Curvature Functionals,

Kähler Metrics, &

the Geometry of 4-Manifolds III

Claude LeBrun Stony Brook University

IHP, December 5, 2012

$$w_2(TM^4) \in H^2(M,\mathbb{Z}_2)$$
 in image of
$$H^2(M,\mathbb{Z}) \to H^2(M,\mathbb{Z}_2)$$

$$w_2(TM^4) \in H^2(M, \mathbb{Z}_2)$$

in image of

$$H^2(M,\mathbb{Z}) \to H^2(M,\mathbb{Z}_2)$$

⇒ ∃ Hermitian line bundles

$$L \to M$$

with

$$c_1(L) \equiv w_2(TM) \mod 2.$$

$$w_2(TM^4) \in H^2(M, \mathbb{Z}_2)$$

in image of

$$H^2(M,\mathbb{Z}) \to H^2(M,\mathbb{Z}_2)$$

 \implies \exists Hermitian line bundles

$$L \to M$$

with

$$c_1(L) \equiv w_2(TM) \mod 2.$$

Given g on M, \Longrightarrow \exists rank-2 Hermitian vector bundles $\mathbb{V}_+ \to M$

$$w_2(TM^4) \in H^2(M, \mathbb{Z}_2)$$

in image of

$$H^2(M,\mathbb{Z}) \to H^2(M,\mathbb{Z}_2)$$

 \implies \exists Hermitian line bundles

$$L \to M$$

with

$$c_1(L) \equiv w_2(TM) \mod 2.$$

Given g on M, $\Longrightarrow \exists \text{ rank-2 Hermitian vector bundles } \forall \pm \to M \text{ which formally satisfy}$

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

$$w_2(TM^4) \in H^2(M, \mathbb{Z}_2)$$

in image of

$$H^2(M,\mathbb{Z}) \to H^2(M,\mathbb{Z}_2)$$

 \implies \exists Hermitian line bundles

$$L \to M$$

with

$$c_1(L) \equiv w_2(TM) \mod 2.$$

Given g on M, $\Longrightarrow \exists \text{ rank-2 Hermitian vector bundles } \forall \pm \to M \text{ which formally satisfy}$

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

where \mathbb{S}_{\pm} are the (locally defined) left- and right-handed spinor bundles of (M, g).

Let J be any almost complex structure on M.

Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$\mathbf{V}_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$

$$\mathbf{V}_{-} = \Lambda^{0,1}$$

Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$
$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$
$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

where S_{\pm} are left & right-handed spinor bundles.

Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$
$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

where \mathbb{S}_{\pm} are left & right-handed spinor bundles.

A spin^c structure arises from some $J \iff$

$$c_1^2(L) = (2\chi + 3\tau)(M)$$
.

Every unitary connection A on L

$$D_A:\Gamma(\mathbb{V}_+)\to\Gamma(\mathbb{V}_-)$$

$$D_A:\Gamma(\mathbb{V}_+)\to\Gamma(\mathbb{V}_-)$$

generalizing $\bar{\partial} + \bar{\partial}^*$.

$$D_A:\Gamma(V_+)\to\Gamma(V_-)$$

generalizing $\bar{\partial} + \bar{\partial}^*$.

Weitzenböck formula: $\forall \Phi \in \Gamma(\mathbb{V}_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla_A \Phi|^2 + \frac{s}{4} |\Phi|^2$$

$$D_A:\Gamma(V_+)\to\Gamma(V_-)$$

generalizing $\bar{\partial} + \bar{\partial}^*$.

Weitzenböck formula: $\forall \Phi \in \Gamma(V_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla_A \Phi|^2 + \frac{s}{4} |\Phi|^2 + 2\langle -iF_A^+, \sigma(\Phi) \rangle$$

$$D_A:\Gamma(V_+)\to\Gamma(V_-)$$

generalizing $\bar{\partial} + \bar{\partial}^*$.

Weitzenböck formula: $\forall \Phi \in \Gamma(V_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla_A \Phi|^2 + \frac{s}{4} |\Phi|^2 + 2\langle -iF_A^+, \sigma(\Phi) \rangle$$

where F_A^+ = self-dual part curvature of A,

$$D_A:\Gamma(\mathbb{V}_+)\to\Gamma(\mathbb{V}_-)$$

generalizing $\bar{\partial} + \bar{\partial}^*$.

