

$$h = f^{-2}g$$
 Einstein, $\lambda < 0$, when $f \neq 0$,

$$f: \mathbf{M} \to \mathbb{R}$$
 with $df \neq 0$ along $f^{-1}(0) \neq \emptyset$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

$$h = f^{-2}g$$
 Einstein, when $f \neq 0$,

$$f:M\to\mathbb{R}$$

$$0 = f \mathring{r} + 2 \text{Hess}_0 f$$

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Another possibility: Double Poincaré-Einstein.

Prototype:

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Another possibility: Double Poincaré-Einstein.

This prototype is rather degenerate:

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Another possibility: Double Poincaré-Einstein.

This prototype is rather degenerate:

 S^4 is also Einstein, ASD.

If $(M^4, [g])$ is Bach-flat, is it conformally Einstein?

No! Anti-self-dual 4-manifolds: $W_{+} \equiv 0$.

Another possibility: Double Poincaré-Einstein.

This prototype is rather degenerate.

But \exists genuine examples that aren't.

Open Problem:

Open Problem:

Every Bach-flat 4-manifold one of these three types?

Open Problem:

Every Bach-flat 4-manifold one of these three types?

Einstein, ±ASD, Double Poincaré-Einstein?

Open Problem:

Every Bach-flat 4-manifold one of these three types?

Einstein, ±ASD, Double Poincaré-Einstein?

Locally this is wildly false!

Open Problem:

Every Bach-flat 4-manifold one of these three types?

Einstein, ±ASD, Double Poincaré-Einstein?

Locally this is wildly false!

But no compact counter-examples are known!

Today:

Today:

Bach-flat Kähler

Today:

Bach-flat $K\ddot{a}hler \Longrightarrow$ one of these three types.

Today:

Bach-flat $K\ddot{a}hler \Longrightarrow$ one of these three types.

Builds on earlier local results of Andrzej Derdziński.

Today:

Bach-flat Kähler \Longrightarrow one of these three types.

Builds on earlier local results of Andrzej Derdziński.

Scalar curvature *s* plays the starring role.

Today:

Bach-flat Kähler \Longrightarrow one of these three types.

Builds on earlier local results of Andrzej Derdziński.

Scalar curvature *s* plays the starring role.

Kähler surfaces:

$$|W_{+}|^2 = \frac{s^2}{24}$$

Today:

Bach-flat Kähler \Longrightarrow one of these three types.

Builds on earlier local results of Andrzej Derdziński.

Scalar curvature *s* plays the starring role.

Kähler surfaces:

$$|W_{+}|^{2} = \frac{s^{2}}{24}$$

$$\int_{M} |W_{+}|^{2} d\mu = \frac{1}{24} \int_{M} s^{2} d\mu$$

Today:

Bach-flat Kähler \Longrightarrow one of these three types.

Builds on earlier local results of Andrzej Derdziński.

Scalar curvature *s* plays the starring role.

Kähler surfaces:

$$|W_{+}|^{2} = \frac{s^{2}}{24}$$

$$\int_{M} |W_{+}|^{2} d\mu = \frac{1}{24} \int_{M} s^{2} d\mu$$

Bach-flat Kähler ⇒ extremal Kähler

Extremal Kähler metrics = critical points of

$$g\mapsto \int_{M} s^2 d\mu_g$$

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations

Extremal Kähler metrics = critical points of

$$g\mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations \iff

 $\nabla^{1,0}s$ is a holomorphic vector field.

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations \iff

 $\operatorname{Hess}(s) := \nabla ds$ is *J*-invariant.

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations ←⇒

 $J\nabla s$ is a Killing field.

Extremal Kähler metrics = critical points of

$$g\mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations ←⇒

 $J\nabla s$ is a Killing field.

X.X. Chen: always minimizers.

Extremal Kähler metrics = critical points of

$$g \mapsto \int_{M} s^2 d\mu_g$$

where $g = g_{\omega}$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations ←⇒

 $J\nabla s$ is a Killing field.

Donaldson et al: unique modulo bihomorphisms.

Today:

Bach-flat Kähler \Longrightarrow one of these three types.

Builds on earlier local results of Andrzej Derdziński.

Scalar curvature *s* plays the starring role.

