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If M2™ endowed with complex structure ./,
a Riemannian metric h called Hermitian if

Here ./ = integrable almost-complex structure.

Equivalently:

In local complex coordinates (21, ..., 2™

)

m
_ Z [dz] 2 d7F + d5F @ dz]}

where |[h ]—6] Hermitian matrix at each point.
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If (M?™ h,.J) is Hermitian, then
CU(-, ) — h(‘]a )

is a non-degenerate 2-form.

In local complex coordinates,

m
o . _k
W =1 E hjkdz N dz
7,k=1

If dw =0, (M?™, h,.J) is called Kihler,
and w called the Kahler form, while

w] € H?(M,R) called the Kahler class.
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Narrower Question. When does a compact com-
plex surface (M*,.J) admit an Einstein metric h
which 1s Hermitian, in the sense that

h(-,-) = h(J-, J-)?

Kahler if the 2-form
W = h(*]a )

1s closed:
dw = 0.

But we do not assume this!
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Theorem. A compact complex surface (M?,.])
admits an Einstein metric g which is Hermitian
with respect to J <= c¢{(M*,.J) “has a sign.”

More precisely, 3 such g with Einstein constant
A <= there i1s a Kahler form w such that

el (M*,J) = Aw.

Moreover, this metric 1s unique, up to isometry,

if A =£ 0.
Aubin, Yau, Siu, Tian ... Kahler case.

Chen-L-Weber (2008), L (2012): non-IKahler case.

Only two metrics arise in non-Kahler case!
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Corollary. The non-spin 4-manifolds
CPy#kCPy, 0< k<S8,

all admait A > 0 Einstein metrics.

So does the spin 4-manifold
5?2 x §2.

Blowing up:

If N is a complex surface, may replace p € N
with CIPy to obtain blow-up

M ~ N#CP,

in which new CIP; has self-intersection —1.
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Theorem. Suppose that M 1is a smooth com-
pact oriented 4-manzifold which admats a complex
structure J. Then M also admits an (unrelated)
Einstein metric g with A > 0

(CP#kCPy, 0< k<8
diff
— M = < or

kSQXSQ

—: Hitchin-Thorpe inequality, easy Seiberg-Witten.

Similarly when M symplectic instead of complex.
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Case of A negative:

Theorem (Aubin/Yau). Compact complexr man-
ifold (M?™, J) admits compatible Kihler-Einstein
metric with s < 0 <= 4 holomorphic embedding

such that c1(M) is negative multiple of 7% ¢1(CPy.).

Remark. When n = 2m = 4, such M are nec-
essarily minimal complex surfaces of general type.
Among such surfaces, exactly those s.t.

ACP, Y

of homological self-intersection —2.
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Case of A = 0:

Theorem (Yau). A compact complex manifold
of Kdhler type (M?™, J) admits compatible Kdhler-
Einstein metric with s =0 <= ¢; = 0.

Proof similar to previous result: continuity method.

Key difference is that equation does not impose ob-
vious OV estimate on solution.

Remark. When n = 2m = 4, main application is:

K3 admits Ricci-flat Kahler metrics.
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Two Riemannian metrics ¢ and h are said to be
conformally related if

h=1rg
for some smooth function f : M — RT.

If ¢ is Kahler, we will then say that
h is conformally Kahler.

When complex dimension m > 2.
f # const = h never Kahler for same .J.

Conformally Kahler = Hermitian.
o
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Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.7

Blow-up of CIP9 at k£ distinct points, 0 < k < &,
in general position, or CIP; x CPy.

CPQ#k@% 0 < k<S8,
M= or
5% x S?
k # 1,2 —> admit Kahler-Einstein metrics.

Siu, Tian-Yau, Tian, ... Odaka-Spotti-Sun

Exceptions: CIPo blown up at 1 or 2 points.
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But CPo#CP5 or CPy#2CPy cannot admit

Kahler-Einstein metrics.

(Matsushima):
(M, J, g) compact K-E = Aut(M, .J) reductive.

(Isom(M, g) is compact real form.)

Since CPo#CP5 and CP>#2CP5 have non-reductive

automorphism groups, no K-E metrics.

([ 1 % % | (10 %
< | 0 * x ., <10 % %
k_O>l<>|<_ \_OO*_
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However, Page ('79) discovered an explicit, A > 0,
cohomogeneity one Einstein metric on CPy#CIPs.