Weitzenböck formula: $\forall \Phi \in \Gamma(V_+)$,

$$\langle \Phi, D_A^* D_A \Phi \rangle = \frac{1}{2} \Delta |\Phi|^2 + |\nabla_A \Phi|^2 + \frac{s}{4} |\Phi|^2 + 2\langle -iF_A^+, \sigma(\Phi) \rangle$$

where $F_A^+ = \text{self-dual part curvature of } A$, and $\sigma : \mathbb{V}_+ \to \Lambda^+$ is a natural real-quadratic map,

$$|\sigma(\Phi)| = \frac{1}{2\sqrt{2}} |\Phi|^2.$$

consider both Φ and A as unknowns,

consider both Φ and A as unknowns, subject to Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F_A^+ = i \sigma(\Phi).$$

consider both Φ and A as unknowns, subject to Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F_A^+ = i\sigma(\Phi).$$

Non-linear, but elliptic

consider both Φ and A as unknowns, subject to Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F_A^+ = i\sigma(\Phi).$$

Non-linear, but elliptic once 'gauge-fixing'

$$d^*(A - A_0) = 0$$

imposed to eliminate automorphisms of $L \to M$.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Compactness:

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Compactness: Implies C^0 bound on Φ :

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Compactness: Implies C^0 bound on Φ :

At maximum of Φ , $\Delta |\Phi|^2 \geq 0$, so

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Compactness: Implies C^0 bound on Φ :

At maximum of Φ , $\Delta |\Phi|^2 \geq 0$, so

$$0 \ge s|\Phi|^2 + |\Phi|^4$$

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Compactness: Implies C^0 bound on Φ :

At maximum of Φ , $\Delta |\Phi|^2 \geq 0$, so

$$0 \ge s|\Phi|^2 + |\Phi|^4$$

and hence $|\Phi|^2 \leq -s$, unless $\Phi \equiv 0$. Hence

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Compactness: Implies C^0 bound on Φ :

At maximum of Φ , $\Delta |\Phi|^2 \geq 0$, so

$$0 \ge s|\Phi|^2 + |\Phi|^4$$

and hence $|\Phi|^2 \leq -s$, unless $\Phi \equiv 0$. Hence

$$|\Phi| \leq \sqrt{\max |s_-|}$$

everywhere!

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Compactness: Implies C^0 bound on Φ :

At maximum of Φ , $\Delta |\Phi|^2 \geq 0$, so

$$0 \ge s|\Phi|^2 + |\Phi|^4$$

and hence $|\Phi|^2 \leq -s$, unless $\Phi \equiv 0$. Hence

$$|\Phi| \leq \sqrt{\max |s_-|}$$

everywhere!

Bootstrapping with gauge-fixed equations, one gets L_k^p bounds for (Φ, A) for all k, p.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Dimension: Index of gauge-fixed system is

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Dimension: Index of gauge-fixed system is

$$\frac{c_1^2(L) - (2\chi + 3\tau)(M)}{4}$$

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Dimension: Index of gauge-fixed system is

$$\frac{c_1^2(L) - (2\chi + 3\tau)(M)}{4}$$

For a given $spin^c$ structure and fixed metric g, this is the dimension of pre-image of any regular value of map defined by gauge-fixed SW equations.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Dimension: Index of gauge-fixed system is

$$\frac{c_1^2(L) - (2\chi + 3\tau)(M)}{4}$$

For a given $spin^c$ structure and fixed metric g, this is the dimension of pre-image of any regular value of map defined by gauge-fixed SW equations.

Spin^c structure arises from some $J \iff c_1^2(L) = 2\chi + 3\tau \iff$ Fredholm index is zero.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

Dimension: Index of gauge-fixed system is

$$\frac{c_1^2(L) - (2\chi + 3\tau)(M)}{4}$$

For a given $spin^c$ structure and fixed metric g, this is the dimension of pre-image of any regular value of map defined by gauge-fixed SW equations.

Spin^c structure arises from some $J \iff c_1^2(L) = 2\chi + 3\tau \iff$ Fredholm index is zero.

SW invariant $\in \mathbb{Z}_2$ means mod-2 mapping degree.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

If $b_{+}(M) \geq 2$, then, as metric varies, moduli spaces are cobordant, so can construct invariants that sometimes predict existence of solutions.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

If $b_{+}(M) \geq 2$, then, as metric varies, moduli spaces are cobordant, so can construct invariants that sometimes predict existence of solutions.

Specifically, if spin^c structure comes from some J, Fredholm index is 0, and moduli spaces generically discrete. Counting solutions mod 2 gives \mathbb{Z}_2 -valued invariant.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

If $b_{+}(M) \geq 2$, then, as metric varies, moduli spaces are cobordant, so can construct invariants that sometimes predict existence of solutions.

Specifically, if spin^c structure comes from some J, Fredholm index is 0, and moduli spaces generically discrete. Counting solutions mod 2 gives \mathbb{Z}_2 -valued invariant.

This invariant is non-zero for complex surfaces of Kähler type (i.e. with b_1 even).

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

If $b_{+}(M) \geq 2$, then, as metric varies, moduli spaces are cobordant, so can construct invariants that sometimes predict existence of solutions.

Specifically, if spin^c structure comes from some J, Fredholm index is 0, and moduli spaces generically discrete. Counting solutions mod 2 gives \mathbb{Z}_2 -valued invariant.