Kähler surfaces:

$$|W_{+}|^{2} = \frac{s^{2}}{24}$$

$$\int_{M} |W_{+}|^{2} d\mu = \frac{1}{24} \int_{M} s^{2} d\mu$$

Bach-flat Kähler ⇒ extremal Kähler

$$\mathcal{K} \subset H^{1,1}(M,\mathbb{R}) \subset H^2(M,\mathbb{R})$$

$$\mathcal{K} \subset H^{1,1}(M,\mathbb{R}) \subset H^2(M,\mathbb{R})$$

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \|\mathcal{F}_{[\omega]}\|^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Proposition. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$,

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Proposition. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$, then g satisfies $B = 0 \iff$

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Proposition. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$, then g satisfies $B = 0 \iff$

• g is an extremal Kähler metric; and

For any extremal Kähler (M^4, g, J) ,

$$\frac{1}{32\pi^2} \int s^2 d\mu_g = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} ||\mathcal{F}_{[\omega]}||^2$$
$$=: \mathcal{A}([\omega])$$

where \mathcal{F} is Futaki invariant.

 \mathcal{A} is function on Kähler cone $\mathcal{K} \subset H^2(M,\mathbb{R})$.

Proposition. If g is a Kähler metric on a compact complex surface (M^4, J) , with Kähler class $[\omega]$, then g satisfies $B = 0 \iff$

- g is an extremal Kähler metric; and
- $[\omega]$ is a critical point of $\mathcal{A}: \mathcal{K} \to \mathbb{R}$.

$$\mathcal{K} \subset H^{1,1}(M,\mathbb{R}) \subset H^2(M,\mathbb{R})$$

Today:

Bach-flat Kähler \Longrightarrow one of these three types.

Builds on earlier local results of Andrzej Derdziński.

Scalar curvature *s* plays the starring role.

Kähler surfaces:

$$|W_{+}|^{2} = \frac{s^{2}}{24}$$

$$\int_{M} |W_{+}|^{2} d\mu = \frac{1}{24} \int_{M} s^{2} d\mu$$

Bach-flat Kähler ⇒ extremal Kähler

Today:

Bach-flat $K\ddot{a}hler \Longrightarrow$ one of these three types.

Theorem. Let (M^4, g, J) be compact connected Bach-flat Kähler surface.

I. $\min s > 0$. Then

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein.

Theorem. Let (M^4, g, J) be compact connected Bach-flat Kähler surface. Then exactly one holds:

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 ,

Theorem. Let (M^4, g, J) be compact connected Bach-flat Kähler surface. Then exactly one holds:

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathcal{Z}^3 , and $M \mathcal{Z}$ has exactly two components.

Theorem. Let (M^4, g, J) be compact connected Bach-flat Kähler surface. Then exactly one holds:

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathcal{Z}^3 , and $M \mathcal{Z}$ has exactly two components.

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

- L s > 0 everywhere. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. s < 0 somewhere. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

If **not** Kähler-Einstein:

I. s is positive. Then

$$(M, s^{-2}g)$$
 Einstein, $\lambda > 0$, $Hol = SO(4)$.

- II. s is zero. Then (M, g, J) SFK, but not Ricci-flat.
- III. s changes sign. Then

 $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M - \mathbb{Z}$ has exactly two components.

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

I. $\min s > 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

I. $\min s > 0$. Then

(a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else

(b) $(M, s^{-2}g)$ Einstein, $\lambda > 0$, Hol = SO(4).

This happens \iff $c_1 > 0$.

I. $\min s > 0$. Then

(a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else

(b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

This happens \iff $c_1 > 0$.

 \iff (M^4, J) is a Del Pezzo surface.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

If N is a complex surface,

If N is a complex surface, may replace $p \in N$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line, no 6 on conic,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

No 3 on a line, no 6 on conic, no 8 on nodal cubic.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally $K\ddot{a}hler$,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is unique

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is unique up to complex automorphisms and constant rescalings.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński, Siu,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński, Siu, Tian-Yau,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński, Siu, Tian-Yau, Tian,

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński, Siu, Tian-Yau, Tian, Odaka-Spotti-Sun, 2016

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Existence: Page-Derdziński, Siu, Tian-Yau, Tian, Odaka-Spotti-Sun, Chen-L-Weber.

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Uniqueness: Bando-Mabuchi '87

 (M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: " $c_1 > 0$."

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \le k \le 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each del Pezzo (M^4, J) admits a J-compatible conformally Kähler, Einstein metric, and this metric is geometrically unique.

Uniqueness: Bando-Mabuchi '87, L '12.

One reason this seems satisfying...

Theorem (CLW '08). Suppose that M is a smooth compact oriented 4-manifold which carries some symplectic form ω .

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Diffeotypes: exactly the Del Pezzo surfaces.

