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Spin© structures:

wo(TM?Y) € H* (M, Zs)
in image of
H?(M,Z) — H*(M,Zs)
—> d Hermitian line bundles
L — M

with
c1(L) = wo(TM) mod 2.

Given g on M, — drank-2 Hermitian vector bun-
dles V4 — M which formally satisfy

Ve =S4+ ® Ll/Q,

where S+ are the (locally defined) left- and right-
handed spinor bundles of (M, g).
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Key Example
Let J be any almost complex structure on M.

Let L = AY%2 be its anti-canonical line bundle.

Vg on M, the bundles

V_|_ _ AO’O @/\072
Vo =A%

can formally be written as
Vie=05+® LY/ 2,
where St are left & right-handed spinor bundles.

A spin€ structure arises from some .J <=

(L) = (2x +37)(M) .
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Every unitary connection A on L induces
spin® Dirac operator

DA : F<V+> — F(V_)
generalizing 0 + O*.

Weitzenbock formula: VO € I'(V4),

1 S
(O, DA"Dy0) = iﬁl@\Q + V4P + Z!@lz
+2<_iFA+7O((D>>

where F' 47 = self-dual part curvature of A, and
oc:Vye—=ATisa natural real-quadratic map,

()] = —=|5]2
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Witten:

consider both ® and A as unknowns,

subject to Seiberg- Witten equations
Dpgd =0
F i = io(®).

Non-linear, but elliptic once ‘gauge-fixing’
d*(A— Ay =0

imposed to eliminate automorphisms of L — M.



Weitzenbock formula becomes

0 = 2A|DP + 4|V 4P| + 5|D|* + ||



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness:



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:

At maximum of @, A|®[? > 0, so



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:

At maximum of @, A|®[? > 0, so

0> s|d|” + |D*



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:

At maximum of @, A|®[? > 0, so

0> s|d|” + |D*

and hence |P|? < —s, unless ® = 0. Hence



Weitzenbock formula becomes

0 = 2A|D2 + 4|V 4P| + 5O + |0

— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:

At maximum of @, A|®[? > 0, so

0> s|d|” + |D*

and hence |P|? < —s, unless ® = 0. Hence

9] < y/max [5_|

everywhere!



Weitzenbock formula becomes
0 = 2A|D2 + 4|V 4P| + 5O + |0
— moduli space compact, finite-dimensional. . .

Compactness: Implies CV bound on ®:

At maximum of @, A|®[? > 0, so

0> s|d|” + |D*

and hence |P|? < —s, unless ® = 0. Hence

9] < y/max [5_|

everywhere!

Bootstrapping with gauge-fixed equations, one gets
Lg bounds for (&, A) for all k, p.
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Dimension: Index of gauge-fixed system is

c1(L) — (2x + 37)(M)
4

For a given spin® structure and fixed metric ¢, this
is the dimension of pre-image of any regular value
of map defined by gauge-fixed S\ equations.

Spin© structure arises from some J <—

c%(L) = 2x + 37 <= Fredholm index is zero.

SW invariant € Zo means mod-2 mapping degree.
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I[f b (M) > 2, then, as metric varies, moduli spaces
are cobordant, so can construct invariants that some-
times predict existence of solutions.

Specifically, if spin© structure comes from some ./,
Fredholm index is 0, and moduli spaces generically
discrete. Counting solutions mod 2 gives Zo-valued
invariant.

This invariant is non-zero for complex surfaces of
Kéhler type (i.e. with by even).

Implies non-existence of metrics ¢ for which s > 0.
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Hitchin-Thorpe Inequality:

1 52 2 \ :
2v + 37V (M) = — +2IlW " —— | d
Finstein = _ 82+2\W |2 d
111 111 p—
o 472 24 i Hg

Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) > 0,

with equality only if (M, g) is locally hyper-Kahler.
The latter case happens only if M finitely cov-
ered by flat T* or K3.
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When by (M) = 1, theory is more complicated.

However, theory works in exactly the same way:,
when

o c7(L) > 0; or
o ci(L) =0, but c;(L) #0 € H*(M,R).
Enough for us, by Hitchin-Thorpe Inequality.

In this context, one shows [/.| that
e SV =0 if Kod(M) = —o0; and
o STV #£ 0 if Kod(M) > 0.
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Application:

Theorem. Suppose that (M, .J) is a compact com-
plex surface. If the smooth compact 4-manifold
M admats an Einstein metric g with A > 0, then

Kod(M,.J) = —o0, and

(CP#kCPy, 0< k<8
M=, < or

\SQ x S2

Key point: SW = s > 0 impossible when Kod = 2.
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Curvature Estimates:

If ST equations have solution Vg € [g],
—> curvature estimates

[ sy = el (1)
M 2
[ (5= VBIWA1) dg > T2mles (1)
M
where ¢ (L)" € H is self-dual part of

ci(L) € HA(M,R)=H} & H,



H2
(M, R)
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Integrate Weitzenbock:
0= /[4|vq>\2 T s @2 + [0 Y.
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Cauchy-Schwarz:
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Integrate Weitzenbock:
0= /[4|vq>\2 T s @2 + [0 Y.