This invariant is non-zero for complex surfaces of Kähler type (i.e. with b_1 even).

Implies non-existence of metrics g for which s > 0.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

When $b_{+}(M) = 1$, theory is more complicated.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

When $b_{+}(M) = 1$, theory is more complicated.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

When $b_{+}(M) = 1$, theory is more complicated.

•
$$c_1^2(L) > 0$$
;

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

When $b_{+}(M) = 1$, theory is more complicated.

- $c_1^2(L) > 0$; or
- $\bullet c_1^2(L) = 0,$

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

When $b_{+}(M) = 1$, theory is more complicated.

- $c_1^2(L) > 0$; or
- $c_1^2(L) = 0$, but $c_1(L) \neq 0 \in H^2(M, \mathbb{R})$.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

When $b_{+}(M) = 1$, theory is more complicated.

However, theory works in exactly the same way, when

- $c_1^2(L) > 0$; or
- $c_1^2(L) = 0$, but $c_1(L) \neq 0 \in H^2(M, \mathbb{R})$.

Enough for us, by Hitchin-Thorpe Inequality.

Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2}\right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2\right) d\mu_g$

Theorem (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then

$$(2\chi + 3\tau)(M) \ge 0,$$

with equality only if (M, g) is locally hyper-Kähler. The latter case happens only if M finitely covered by flat T^4 or K3.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

When $b_{+}(M) = 1$, theory is more complicated.

However, theory works in exactly the same way, when

- $c_1^2(L) > 0$; or
- $c_1^2(L) = 0$, but $c_1(L) \neq 0 \in H^2(M, \mathbb{R})$.

Enough for us, by Hitchin-Thorpe Inequality.

In this context, one shows [L] that

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

When $b_{+}(M) = 1$, theory is more complicated.

However, theory works in exactly the same way, when

- $c_1^2(L) > 0$; or
- $c_1^2(L) = 0$, but $c_1(L) \neq 0 \in H^2(M, \mathbb{R})$.

Enough for us, by Hitchin-Thorpe Inequality.

In this context, one shows [L] that

• SW = 0 if $Kod(M) = -\infty$; and

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact, finite-dimensional...

When $b_{+}(M) = 1$, theory is more complicated.

However, theory works in exactly the same way, when

- $c_1^2(L) > 0$; or
- $c_1^2(L) = 0$, but $c_1(L) \neq 0 \in H^2(M, \mathbb{R})$.

Enough for us, by Hitchin-Thorpe Inequality.

In this context, one shows [L] that

- SW = 0 if $Kod(M) = -\infty$; and
- $SW \neq 0$ if $Kod(M) \geq 0$.

Theorem. Suppose that (M, J) is a compact complex surface.

Theorem. Suppose that (M, J) is a compact complex surface. If the smooth compact 4-manifold M admits an Einstein metric g

Theorem. Suppose that (M, J) is a compact complex surface. If the smooth compact 4-manifold M admits an Einstein metric g with $\lambda > 0$,

Theorem. Suppose that (M, J) is a compact complex surface. If the smooth compact 4-manifold M admits an Einstein metric g with $\lambda > 0$, then $Kod(M, J) = -\infty$,

Theorem. Suppose that (M, J) is a compact complex surface. If the smooth compact 4-manifold M admits an Einstein metric g with $\lambda > 0$, then $Kod(M, J) = -\infty$, and

$$M pprox \left\{ egin{aligned} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \end{aligned}
ight.$$

Theorem. Suppose that (M, J) is a compact complex surface. If the smooth compact 4-manifold M admits an Einstein metric g with $\lambda > 0$, then $Kod(M, J) = -\infty$, and

$$M \approx_{\text{diff}} \left\{ \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \le k \le 8, \right.$$

Theorem. Suppose that (M, J) is a compact complex surface. If the smooth compact 4-manifold M admits an Einstein metric g with $\lambda > 0$, then $Kod(M, J) = -\infty$, and

$$M pprox \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Theorem. Suppose that (M, J) is a compact complex surface. If the smooth compact 4-manifold M admits an Einstein metric g with $\lambda > 0$, then $Kod(M, J) = -\infty$, and

$$M pprox \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ or \\ S^2 \times S^2 \end{cases}$$

Key point: SW $\Rightarrow s > 0$ impossible when Kod = 2.