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Diffeotypes: exactly the Del Pezzo surfaces.

For known g, can take ω harmonic self-dual 2-form.

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Diffeotypes: exactly the Del Pezzo surfaces.

For known g, can take ω harmonic self-dual 2-form.

But this is not needed in above result.

(a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else

(b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

This happens \iff $c_1 > 0$.

 \iff (M^4, J) is a Del Pezzo surface.

(a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else

(b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

This happens \iff $c_1 > 0$.

 \iff (M^4, J) is a Del Pezzo surface.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

This happens \iff $c_1 > 0$.

- \iff (M^4, J) is a Del Pezzo surface.
- (a) when $Aut_0(M, J)$ reductive.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

This happens \iff $c_1 > 0$.

- \iff (M^4, J) is a Del Pezzo surface.
- (a) when $Aut_0(M, J)$ reductive.
- (b) when $\operatorname{Aut}_0(M,J)$ non-reductive.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

This happens \iff $c_1 > 0$.

- \iff (M^4, J) is a Del Pezzo surface.
- (a) when $Aut_0(M, J)$ reductive.
- (b) when $M = \mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$ or $\mathbb{CP}_2 \# 2 \overline{\mathbb{CP}}_2$.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

Previously discussed this case: $W_{+} = 0$.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

Previously discussed this case: $W_{+} = 0$.

Main point: if $\min s = 0$,

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

Previously discussed this case: $W_{+} = 0$.

Main point: if $\min s = 0$, then $s \equiv 0$.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

Previously discussed this case: $W_{+} = 0$.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

Previously discussed this case: $W_{+} = 0$.

(a) \Longrightarrow Kod (M, J) = 0.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

Previously discussed this case: $W_{+} = 0$.

(a)
$$\Longrightarrow$$
 Kod $(M, J) = 0$.

(b)
$$\Longrightarrow$$
 Kod $(M, J) = -\infty$.

Kodaira Classification

Most important invariant: Kodaira dimension.

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface,

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface, set

$$\operatorname{Kod}(M) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(M, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

Most important invariant: Kodaira dimension.

Given (M^{2m}, J) compact complex m-manifold

$$\operatorname{Kod}(M) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(M, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

where $K = \Lambda^{m,0}$ is canonical line bundle.

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface, set

$$\operatorname{Kod}(\underline{M}) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(\underline{M}, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

where $K = \Lambda^{2,0}$ is canonical line bundle.

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface, set

$$\operatorname{Kod}(M) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(M, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

where $K = \Lambda^{2,0}$ is canonical line bundle.

Then
$$\operatorname{Kod}(M, J) \in \{-\infty, 0, 1, 2\}$$

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface, set

$$\operatorname{Kod}(M) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(M, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

where $K = \Lambda^{2,0}$ is canonical line bundle.

Then
$$\operatorname{Kod}(M,J) \in \{-\infty,0,1,2\}$$
 is exactly
$$\max \ \dim_{\mathbb{C}} \operatorname{Image}(M \dashrightarrow \mathbb{CP}_{N})$$

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface, set

$$\operatorname{Kod}(M) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(M, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

where $K = \Lambda^{2,0}$ is canonical line bundle.

Then $\operatorname{Kod}(M,J) \in \{-\infty,0,1,2\}$ is exactly $\max \ \dim_{\mathbb{C}} \operatorname{Image}(M \dashrightarrow \mathbb{CP}_N)$

over maps defined by holomorphic sections of $K^{\otimes \ell}$.

Most important invariant: Kodaira dimension.

Given (M^4, J) compact complex surface, set

$$\operatorname{Kod}(M) = \limsup_{\ell \to +\infty} \frac{\log \dim \Gamma(M, \mathcal{O}(K^{\otimes \ell}))}{\log \ell}$$

where $K = \Lambda^{2,0}$ is canonical line bundle.

Then $\operatorname{Kod}(M,J) \in \{-\infty,0,1,2\}$ is exactly $\max \ \dim_{\mathbb{C}} \operatorname{Image}(M \dashrightarrow \mathbb{CP}_N)$

over maps defined by holomorphic sections of $K^{\otimes \ell}$.

Convention: $\dim \varnothing := -\infty$.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

Previously discussed this case: $W_{+} = 0$.

(a)
$$\Longrightarrow$$
 Kod $(M, J) = 0$.

