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only depends on the conformal class

lg] = {u29 | u: M QRJF}.

Measures deviation [¢g| from conformal flatness.

Basic problems: For given smooth compact M.

e Are there any critical points?

e Can we classity them?
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For M*,

W) = [ Wl

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here |
By = (vcvd + §%Cd)Wa,cbd

called Bach tensor.
Solutions called Bach-flat metrics.

Bianchi = Any Einstein (1%, ¢) is Bach-flat.

Of course, conformally Einstein good enough!
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By contrast:

For M™
7 (g]) = / W, 2du,
M

has degenerate Euler-Lagrange equation
‘Wg‘(n—ﬁl)/?(vv.w 4o ) =0
when n > 4.

Einstein metrics are usually not critical points.
Clalabi-Yau x flat on K3 x T never critical

when ¢ > 0, because # o Vol(T*)!
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No! Anti-self-dual 4-manifolds: W = 0.
Examples: Any scalar-flat Kahler surface (M, g, .J).
Special constant-scalar-curvature Kahler manifolds.
Twistor-related ideas ~» understood long before cscK.
If not Ricci-flat Kahler, then

rational or ruled, with (2y + 37)(M) < 0.

L-Singer ’93, Kim-L-Pontecorovo ’97 Any
rational /ruled (M, .J) has blow-ups admitting SFK.
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Another possibility: Double Poincaré-Einstein.
This prototype is rather degenerate.

But 4 genuine examples that aren’t.
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Open Problem:

Every Bach-flat 4-manifold one of these three types?
Einstein, 2ASD, Double Poincaré-Einstein?
Locally this is wildly false!

But no compact counter-examples are known!
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Builds on earlier local results of Andrzej Derdzinski.
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Kahler surfaces:

2

Wy|> ==
V4| o

[ wiPan =g [ Sa

Bach-flat Kahler = extremal Kahler



Calabi:



Calabi:

Extremal Kahler metrics = critical points of

2
gH/sd,ug
M



Calabi:

Extremal Kahler metrics = critical points of

g H/ Qd,ug

where g = g, for J and [w] € H*(M,R) fixed.



Calabi:

Extremal Kahler metrics = critical points of

qg H/ Qd,ug

where g = g, for J and [w] € H*(M,R) fixed.

Euler-Lagrange equations



Calabi:

Extremal Kahler metrics = critical points of

g H/ Qd,ug

where ¢ = g,, for J and [w] € H*(M,R) fixed.

Euler-Lagrange equations <=

Vs is a holomorphic vector field.



Calabi:

Extremal Kahler metrics = critical points of

qg H/ Qd,ug

where ¢ = g,, for J and [w] € H*(M,R) fixed.

Euler-Lagrange equations <=

Hess(s) := Vds is J-invariant.



Calabi:

Extremal Kahler metrics = critical points of

qg H/ Qd,ug

where g = g, for J and [w] € H*(M,R) fixed.

Euler-Lagrange equations <=

JV s is a Killing field.



Calabi:

Extremal Kahler metrics = critical points of

qg H/ Qd,ug

where ¢ = g,, for J and [w] € H*(M,R) fixed.

Euler-Lagrange equations <=

JV s is a Killing field.

X.X. Chen: always minimizers.



Calabi:

Extremal Kahler metrics = critical points of

qg H/ Qd,ug

where g = g, for J and [w] € H*(M,R) fixed.

Euler-Lagrange equations <=

JV s is a Killing field.

Donaldson et al: unique modulo bihomorphisms.
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Bach-flat Kahler = one of these three types.
Builds on earlier local results of Andrzej Derdzinski.
Scalar curvature s plays the starring role.
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Henceforth, assume M compact, real dimension 4.
Today:

Bach-flat Kahler = one of these three types.
Builds on earlier local results of Andrzej Derdzinski.
Scalar curvature s plays the starring role.
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= (M*, J)is a Del Pezzo surface.
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Uniqueness: Bando-Mabuchi 87, L. "12.
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Theorem (CLW '08). Suppose that M is a smooth
compact oriented 4-manifold which carries some
symplectic form w. Then M admits an (unre-
lated) Finstein metric g with A > 0

CPy#kCPy, 0<k <38,
— M~ or
S2 % G2

Diffeotypes: exactly the Del Pezzo surfaces.

For known ¢, can take w harmonic self-dual 2-form.

But this is not needed in above result.
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(b) when M = CPy#CPy or CPy#2CPs.
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log dimI(M, O (K¢
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where K = A%V is canonical line bundle.

Then Kod(M, J) € {—00,0,1,2} is exactly
max dimg Image(M --+ CPy)
over maps defined by holomorphic sections of /& L

Convention: dim & := —o0.
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(b) (M, s2g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
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Examples of (b): Hwang-Simanca, Te¢nnesen-Friedman



A few words about the proof...