If SW equations have solution $\forall \tilde{g} \in [g]$

If SW equations have solution $\forall \tilde{g} \in [g]$, \Longrightarrow curvature estimates

$$\int_{M} s^{2} d\mu_{g} \ge 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

If SW equations have solution $\forall \tilde{g} \in [g]$, \Longrightarrow curvature estimates

$$\int_{M} s^{2} d\mu_{g} \ge 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \ge 72\pi^{2} [c_{1}(L)^{+}]^{2}$$

If SW equations have solution $\forall \tilde{g} \in [g]$, \Longrightarrow curvature estimates

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

$$H^2(M,\mathbb{R})$$

Weitzenböck formula:

$$0 = 2\Delta |\Phi|^2 + 4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$0 \ge \int [s|\Phi|^2 + |\Phi|^4] d\mu.$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

$$\left(\int \mathbf{s}^2 d\mu\right)^{1/2} \left(\int |\Phi|^4 d\mu\right)^{1/2} \ge \int |\Phi|^4 d\mu,$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

$$\left(\int s^2 d\mu\right)^{1/2} \left(\int |\Phi|^4 d\mu\right)^{1/2} \ge \int |\Phi|^4 d\mu,$$

$$\int s^2 d\mu \ge \int |\Phi|^4 d\mu$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

$$\left(\int s^2 d\mu\right)^{1/2} \left(\int |\Phi|^4 d\mu\right)^{1/2} \ge \int |\Phi|^4 d\mu,$$

$$\int s^2 d\mu \ge \int |\Phi|^4 d\mu$$

$$= 8 \int |F_A^+|^2 d\mu$$

Integrate Weitzenböck:

$$0 = \int [4|\nabla \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

$$\left(\int s^2 d\mu\right)^{1/2} \left(\int |\Phi|^4 d\mu\right)^{1/2} \ge \int |\Phi|^4 d\mu,$$

$$\int s^2 d\mu \ge \int |\Phi|^4 d\mu$$

$$= 8 \int |F_A^+|^2 d\mu$$

$$\ge 32\pi^2 [c_1^+]^2$$

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality
$$\Longrightarrow$$

$$\nabla_A \Phi = 0, \quad \mathbf{s} = \text{const} < 0$$

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality
$$\Longrightarrow$$

$$\nabla_A \Phi = 0, \quad s = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$\nabla_A \Phi = 0, \quad \mathbf{s} = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

So metric is CSCK.

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$\nabla_A \Phi = 0, \quad \mathbf{s} = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

So metric is CSCK.

Moreover, A is Chern connection on $L = K^{-1}$.

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$\nabla_A \Phi = 0, \quad s = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

So metric is CSCK.

Moreover, A is Chern connection on $L = K^{-1}$.

Just one solution, so must have $SW \neq 0$.

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$\nabla_A \Phi = 0, \quad s = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

So metric is CSCK.

Moreover, A is Chern connection on $L = K^{-1}$.

Just one solution, so must have $SW \neq 0$. More robust version works for Kähler with $\int s d\mu < 0$.

$$0 = \int [4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4] d\mu.$$
$$\int (-s)|\Phi|^2 d\mu \ge \int |\Phi|^4 d\mu.$$

Equality \Longrightarrow

$$\nabla_A \Phi = 0, \quad s = \text{const} < 0$$

Hence $\nabla \sigma(\Phi) = 0$, and g is Kähler.

So metric is CSCK.

Moreover, A is Chern connection on $L = K^{-1}$.

Just one solution, so must have $SW \neq 0$. More robust version works for Kähler with $c_1 \cdot [\omega] < 0$.

Second Estimate:

By conformal invariance of Dirac,

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g$

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$

$$F_A^+ = i f \sigma(\Phi).$$

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$

$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$

$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + f|\Phi|^4$$

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$

$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + f|\Phi|^4$$

Multiply by $|\Phi|^2$ and integrate:

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$
$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + f|\Phi|^4$$

Multiply by $|\Phi|^2$ and integrate:

$$0 \ge \int \left[4|\Phi|^2 |\nabla_A \Phi|^2 + s|\Phi|^4 + f|\Phi|^6 \right] d\mu$$

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$
$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + f|\Phi|^4$$

Multiply by $|\Phi|^2$ and integrate:

$$0 \ge \int \left[4|\Phi|^2 |\nabla_A \Phi|^2 + s|\Phi|^4 + f|\Phi|^6 \right] d\mu$$

so self-dual 2-form $\psi = 2\sqrt{2}\sigma(\Phi)$ satisfies

By conformal invariance of Dirac, SW equations with respect to $f^{-2}g \iff$ new system

$$D_A \Phi = 0$$
$$F_A^+ = i f \sigma(\Phi).$$

with new Weitzenböck formula

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + f|\Phi|^4$$

Multiply by $|\Phi|^2$ and integrate:

$$0 \ge \int \left[4|\Phi|^2 |\nabla_A \Phi|^2 + s|\Phi|^4 + f|\Phi|^6 \right] d\mu$$

so self-dual 2-form $\psi = 2\sqrt{2}\sigma(\Phi)$ satisfies

$$0 \ge \int \left[|\nabla \psi|^2 + \mathbf{s}|\psi|^2 + f|\psi|^3 \right] d\mu$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$.