(b)
$$\Longrightarrow$$
 Kod $(M, J) = -\infty$.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ Einstein, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

III. $\min s < 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
- (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathcal{Z}^3 , and $M \mathcal{Z}$ has exactly two components.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

III. $\min s < 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
- (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

If $\min s < 0$, then s either constant,

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathcal{Z}^3 , and $M \mathcal{Z}$ has exactly two components.

If $\min s < 0$, then s either constant, or changes sign.

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ Einstein, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ Einstein, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

III. $\min s < 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
- (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

$$(a) \Longrightarrow \operatorname{Kod}(M, J) = 2.$$

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathcal{Z}^3 , and $M \mathcal{Z}$ has exactly two components.
- (a) \Longrightarrow Kod (M, J) = 2. (b) \Longrightarrow Kod $(M, J) = -\infty$.

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ Einstein, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

- (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
- (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).

II. $s \equiv 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
- (b) (M, g, J) anti-self-dual, but not Einstein.

III. $\min s < 0$. Then

- (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
- (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathcal{Z}^3 , and $M \mathcal{Z}$ has exactly two components.

Examples of (b): Hwang-Simanca, Tønnesen-Friedman

A few words about the proof...

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal

Lemma. Suppose (M^4, g, J) Bach-flat Kähler, with s non-constant.

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal

Lemma. Suppose (M^4, g, J) Bach-flat Kähler, with s non-constant. Then $s: M \to \mathbb{R}$ is a Morse-Bott function, with critical submanifolds either complex curves, or isolated points.

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal

Lemma. Suppose (M^4, g, J) Bach-flat Kähler, with s non-constant. Then $s: M \to \mathbb{R}$ is a Morse-Bott function, with critical submanifolds either complex curves, or isolated points.

Reason: $J\nabla s$ is Killing field.

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal

Lemma. Suppose (M^4, g, J) Bach-flat Kähler, with s non-constant. Then $s: M \to \mathbb{R}$ is a Morse-Bott function, with critical submanifolds either complex curves, or isolated points.

Reason: $J\nabla s$ is Killing field. In particular,

$$(\nabla \mathbf{s}) \Big|_{p} = 0 \implies (\nabla \nabla \mathbf{s}) \Big|_{p} \neq 0,$$

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal

Lemma. Suppose (M^4, g, J) Bach-flat Kähler, with s non-constant. Then $s: M \to \mathbb{R}$ is a Morse-Bott function, with critical submanifolds either complex curves, or isolated points.

Reason: $J\nabla s$ is Killing field. In particular,

$$(\nabla s) \Big|_p = 0 \implies (\nabla \nabla s) \Big|_p \neq 0,$$

 $\Delta s \neq 0$ at min s and max s.

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal

Lemma. Suppose (M^4, g, J) Bach-flat Kähler, with s non-constant. Then $s: M \to \mathbb{R}$ is a Morse-Bott function, with critical submanifolds either complex curves, or isolated points.

Reason: $J\nabla s$ is Killing field. In particular,

$$(ds)\Big|_p = 0 \implies \operatorname{Hess}(s)\Big|_p \neq 0,$$

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2 \text{Hess}_0(s).$$

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2 \text{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2\text{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3,$$

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2\text{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3,$$

where $\Delta = -\nabla^a \nabla_a$.

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2\text{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2\text{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

Lemma. The function κ is constant,

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2\mathrm{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2\text{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

Lemma. The function κ is constant, and has the same sign (+, -, 0) as min s.

Obvious if s constant.

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2 \text{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

Otherwise
$$\kappa = (s^2 - 6\Delta s)s$$
 at min s.

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2 \text{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

Otherwise
$$\kappa = (+)s$$
 at min s .

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2 \text{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

Otherwise
$$\kappa = (s^2 - 6\Delta s)s$$
 at min s.

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2 \text{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

Otherwise
$$\kappa = (+)s$$
 at min s .

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2\mathrm{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

$$B = \frac{1}{12} \left[2s\mathring{r} + \text{Hess}_0(s) + 3J^* \text{Hess}_0(s) \right]$$

so Bach-flat $\Longrightarrow g$ extremal and

$$0 = s\mathring{r} + 2\text{Hess}_0(s).$$

On set where $s \neq 0$, the metric $s^{-2}g$ is Einstein.

Define

$$\kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

Lemma. The function κ is constant, and has the same sign (+, -, 0) as min s. On set where $s \neq 0$, the constant $\kappa = scalar$ curvature of $s^{-2}g$.

Same as saying that $\kappa = 0$.