Derdzinski (’83) then discovered that this metric is
conformally Kahler, and proved fundamental struc-
ture theorems concerning conformally Kahler, Ein-
stein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber '08). There is a

A > 0, conformally Kahler, Einstein metric h
on CPQ#QCPQ.

Note both of above Einstein metrics are Hermitian.
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Rough strategy of proof:

Find Kahler metric which minimizes

2
gr—>/3d,ug
M

among all Kahler metrics g.
Here s = scalar curvature.
Note that Kéahler class |w] of ¢ allowed to vary!

Corresponding problem with |w] fixed:
Calabi’s extremal Kahler metrics.
So minimize among extremal Kahler metrics.

Minimizer g has s > 0.

Einstein metric is h = s~2g.



Theorem. Any Del Pezzo surface (M*,J) ad-
mits an Einstein metric h which is conformal to
a J-compatible Kahler metric g. In particular,

this Einstein metric h is Hermaitian with respect
to J.



Theorem. Any Del Pezzo surface (M*,J) ad-
mits an Einstein metric h which is conformal to
a J-compatible Kahler metric g. In particular,

this Einstein metric h is Hermaitian with respect
to J.

Will describe a second proof (I "12) which contains
much more information.
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Theorem A. There is a conformally Kahler,
Einstein metric h on M = CIPo#2CPy for which
the conformally related Kahler g minimizes the

functional
2
g lﬁ/ S d,ug
M

among all Kahler metrics on M. Consequently,
h 1s an absolute minimazer of the functional

hH/ W5 dpuy,.
M

among all conformally Kahler metrics on M.



Theorem B. This minimaizing Kdhler metric g
on CPo#2CIPy 1s conformal to an Einstein met-
TiC.



Theorem B. This minimizing Kdahler metric g
on CPo#2CIPy 1s conformal to an Einstein met-
ric. Moreover, there is a 1-parameter famaly

[O, 1) St — gt
of extremal Kdhler metrics on CPy#3CP5



Theorem B. This minimizing Kdahler metric g
on CPo#2CIPy 1s conformal to an Einstein met-
ric. Moreover, there is a 1-parameter famaly

[07 1) D1 gt
of extremal Kdhler metrics on CPy#3CPs s.t.
® go s Kahler-Einstein,



Theorem B. This minimizing Kdahler metric g
on CPo#2CIPy 1s conformal to an Einstein met-
ric. Moreover, there is a 1-parameter famaly

0,1) 5t — g¢
of extremal Kdhler metrics on CPy#3CPs s.t.
® gg is Kahler-Einstein, and such that
® gt;—g wn the Gromov-Hausdorff sense



€1




Theorem B. This minimizing Kdahler metric g
on CPo#2CIPy 1s conformal to an Einstein met-
ric. Moreover, there is a 1-parameter famaly

[O, 1) St — gt
of extremal Kdhler metrics on CPy#3CPs s.t.
® g0 s Kahler-Einstein, and such that

® gt;—g wn the Gromov-Hausdorff sense
for some t; /1.



Theorem B. This minimizing Kdahler metric g
on CPo#2CIPy 1s conformal to an Einstein met-
ric. Moreover, there is a 1-parameter famaly
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® gt;—g wn the Gromov-Hausdorff sense
for some t; /1.

Similarly for CIPo#CPs5, though less interesting. . .
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Calabi:

Extremal Kahler metrics = critical points of

g H/ Qd,ug

where ¢ = g,, for J and [w] € H*(M,R) fixed.

Euler-Lagrange equations <=

JV s is a Killing field.

Donaldson /Mabuchi/Chen-Tian:
unique modulo bihomorphisms.



Riemann curvature of ¢
R: A% — A°
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s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !



The Bach Tensor



The Bach Tensor

Conformally invariant Riemannian functional:

Wil) =2 [ WAl diy
M



The Bach Tensor

Conformally invariant Riemannian functional:

Wil) =2 [ WAl diy
M
l-parameter family of metrics
gt = g+ tg+ O(t?)

First variation

d

%W—l—(gt)

— _/gabBab d:ug
t=0



The Bach Tensor

Conformally invariant Riemannian functional:

Wil) =2 [ WAl diy
M
l-parameter family of metrics
gt = g+ tg+ O(t?)