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$.

$$0 \ge \int \left[|\nabla \psi|^2 + \mathbf{s}|\psi|^2 + f|\psi|^3 \right] d\mu$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(\frac{2s}{3} - 2\sqrt{\frac{2}{3}} |W_+| \right) |\psi|^2 + f|\psi|^3 \right] d\mu$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

Hölder inequality

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

Hölder inequality ⇒

$$\left(\int f^4 d\mu\right)^{1/3} \left(\int \left|s - \sqrt{6}|W_+|\right|^3 f^{-2} d\mu\right)^{2/3} \ge \frac{9}{4} \int f^2 |\psi|^2 d\mu$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

Hölder inequality ⇒

$$\left(\int f^{4}d\mu\right)^{1/3} \left(\int \left|s - \sqrt{6}|W_{+}|\right|^{3} f^{-2}d\mu\right)^{2/3} \ge \frac{9}{4} \int f^{2}|\psi|^{2}d\mu$$

$$\ge 72\pi^{2} [c_{1}^{+}]^{2}$$

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

Hölder inequality ⇒

$$\left(\int f^4 d\mu\right)^{1/3} \left(\int \left|s - \sqrt{6}|W_+|\right|^3 f^{-2} d\mu\right)^{2/3} \ge \frac{9}{4} \int f^2 |\psi|^2 d\mu$$
$$\ge 72\pi^2 [c_1^+]^2$$

Take sequence $f_j \searrow \sqrt{\left|s - \sqrt{6}|W_+|\right|}$. In limit:

$$\int |\nabla \psi|^2 d\mu \ge -\int \left(\frac{s}{3} + 2\sqrt{\frac{2}{3}}|W_+|\right) |\psi|^2 d\mu$$

by Weitzenböck for $(d + d^*)^2$. Hence

$$0 \ge \int \left[\left(s - \sqrt{6} |W_+| \right) |\psi|^2 + \frac{3}{2} f |\psi|^3 \right] d\mu$$

Hölder inequality ⇒

$$\left(\int f^4 d\mu\right)^{1/3} \left(\int \left|s - \sqrt{6}|W_+|\right|^3 f^{-2} d\mu\right)^{2/3} \ge \frac{9}{4} \int f^2 |\psi|^2 d\mu$$
$$\ge 72\pi^2 [c_1^+]^2$$

Take sequence $f_j \searrow \sqrt{|s-\sqrt{6}|W_+|}$. In limit:

$$\int_{M} \left(s - \sqrt{6} |W_{+}| \right)^{2} d\mu \ge 72\pi^{2} [c_{1}^{+}]^{2}$$

Curvature Estimates:

If SW equations have solution $\forall \tilde{g} \in [g]$, \Longrightarrow curvature estimates

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

Curvature Estimates:

If SW equations have solution $\forall \tilde{g} \in [g]$, \Longrightarrow curvature estimates

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

This decomposition still depends on metric.

Curvature Estimates:

If SW equations have solution $\forall \tilde{g} \in [g]$, \Longrightarrow curvature estimates

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} [c_{1}(L)^{+}]^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} [c_{1}(L)^{+}]^{2}$$
where $c_{1}(L)^{+} \in \mathcal{H}_{g}^{+}$ is self-dual part of
$$c_{1}(L) \in H^{2}(M, \mathbb{R}) = \mathcal{H}_{g}^{+} \oplus \mathcal{H}_{g}^{-}$$

This decomposition still depends on metric.

We need metric-independent improvement!

$$H^2(M,\mathbb{R})$$

$$H^2(M,\mathbb{R})$$

$$H^2(M,\mathbb{R})$$

$$H^2(M,\mathbb{R})$$

$$H^2(M,\mathbb{R})$$

For simplicity,

(*) Either $b_{+}(M) \geq 2$,

(*) Either $b_{+}(M) \geq 2$, or $(2\chi + 3\tau)(M) \geq 0$.

(*) Either
$$b_{+}(M) \geq 2$$
, or $(2\chi + 3\tau)(M) \geq 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*),

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J.

(*) Either
$$b_{+}(M) \ge 2$$
, or $(2\chi + 3\tau)(M) \ge 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J. Then

$$c_1(M,J) \in H^2(M,\mathbb{R})$$

(*) Either
$$b_{+}(M) \geq 2$$
, or $(2\chi + 3\tau)(M) \geq 0$.

Definition. Let M be a smooth compact oriented 4-manifold satisfying (*), and suppose that M carries almost-complex structure J such that

$$SW \neq 0$$

for $spin^c$ structure induced by J. Then

$$c_1(M,J) \in H^2(M,\mathbb{R})$$

will be called a basic class of M.