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

$$0 = s\mathring{r} + 2 \text{Hess}_0(s).$$

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

$$0 = s\mathring{r} + 2 \text{Hess}_0(s).$$

$$s(p) = 0 \implies \operatorname{Hess}_0(s)\Big|_p = 0.$$

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

$$0 = s\mathring{r} + 2 \text{Hess}_0(s).$$

$$s(p) = 0 \implies (\nabla \nabla s) \Big|_{p} = ag.$$

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

$$0 = s\mathring{r} + 2\text{Hess}_0(s).$$

$$s(p) = 0 \implies (\nabla \nabla s) \Big|_p = ag.$$

$$(\nabla s) \Big|_p = 0 \implies (\nabla \nabla s) \Big|_p \neq 0,$$

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

$$0 = s\mathring{r} + 2\text{Hess}_0(s).$$

$$s(p) = 0 \implies (\nabla \nabla s) \Big|_p = ag.$$

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

If not, s = 0 only at finite set.

 $W_{+} \neq 0$ everywhere else.

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

If not, s = 0 only at finite set.

 $W_{+} \neq 0$ everywhere else.

 $h = s^{-2}g$ is Ricci-flat, asymptotically Euclidean.

$$g_{jk} = \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon})$$
$$g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad \mathbf{s} \in L^1$$

$$g_{jk} = \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon})$$
$$g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad \mathbf{s} \in L^1$$

$$g_{jk} = \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon})$$
$$g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad \mathbf{s} \in L^1$$

$$g_{jk} = \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon})$$
$$g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad \mathbf{s} \in L^1$$

Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that each component of M-K is diffeomorphic to \mathbb{R}^n-D^n in such a manner that

$$g_{jk} = \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon})$$
$$g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad \mathbf{s} \in L^1$$

Definition. A complete, non-compact Riemannian n-manifold (M^n, g) is called asymptotically Euclidean (AE) if there is a compact set $K \subset M$ such that each "end" is diffeomorphic to $\mathbb{R}^n - D^n$ in such a manner that

$$g_{jk} = \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon})$$
$$g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad \mathbf{s} \in L^1$$

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

If not, s = 0 only at finite set.

 $W_{+} \neq 0$ everywhere else.

 $h = s^{-2}g$ is Ricci-flat, asymptotically Euclidean.

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

If not, s = 0 only at finite set.

 $W_{+} \neq 0$ everywhere else.

 $h = s^{-2}g$ is Ricci-flat, asymptotically Euclidean.

Positive mass theorem

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

If not, s = 0 only at finite set.

 $W_{+} \neq 0$ everywhere else.

 $h = s^{-2}g$ is Ricci-flat, asymptotically Euclidean.

Positive mass theorem (or Bishop-Gromov):

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

If not, s = 0 only at finite set.

 $W_{+} \neq 0$ everywhere else.

 $h = s^{-2}g$ is Ricci-flat, asymptotically Euclidean.

Positive mass theorem (or Bishop-Gromov):

Ricci-flat *h* must be flat!

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

If not, s = 0 only at finite set.

 $W_{+} \neq 0$ everywhere else.

 $h = s^{-2}g$ is Ricci-flat, asymptotically Euclidean.

Positive mass theorem (or Bishop-Gromov):

Ricci-flat *h* must be flat!

So $W_{+} \equiv 0$.

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

If not, s = 0 only at finite set.

 $W_{+} \neq 0$ everywhere else.

 $h = s^{-2}g$ is Ricci-flat, asymptotically Euclidean.

Positive mass theorem (or Bishop-Gromov):

Ricci-flat *h* must be flat!

So $W_+ \equiv 0$.

Contradiction!

Same as saying that $\kappa = 0$.

Want to show that *s* is constant.

If not, s = 0 only at finite set.

 $W_{+} \neq 0$ everywhere else.

 $h = s^{-2}g$ is Ricci-flat, asymptotically Euclidean.

Positive mass theorem (or Bishop-Gromov):

Ricci-flat *h* must be flat!

So $W_{+} \equiv 0$.

Contradiction! So $s \equiv 0$.

Theorem. Let (M^4, g, J) be compact connected Bach-flat Kähler surface. Then exactly one holds:

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathcal{Z}^3 , and $M \mathcal{Z}$ has exactly two components.

If not Kähler-Einstein,

 $\min s < 0 \Longrightarrow$

 $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M - \mathbb{Z}$ has exactly two components.

Thus $\max s \ge 0$.

Thus $\max s \ge 0$. But

$$0 > \kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

Thus $\max s \ge 0$. But

$$0 > \kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

So $\nabla s \neq 0$ when s = 0.