For Kahler metrics g,



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}

so Bach-flat = ¢ extremal



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal

Lemma. Suppose (M*,g,.J) Bach-flat Kdihler,
with s mon-constant.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}

so Bach-flat = ¢ extremal

Lemma. Suppose (M*,g,.J) Bach-flat Kdihler,
with s non-constant. Then s : M — R 15 a

Morse-Bott function, with critical submanifolds
either complex curves, or isolated points.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}

so Bach-flat = ¢ extremal

Lemma. Suppose (M*,g,.J) Bach-flat Kdihler,
with s non-constant. Then s : M — R 15 a

Morse-Bott function, with critical submanifolds
either complex curves, or isolated points.

Reason: JVs is Killing field.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}

so Bach-flat = ¢ extremal

Lemma. Suppose (M*,g,.J) Bach-flat Kdihler,
with s non-constant. Then s : M — R 15 a

Morse-Bott function, with critical submanifolds
either complex curves, or isolated points.

Reason: .JVs is Killing field. In particular,

(Vs)| =0 = (VVs)| #0,
p p



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}

so Bach-flat = ¢ extremal

Lemma. Suppose (M*,g,.J) Bach-flat Kdihler,
with s non-constant. Then s : M — R 15 a

Morse-Bott function, with critical submanifolds
either complex curves, or isolated points.

Reason: .JVs is Killing field. In particular,

(Vs)| =0 = (VVs)| #0,
p p

As £ (0 at mins and maxs.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}

so Bach-flat = ¢ extremal

Lemma. Suppose (M*,g,.J) Bach-flat Kdihler,
with s non-constant. Then s : M — R 15 a

Morse-Bott function, with critical submanifolds
either complex curves, or isolated points.

Reason: .JVs is Killing field. In particular,

(ds)| =0 = Hess(s)| #0,
p p



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}

so Bach-flat = ¢ extremal



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}

so Bach-flat = ¢ extremal and



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and

0 = s7 + 2Hessg(s).



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
k= —6sAs — 12|Vs|? + 57,



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
k= —6sAs — 12|Vs|? + 57,

where A = —V2V/,.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
ko= —6sAs — 12|Vs|? + s°.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
ko= —6sAs — 12|Vs|? + s°.

Lemma. The function r 1s constant,



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
ko= —6sAs — 12|Vs|? + s°.

Lemma. The function r 1s constant, and has
the same sign (+,—,0) as min s.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
ko= —6sAs — 12|Vs|? + s°.

Lemma. The function r 1s constant, and has
the same sign (+,—,0) as min s.

Obvious if s constant.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
ko= —6sAs — 12|Vs|? + s°.

Lemma. The function r 1s constant, and has
the same sign (+,—,0) as min s.

Otherwise 1 = (s> — 6/As)s at min s.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
ko= —6sAs — 12|Vs|? + s°.

Lemma. The function r 1s constant, and has
the same sign (+,—,0) as min s.

Otherwise » = ( 4+ )s at mins.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
ko= —6sAs — 12|Vs|? + s°.

Lemma. The function r 1s constant, and has
the same sign (+,—,0) as min s.

Otherwise 1 = (s> — 6/As)s at min s.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
ko= —6sAs — 12|Vs|? + s°.

Lemma. The function r 1s constant, and has
the same sign (+,—,0) as min s.

Otherwise » = ( 4+ )s at mins.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
ko= —6sAs — 12|Vs|? + s°.

Lemma. The function r 1s constant, and has
the same sign (+,—,0) as min s.



For Kahler metrics g,

1
B = o 251" 4+ Hessg(s) + 3J*HGSSO<S)}
so Bach-flat = ¢ extremal and
0 = s7 + 2Hessg(s).

On set where s = 0, the metric s~2¢ is Einstein.

Define
ko= —6sAs — 12|Vs|? + s°.

Lemma. The function r 1s constant, and has
the same sign (+,—,0) as mins. On set where
s # 0, the constant » = scalar curvature of s2g.



Let’s just see what happens when min s = 0.



Let’s just see what happens when min s = 0.

Same as saying that « = 0.



Let’s just see what happens when min s = 0.
Same as saying that « = 0.

Want to show that s is constant.



Let’s just see what happens when min s = 0.
Same as saying that « = 0.
Want to show that s is constant.

If not, s = 0 only at finite set:



Let’s just see what happens when min s = 0.
Same as saying that « = 0.
Want to show that s is constant.

If not, s = 0 only at finite set:

0 = s+ 2Hessg(s).



Let’s just see what happens when min s = 0.
Same as saying that « = 0.
Want to show that s is constant.

If not, s = 0 only at finite set:

0 = s+ 2Hessg(s).

s(p) =0 == Hessg(s)| =0.
p



Let’s just see what happens when min s = 0.
Same as saying that « = 0.
Want to show that s is constant.

If not, s = 0 only at finite set:

0 = s+ 2Hessg(s).

s(p)=0 = (VVs) - ag.



Let’s just see what happens when min s = 0.
Same as saying that ~ = 0.
Want to show that s is constant.