Every basic class

Every basic class

$$b \in H^2(M, \mathbb{R})$$

Every basic class

$$b \in H^2(M, \mathbb{R})$$

arises from a $spin^c$ structure

Every basic class

$$b \in H^2(M, \mathbb{R})$$

arises from a spin c structure such that the Seiberg-Witten equations

Key property:

Every basic class

$$b \in H^2(M, \mathbb{R})$$

arises from a spin c structure such that the Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F_A^+ = i\sigma(\Phi).$$

Key property:

Every basic class

$$b \in H^2(M, \mathbb{R})$$

arises from a spin c structure such that the Seiberg-Witten equations

$$D_A \Phi = 0$$
$$F_A^+ = i \sigma(\Phi).$$

have a solution (Φ, A) for every metric g on M.

Proposition. Let M be a smooth compact oriented 4-manifold satisfying (*).

Proposition. Let M be a smooth compact oriented 4-manifold satisfying (*). The collection $\mathfrak{S} \subset H^2(M,\mathbb{R})$

Proposition. Let M be a smooth compact oriented 4-manifold satisfying (*). The collection $\mathfrak{S} \subset H^2(M,\mathbb{R})$ of all basic classes

Proposition. Let M be a smooth compact oriented 4-manifold satisfying (*). The collection $\mathfrak{S} \subset H^2(M,\mathbb{R})$ of all basic classes is finite,

Proposition. Let M be a smooth compact oriented 4-manifold satisfying (*). The collection $\mathfrak{S} \subset H^2(M,\mathbb{R})$ of all basic classes is finite, and is an oriented diffeomorphism invariant of M.

 $\mathfrak{S} = \{basic\ classes\}.$

$$\mathfrak{S} = \{basic\ classes\}.$$

 $\mathfrak{S} = \{basic\ classes\}.$

 $\mathfrak{S} = \{basic\ classes\}.$

 $\mathfrak{S} = \{basic\ classes\}.$

 $\mathfrak{S} = \{basic\ classes\}.$

Lemma.

Lemma. Suppose that $a \in Hull(\mathfrak{S})$.

Lemma. Suppose that $a \in Hull(\mathfrak{S})$. Then, for any metric g,

Lemma. Suppose that $a \in Hull(\mathfrak{S})$. Then, for any metric g, \exists basic class $b = c_1(L)$

Proof. Linearity of projection \Longrightarrow

Proof. Linearity of projection \Longrightarrow $a^+ \in \text{Hull}\{b^+ \mid b \in \mathfrak{S}\}.$

Proof. Linearity of projection \Longrightarrow $a^+ \in \text{Hull}\{ b^+ \mid b \in \mathfrak{S} \}.$

Hence \exists basic class b

Proof. Linearity of projection \Longrightarrow

$$a^+ \in \text{Hull}\{\ b^+ \mid b \in \mathfrak{S}\}.$$

Hence \exists basic class b such that

$$(b^+)^2 \ge (a^+)^2$$

Proof. Linearity of projection \Longrightarrow

$$a^+ \in \text{Hull}\{\ b^+ \mid b \in \mathfrak{S}\}.$$

Hence \exists basic class b such that

$$(b^+)^2 \ge (a^+)^2$$

because intersection form pos def on H_q^+ .

Proof. Linearity of projection \Longrightarrow

$$a^+ \in \text{Hull}\{\ b^+ \mid b \in \mathfrak{S}\}.$$

Hence \exists basic class b such that

$$(b^+)^2 \ge (a^+)^2$$

because intersection form pos def on H_g^+ . But

$$(a)^2 = (a^+)^2 - |(a^-)^2|,$$

Proof. Linearity of projection \Longrightarrow

$$a^+ \in \text{Hull}\{\ b^+ \mid b \in \mathfrak{S}\}.$$

Hence \exists basic class **b** such that

$$(b^+)^2 \ge (a^+)^2$$

because intersection form pos def on H_q^+ . But

$$(a)^2 = (a^+)^2 - |(a^-)^2|,$$

SO

$$[c_1(L)^+]^2 = (b^+)^2 \ge (a^+)^2 \ge a^2$$

Proof. Linearity of projection \Longrightarrow

$$a^+ \in \text{Hull}\{\ b^+ \mid b \in \mathfrak{S}\}.$$

Hence \exists basic class b such that

$$(b^+)^2 \ge (a^+)^2$$

because intersection form pos def on H_q^+ . But

$$(a)^2 = (a^+)^2 - |(a^-)^2|,$$

SO

$$[c_1(L)^+]^2 = (b^+)^2 \ge (a^+)^2 \ge a^2$$

as claimed.

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} a^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} a^{2}$$

$$\int_{M} s^{2} d\mu_{g} \ge 32\pi^{2} a^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \ge 72\pi^{2} a^{2}$$

Example. May take $a = c_1(L)$ to be a basic class.

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} a^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} a^{2}$$

Example. May take $a = c_1(L)$ to be a basic class.

Since
$$c_1^2(L) = (2\chi + 3\tau)(M)$$
,

$$\int_{M} s^{2} d\mu_{g} \ge 32\pi^{2} a^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \ge 72\pi^{2} a^{2}$$

Example. May take $a = c_1(L)$ to be a basic class.