Thus $\max s \ge 0$. But

$$0 > \kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

So $\nabla s \neq 0$ when s = 0.

Hence $\max s > 0$,

Thus $\max s \ge 0$. But

$$0 > \kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

So $\nabla s \neq 0$ when s = 0.

Hence $\max s > 0$, and s = 0 smooth hypersurface.

Thus $\max s \ge 0$. But

$$0 > \kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

So $\nabla s \neq 0$ when s = 0.

Hence $\max s > 0$, and s = 0 smooth hypersurface.

$$s:M\to\mathbb{R}$$

Morse-Bott without critical manifolds of odd index

Thus $\max s \ge 0$. But

$$0 > \kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

So $\nabla s \neq 0$ when s = 0.

Hence $\max s > 0$, and s = 0 smooth hypersurface.

$$s:M\to\mathbb{R}$$

Morse-Bott without critical manifolds of odd index

 \implies regions s < 0 and s > 0 are both connected.

Thus $\max s \ge 0$. But

$$0 > \kappa := -6s\Delta s - 12|\nabla s|^2 + s^3.$$

So $\nabla s \neq 0$ when s = 0.

Hence $\max s > 0$, and s = 0 smooth hypersurface.

$$s:M\to\mathbb{R}$$

Morse-Bott without critical manifolds of odd index

 \implies regions s < 0 and s > 0 are both connected.

Similarly, hypersurface s = 0 connected, too.

Theorem. Let (M^4, g, J) be compact connected Bach-flat Kähler surface. Then exactly one holds:

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

Known double-Poincaré-Einstein examples

Theorem. Let (M^4, g, J) be compact connected Bach-flat Kähler surface. Then exactly one holds:

- I. $\min s > 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda > 0$; or else
 - (b) $(M, s^{-2}g)$ *Einstein*, $\lambda > 0$, Hol = SO(4).
- II. $s \equiv 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda = 0$; or else
 - (b) (M, g, J) anti-self-dual, but not Einstein.
- III. $\min s < 0$. Then
 - (a) (M, g, J) Kähler-Einstein, $\lambda < 0$; or else
 - (b) $(M, s^{-2}g)$ double Poincaré-Einstein. Here, s = 0 defines smooth connected \mathbb{Z}^3 , and $M \mathbb{Z}$ has exactly two components.

Known double-Poincaré-Einstein examples

Known double-Poincaré-Einstein examples

(although discovered by variational arguments)

Known double-Poincaré-Einstein examples

(although discovered by variational arguments)

turn out to be doubles of known physics examples:

Known double-Poincaré-Einstein examples

(although discovered by variational arguments)

turn out to be doubles of known physics examples:

ADS Taub-bolt metrics!

Known double-Poincaré-Einstein examples

(although discovered by variational arguments)

turn out to be doubles of known physics examples:

ADS Taub-bolt metrics!

Corresponding (M^4, J) are minimal ruled surfaces:

Known double-Poincaré-Einstein examples

(although discovered by variational arguments)

turn out to be doubles of known physics examples:

ADS Taub-bolt metrics!

Corresponding (M^4, J) are minimal ruled surfaces:

So all have $\tau(M) = 0$.

Known double-Poincaré-Einstein examples

(although discovered by variational arguments)

turn out to be doubles of known physics examples:

ADS Taub-bolt metrics!

Corresponding (M^4, J) are minimal ruled surfaces:

So all have $\tau(M) = 0$.

Reflection across infinity:

Known double-Poincaré-Einstein examples

(although discovered by variational arguments)

turn out to be doubles of known physics examples:

ADS Taub-bolt metrics!

Corresponding (M^4, J) are minimal ruled surfaces:

So all have $\tau(M) = 0$.

Reflection across infinity:

Orientation-reversing conformal isometry.

Known double-Poincaré-Einstein examples

(although discovered by variational arguments)

turn out to be doubles of known physics examples:

ADS Taub-bolt metrics!

Corresponding (M^4, J) are minimal ruled surfaces:

So all have $\tau(M) = 0$.

Reflection across infinity:

Orientation-reversing conformal isometry.

Is this true for some a priori reason?

Known double-Poincaré-Einstein examples

(although discovered by variational arguments)

turn out to be doubles of known physics examples:

ADS Taub-bolt metrics!

Corresponding (M^4, J) are minimal ruled surfaces:

So all have $\tau(M) = 0$.

Reflection across infinity:

Orientation-reversing conformal isometry.

A version of Alice's uniqueness of fill-in question!

End, Part II