[owpanz [t

Cauchy-Schwarz:

1/2 1/2
()" (o) "=
/Szdﬂ /\¢I4du

8/ P o

Z 3272[61+]2
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When does equality occur?

0= /[4\%@\2 T 5@ + D]

/(—s)@!zduz /|<1>\4dﬂ.

Equality =
VP =0, s = const < 0
Hence Vo (P) =0, and ¢ is Kahler.
So metric is CSCK.
Moreover, A is Chern connection on L = K -1

Just one solution, so must have SV # 0. More
robust version works for Kéhler with ¢ - [w] < 0.
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This decomposition still depends on metric.

We need metric-independent improvement!
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For simplicity, we now assume that

(*) Either b (M) > 2, or (2x + 37)(M) > 0.

Definition. Let M be a smooth compact ori-
ented 4-manifold satisfying (%), and suppose that
M carries almost-complex structure J such that

SW # 0
for spin® structure induced by J. Then
c1(M,J) e H*(M,R)

will be called a basic class of M.
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Every basic class
be H*(M,R)

arises from a spin® structure such that the Seiberg-
Witten equations

Ds® =0
Fi = io(d).

have a solution (®, A) for every metric g on M.
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S C H*(M,R) of all basic classes is finite, and
15 an oriented diffeomorphism invariant of M.
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Lemma. Suppose that a € Hull(S). Then, for
any metric g, 3 basic class b = c{(L) such that

1 (L)1) > a*.

Proof. Linearity of projection =
o e Hull{ b* | b € &},
Hence d basic class b such that
(b—|->2 > (a—l-)Q

because intersection form pos def on H ;. But

() = (a™)" = [(a™)7],

(L) =01 2 (aF) 2 d’

as claimed.
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Theorem A. If the smooth compact 4-manifold

M admits both an Einstein metric g and a basic
class b € H*(M), then

X(M) = 37(M)

and equality = (M, g) is either flat or a com-
plex hyperbolic manifold CHy/T .

Corollary. For any compact complex-hyperbolic
4-manifold M = CHy/T', the Einstein moduli
space, consisting of Einstein metrics on M, mod-
ulo diffeomorphisms and rescaling, consists of
exactly one point.
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where F/; Poincaré dual to CPPy in jt copy of CP».

But there are self-diffeomorphisms of M sending
this cohomology class to

k

cl(M,J)=c1(X)+ > Ej
j=1

Hence ¢1(X) € Hull(&). ... Curvature estimates!



Theorem (Curvature Estimates). For any Rie-
mannian metric g on a compact compler sur-
face M of general type, the following curvature
bounds are satisfied:



Theorem (Curvature Estimates). For any Rie-
mannian metric g on a compact compler sur-
face M of general type, the following curvature
bounds are satisfied:

/ 32d,ug > 327%¢12(X)
M

2
/ (3 — \/6\W+\) dig > 7211 %(X)
M

where X s the minimal model of M.



Theorem (Curvature Estimates). For any Rie-
mannian metric g on a compact compler sur-
face M of general type, the following curvature
bounds are satisfied:

/ 32d,ug > 327%¢12(X)
M 2
/ (3 — \/6\W+\) dig > 7211 %(X)
M

where X s the minimal model of M.

Moreover, equality holds in either case iff M =
X, and g 1s Kahler-Einstein with A < 0.
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Then M cannot admit an Einstein metric if

k> c?(M)/3.

(Better than Hitchin-Thorpe by a factor of 3.)

So being “very’ non-minimal is an obstruction.
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By contrast, existence result:

Theorem (Aubin/Yau). Compact complexr man-
ifold (M?™, J) admits compatible Kdhler-Einstein
metric with s < 0 <= 4 holomorphic embedding

such that c1(M) is negative multiple of 7% ¢1(CPy.).

When n = 2m = 4, such M are the minimal com-
plex surfaces of general type such that

2CP; S M

of homological self-intersection —2.
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Theorem B. Let X be a minimal surface of
general type, and let

M = X#kCP,.
Then M cannot admit an Einstein metric if

k> c?(M)/3.

In example:

¢2(X) =3
k=1



X is triple cover CIP9 ramified at sextic

T~ C<

B~ CP,

M = X#CP».

Theorem B = no Einstein metric on M.



But M and N are both

simply connected & non-spin,



But M and N are both
simply connected & non-spin,
and both have ¢;2 = 2. B2V =3,



But M and N are both
simply connected & non-spin,
and both have ¢12 = 2, h*Y = 3, so

X = 46
T = —30



But M and N are both
simply connected & non-spin,
and both have ¢12 = 2, h*Y = 3, so

X = 46
T = —30

Hence Freedman = M homeomorphic to /!



But M and N are both
simply connected & non-spin,
and both have ¢12 = 2, h*Y = 3, so

X = 46
T = —30

Hence Freedman = M homeomorphic to /!
Moral: Existence depends on diffeotype!



Existence depends on diffeotype!



End, Part 111