Since $c_1^2(L) = (2\chi + 3\tau)(M)$, the first estimate then tells us that

$$\frac{1}{32\pi^2} \int_{M} s^2 d\mu_g \ge (2\chi + 3\tau)(M)$$

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} a^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} a^{2}$$

Example. May take $a = c_1(L)$ to be a basic class.

Since $c_1^2(L) = (2\chi + 3\tau)(M)$, the first estimate then tells us that

$$\frac{1}{32\pi^2} \int_{M} s^2 d\mu_g \ge (2\chi + 3\tau)(M)$$

If g Einstein:

$$\frac{3}{4\pi^2} \int_{M} \frac{s^2}{24} d\mu_g \ge \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g$$

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} a^{2}$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} a^{2}$$

Example. May take $a = c_1(L)$ to be a basic class.

Since $c_1^2(L) = (2\chi + 3\tau)(M)$, the first estimate then tells us that

$$\frac{1}{32\pi^2} \int_{M} s^2 d\mu_g \ge (2\chi + 3\tau)(M)$$

$$g \text{ Einstein} \Longrightarrow \int_{M} \frac{s^2}{24} d\mu_g \ge \int_{M} |W_{+}|^2 d\mu_g$$

Proposition. If the smooth compact 4-manifold M

Proposition. If the smooth compact 4-manifold M admits both

Proposition. If the smooth compact 4-manifold M admits both an Einstein metric g

Proposition. If the smooth compact 4-manifold M admits both an Einstein metric g and a basic class $b \in H^2(M)$,

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g}$$

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g}$$

with equality iff g is Kähler-Einstein.

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g}$$

with equality iff g is Kähler-Einstein.

For any compact Riemannian (M^4, g) ,

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g}$$

with equality iff g is Kähler-Einstein.

For any compact Riemannian (M^4, g) ,

$$(\chi - 3\tau)(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left[\left(\frac{s^2}{24} - |W_+|^2 \right) + 3|W_-|^2 - \frac{|\mathring{r}|^2}{2} \right] d\mu_g$$

$$\int_{M} \frac{s^{2}}{24} d\mu_{g} \ge \int_{M} |W_{+}|^{2} d\mu_{g}$$

with equality iff g is Kähler-Einstein.

For any compact Riemannian (M^4, g) ,

$$(\chi - 3\tau)(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left[\left(\frac{s^2}{24} - |W_+|^2 \right) + 3|W_-|^2 - \frac{|\mathring{r}|^2}{2} \right] d\mu_g$$

Hence:

Theorem A. If the smooth compact 4-manifold M admits

Theorem A. If the smooth compact 4-manifold M admits both an Einstein metric g

$$\chi(M) \ge 3\tau(M) ,$$

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

$$\chi(M) \ge 3\tau(M)$$
,

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary.

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold $M = \mathbb{C}\mathcal{H}_2/\Gamma$,

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold $M = \mathbb{C}\mathcal{H}_2/\Gamma$, the Einstein moduli space,

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold $M = \mathbb{C}\mathcal{H}_2/\Gamma$, the Einstein moduli space, consisting of Einstein metrics on M,

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold $M = \mathbb{C}\mathcal{H}_2/\Gamma$, the Einstein moduli space, consisting of Einstein metrics on M, modulo diffeomorphisms and rescaling,

$$\chi(M) \ge 3\tau(M) ,$$

and equality $\Longrightarrow (M, g)$ is either flat or a complex hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Corollary. For any compact complex-hyperbolic 4-manifold $M = \mathbb{C}\mathcal{H}_2/\Gamma$, the Einstein moduli space, consisting of Einstein metrics on M, modulo diffeomorphisms and rescaling, consists of exactly one point.

Shrewder use of curvature estimates:

$$M = X \# k \overline{\mathbb{CP}}_2$$

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type.

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^{k} E_j$$

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^{k} E_j$$

where E_j Poincaré dual to \mathbb{CP}_1 in j^{th} copy of $\overline{\mathbb{CP}}_2$.

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^k E_j$$

where E_j Poincaré dual to \mathbb{CP}_1 in j^{th} copy of $\overline{\mathbb{CP}}_2$.

But there are self-diffeomorphisms of M sending this cohomology class to

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^{k} E_j$$

where E_j Poincaré dual to \mathbb{CP}_1 in j^{th} copy of $\overline{\mathbb{CP}}_2$.

But there are self-diffeomorphisms of M sending this cohomology class to

$$c_1(M, J) = c_1(X) + \sum_{j=1}^{k} E_j$$

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^k E_j$$

where E_j Poincaré dual to \mathbb{CP}_1 in j^{th} copy of $\overline{\mathbb{CP}}_2$.