If not, s = 0 only at finite set:

0 = s+ 2Hessg(s).

s(p)=0 = (VVs)

= ag.
P

(Vs) - 0 = (VVs)

#07

p



Let’s just see what happens when min s = 0.
Same as saying that « = 0.
Want to show that s is constant.

If not, s = 0 only at finite set:

0 = s+ 2Hessg(s).

s(p)=0 = (VVs) - ag.

a > 0



Let’s just see what happens when min s = 0.
Same as saying that « = 0.
Want to show that s is constant.

If not, s = 0 only at finite set.



Let’s just see what happens when min s = 0.
Same as saying that « = 0.

Want to show that s is constant.

If not, s = 0 only at finite set.

W £ 0 everywhere else.



Let’s just see what happens when min s = 0.
Same as saying that « = 0.

Want to show that s is constant.

If not, s = 0 only at finite set.

W £ 0 everywhere else.

h = s 2¢ is Ricci-flat, asymptotically Fuclidean.



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

N
= 0
N N

1_n_
9k = 05+ O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

SN
= 0

N N

1_n_
9k = 05+ O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

TN
= s

N N

N

1_n_
9k = 05 + O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

SN
= 0

N N

1_n_
9k = 05+ O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

TN
= s

N N

N

1_n_
9k = 05 + O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each  “end” 15 diffeo-

morphic to R"™ — D™ in such a manner that

TN
= s

N N

N

1_n_
9k = 05 + O(|z|27°)
gjre=O0(z]727%), selLl



Let’s just see what happens when min s = 0.
Same as saying that « = 0.

Want to show that s is constant.

If not, s = 0 only at finite set.

W £ 0 everywhere else.

h = s 2¢ is Ricci-flat, asymptotically Fuclidean.



Let’s just see what happens when min s = 0.
Same as saying that « = 0.

Want to show that s is constant.

If not, s = 0 only at finite set.

W £ 0 everywhere else.

h = s 2¢ is Ricci-flat, asymptotically Fuclidean.

Positive mass theorem



Let’s just see what happens when min s = 0.
Same as saying that « = 0.

Want to show that s is constant.

If not, s = 0 only at finite set.

W £ 0 everywhere else.

h = s 2¢ is Ricci-flat, asymptotically Fuclidean.

Positive mass theorem (or Bishop-Gromov):



Let’s just see what happens when min s = 0.
Same as saying that « = 0.

Want to show that s is constant.

If not, s = 0 only at finite set.

W £ 0 everywhere else.

h = s 2¢ is Ricci-flat, asymptotically Fuclidean.
Positive mass theorem (or Bishop-Gromov):

Ricci-flat A must be flat!



Let’s just see what happens when min s = 0.
Same as saying that « = 0.

Want to show that s is constant.

If not, s = 0 only at finite set.

W £ 0 everywhere else.

h = s 2¢ is Ricci-flat, asymptotically Fuclidean.
Positive mass theorem (or Bishop-Gromov):
Ricci-flat i must be flat!

SO W+ = 0.



Let’s just see what happens when min s = 0.
Same as saying that « = 0.

Want to show that s is constant.

If not, s = 0 only at finite set.

W £ 0 everywhere else.

h = s 2¢ is Ricci-flat, asymptotically Fuclidean.
Positive mass theorem (or Bishop-Gromov):
Ricci-flat i must be flat!

So Wi = 0.

Contradiction!



Let’s just see what happens when min s = 0.
Same as saying that « = 0.

Want to show that s is constant.

If not, s = 0 only at finite set.

W £ 0 everywhere else.

h = s 2¢ is Ricci-flat, asymptotically Fuclidean.
Positive mass theorem (or Bishop-Gromov):
Ricci-flat i must be flat!
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Theorem. Let (M*,g,.J) be compact connected
Bach-flat Kahler surface. Then exactly one holds:

[.mins > 0. Then
(a) (M, g, J) Kdhler-Finstein, A > 0; or else
(b) (M, s™2%g) Einstein, A\ > 0, Hol = SO(4).
[I.s =0. Then
(a) (M, g,J) Kahler-FEinstein, A =0; or else
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Bochner forbids having s < 0 everywhere, because
otherwise (M, s~%¢) would be A < 0 Einstein with
non-trivial Killing field JVs.

Thus max s > 0. But
0> r:=—06sAs — 12]V5\2 + 50,
So Vs # 0 when s = 0.

Hence max s > 0, and s = 0 smooth hypersurtace.

s: M — R
Morse-Bott without critical manifolds of odd index

— regions s < 0 and s > 0 are both connected.

Similarly, hypersurface s = 0 connected, too.
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Mystery:

Known double-Poincaré-Einstein examples
(although discovered by variational arguments)
turn out to be doubles of known physics examples:
ADS Taub-bolt metrics!

Corresponding (M*,.J) are minimal ruled surfaces:
So all have 7(M) = 0.

Reflection across infinity:

Orientation-reversing conformal isometry:.

A version of Alice’s uniqueness of fill-in question!



End, Part 1