First variation

d

%W—l—(gt)

where
Bay = VNV + 7YV ) g -

is the Bach tensor of g. Symmetric, trace-free.

= _/gabBab dfig
t=0



The Bach Tensor

Conformally invariant Riemannian functional:

Wil) =2 [ WAl diy
M
l-parameter family of metrics
gt = g+ tg+ O(t?)

First variation

d

%W—l—(gt)

where
Bay = VNV + 7YV ) g -

is the Bach tensor of g. Symmetric, trace-free.

— _/gabBab d:ug
t=0

VB, =0



The Bach Tensor

Conformally invariant Riemannian functional:

Wil) =2 [ WAl diy
M
l-parameter family of metrics
gt = g+ tg+ O(t?)

First variation
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is the Bach tensor of g. Symmetric, trace-free.

— _/gabBab d:ug
t=0

Conformally Einstein =— B =0




Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !



Kahler case:

Al =Ru@ A~



Kahler case:

Al =Ru@ A~

AT = Rw @& Re(A*Y)



Kahler case:
AV = Ro @ AT
AT = Rw @ Re(AH)

V.J=0= R € End(Ab)



Kahler case:
A =Rw@A™
AT = Rw @ Re(AH)
VJ=0= R € End(AV) =

S
W+ — = 0
T



Kahler case:
A =Rw@A™
AT = Rw @ Re(AH)
VJ=0= R € End(AV) =

S
Wo 4+ — = 0
T

NV



Kahler case:
AV = Ro @ AT
AT = Rw @& Re(A*Y)

VJ=0= R € End(AV) =

S
12 .
W_|_ — _E

@) [V



Kahler case:
AV = Ro @ AT
AT = Rw @& Re(A*Y)

VJ=0= R € End(AV) =

g2

Wol? ==
W4 o
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In fact, for Kahler metrics,

1
B = 5 257"+ Hessg(s) + BJ*HeSSO(S)}

where Hessy denotes trace-free part of VV.
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Restriction of W} to Kahler metrics?

On Kahler metrics,

[ 1w - / > iy

so any critical point of restriction must be
extremal in sense of Calabi.

Lemma. If g 1s a Kahler metric on a complex
surface (M*,.]), the following are equivalent:

® g 1s an extremal Kahler metric,

e B=B(J-.J);

)= B(J--) is a closed 2-form,;

® g = g+ 1B is Kahler metric for small t.
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Restriction of W, to Kahler metrics.

Hence if g is extremal Kahler metric,

gt=g+1itB

is a family of Kahler metrics, corresponding to

Wi = w + tY
and first variation is
d .
—Wil(g)| = / g™ By, dyig
dt =0

— _/|B‘2 dfig

So the critical metrics of restriction of Wy to
{Kéhler metrics} are Bach-flat Kéhler metrics.
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So any critical point of restriction has

0 =68 = si" 4+ 2Hessq(s)

— the conformal rescaling h = s~2¢ is
Einstein courtesy of transformation rule

Hu?g) = 7(g) + (n — 2)uHessg(u™") .
This conformal rescaling trick due to Derdzinski.

WARNING. h undefined where s = 0!

Lemma. For any extremal Kahler g on any Del
Pezzo M, scalar curvature s > 0 everywhere.
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1
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with = <= ¢ extremal, where

Cl1 - |W 3
A([W]) ::(1 [D

2
S+ el Fl

where F 1s Futaki invariant.
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Explicit lower bound:

Any Kahler (M?, g, J) satisfies

1

3272
with = <= ¢ extremal, where

s°djg > A([w])

A(lw]) = T(lw]) + B([w])

Lemma. For all |w] on any Del Pezzo M,

B(lw]) <
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)2
ri) =Sl <22t rans
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Theorem 2. Let M = CPy#3CP5 be the blow-
up of CIPo at three non-collinear points, and let
w]| be a Kahler class on M for which

Cl1 - (W 2
T(w) = 1[w52]> <plocrian

Then there is an extremal Kahler metric g on
M with Kahler form w € |w].



oYY (M, R) = H*(M,R)



< const






Next time:

e Prove existence of these extremal Kahler metrics;

e Use it to prove existence of Einstein metrics; and

e discuss uniqueness of Einstein metrics.



End, Part IV