But there are self-diffeomorphisms of M sending this cohomology class to

$$c_1(M, J) = c_1(X) + \sum_{j=1}^{k} E_j$$

Hence $c_1(X) \in \text{Hull}(\mathfrak{S})$.

$$M = X \# k \overline{\mathbb{CP}}_2$$

non-minimal surface of general type. For given complex structure

$$c_1(M, J) = c_1(X) - \sum_{j=1}^k E_j$$

where E_j Poincaré dual to \mathbb{CP}_1 in j^{th} copy of $\overline{\mathbb{CP}}_2$.

But there are self-diffeomorphisms of M sending this cohomology class to

$$c_1(M, J) = c_1(X) + \sum_{j=1}^{k} E_j$$

Hence $c_1(X) \in \text{Hull}(\mathfrak{S})$. : Curvature estimates!

Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

$$\int_{M} s^{2} d\mu_{g} \ge 32\pi^{2} c_{1}^{2}(X)$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \ge 72\pi^{2} c_{1}^{2}(X)$$

where X is the minimal model of M.

Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} c_{1}^{2}(X)$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} c_{1}^{2}(X)$$

where X is the minimal model of M.

Moreover, equality holds in either case iff M = X, and g is Kähler-Einstein with $\lambda < 0$.

Cauchy-Schwarz argument ⇒

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

Cauchy-Schwarz argument \Longrightarrow

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

... Second curvature estimate implies

$$\frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{2}{3} c_1^2(X)$$

Cauchy-Schwarz argument \Longrightarrow

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

... Second curvature estimate implies

$$\frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g > \frac{2}{3} c_1^2(X)$$

Cauchy-Schwarz argument \Longrightarrow

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

... Second curvature estimate implies

$$\frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g > \frac{2}{3} c_1^2(X)$$

Einstein
$$\Longrightarrow (2\chi + 3\tau)(M) > \frac{2}{3}c_1^2(X)$$

Cauchy-Schwarz argument \Longrightarrow

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

... Second curvature estimate implies

$$\frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g > \frac{2}{3} c_1^2(X)$$

Einstein
$$\implies c_1^2(M) > \frac{2}{3}c_1^2(X)$$

Cauchy-Schwarz argument \Longrightarrow

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

... Second curvature estimate implies

$$\frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g > \frac{2}{3} c_1^2(X)$$

Einstein
$$\implies c_1^2(X) - k > \frac{2}{3}c_1^2(X)$$

Cauchy-Schwarz argument \Longrightarrow

$$\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g \ge \frac{1}{27} \int_{M} \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g$$

... Second curvature estimate implies

$$\frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g > \frac{2}{3} c_1^2(X)$$

Einstein
$$\Longrightarrow \frac{1}{3}c_1^2(X) > k$$

 $M = X \# k \overline{\mathbb{CP}}_2.$

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \ge c_1^2(M)/3$.

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \ge c_1^2(M)/3$.

(Better than Hitchin-Thorpe by a factor of 3.)

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \ge c_1^2(M)/3$.

(Better than Hitchin-Thorpe by a factor of 3.)

So being "very" non-minimal is an obstruction.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $s < 0 \iff c_1 < 0$.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m} , J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists$ holomorphic embedding

$$j: M \hookrightarrow \mathbb{CP}_k$$

such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists$ holomorphic embedding

$$j: M \hookrightarrow \mathbb{CP}_k$$

such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$.

When n = 2m = 4, such M are the minimal complex surfaces of general type such that

$$\nexists \mathbb{CP}_1 \stackrel{\mathcal{O}}{\hookrightarrow} M$$

of homological self-intersection -2.

Example. Let N be double branched cover \mathbb{CP}_2 ,

Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:

Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:

Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:

Aubin/Yau $\Longrightarrow N$ carries Einstein metric.

Now let X be a triple cyclic cover \mathbb{CP}_2 , ramified at a smooth sextic

Now let X be a triple cyclic cover \mathbb{CP}_2 , ramified at a smooth sextic

and set

$$M = X \# \overline{\mathbb{CP}}_2.$$

Now let X be a triple cyclic cover \mathbb{CP}_2 , ramified at a smooth sextic

and set

$$M = X \# \overline{\mathbb{CP}}_2.$$

Here

$$c_1^2(X) = 3$$

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \ge c_1^2(M)/3$.

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \ge c_1^2(M)/3$.

In example:

$$c_1^2(X) = 3$$

 $k = 1 = c_1^2(X)/3$

X is triple cover \mathbb{CP}_2 ramified at sextic

$$M = X \# \overline{\mathbb{CP}}_2.$$

Theorem B $\Longrightarrow no$ Einstein metric on M.

But M and N are both simply connected & non-spin,

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$,

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$

$$\tau = -30$$

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$

$$\tau = -30$$

Hence Freedman $\Longrightarrow M$ homeomorphic to N!

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$

$$\tau = -30$$

Hence Freedman $\Longrightarrow M$ homeomorphic to N!Moral: Existence depends on diffeotype!

End, Part III