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Physics: h = gravitational field. (“g.”)
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Remarkable fact:
Let (M*, h, J) be cscK:

Kahler surtace with

s = constant.

Set

1
F=-w+/
5 %
where w = Kahler form,
p = p — qw primitive part of Ricci form.

Then (h, F') solves Einstein-Maxwell equations.

Purely 4-dimensional phenomenon.
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Why is Dimension Four Exceptional?

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Lemma. Suppose M* connected and oriented,
equipped with C3 metric h and C* 2-form F. If
FT =0, then (h, F) solves Einstein-Maxwell iff

dF™ =0
s = const
P= _9FT o F.

On open set U set where ' £ 0,
1
Ft=—|FT|| h(.J-,-
I )

for almost-complex structure ./. Equations become:

dFT =0
s = const
J*r =r.
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H*(M,R)={p e (A% | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} & H;

where

Hyr={p € T(\") | dp = 0}

self-dual & anti-self-dual harmonic forms.
Decomposition is conformally invariant.

The numbers
b+ (M) = dimH;.

are important homotopy invariants of M.
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Definition. Let M be smooth compact oriented
J-manifold, and Q. € H*(M,R) with Q0% > 0.

We will say the metric h is adapted to C) if the
harmonic form w representing ¢) with respect to

h s self-dual.

A Riemannian analog of Kahler class:

Definition. In above situation, set
Go :={ Q-adapted metrics h € G}.

Remark Notice, however, that

Ga=09x0

for any A € R*. Moreover, G, invariant under
Diffy(M) and conformal rescalings.
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Go C G 1s a Fréchet submanifold of finite codi-

mension b_(M). Moreover, G, #+ & for an open
dense set of such ().

Open: Donaldson. Dense: Gay—Kirby

For any h € G, let w € () harmonic rep, and

p ={p el(A7) | dp =0}
Then

T,Go={woy | pe H;}i% c T(@*T*M).
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Famous Variational Problem:

For M chosen smooth compact 4-manifold, recall
G = { smooth metrics h on M }.

Einstein metrics = critical points of normalized
FEinstein-Hilbert action functional

S:. g — R

h — V_1/2/ shduh
M

where V' = Vol(M, h) inserted to make scale-invariant.
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Restricted Variational Problem:

Given O € H?(M,R) with Q% > 0, now consider
restricted Einstein-Hilbert functional

G‘QQZQQ — R

h — V_1/2/ spdpiy,.
M

Proposition. An (-adapted metric h is a crit-
ical point of S|g,, iff (h, F') solves the Einstein-
Maxwell equations for some F with I+ € ().



Previously saw. ..
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Then (h, F') solves Einstein-Maxwell equations.
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Theorem (1. '10). Let M be the underlying smooth
4-manafold of a compact compler surface.

o If bi(M) is even, then M carries Einstein-
Mazwell solutions (h, F).

o If by(M) is odd, and if py(M) = 0, then M
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Theorem (1. '10). Let M be the underlying smooth
4-manafold of a compact compler surface.

o If M of Kahler type, then M carries Einstein-
Mazwell solutions (h, F).

o If M s not of Kahler type and has p; = 0,
then M carries no Einstein-Mazxwell solutions.
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I
X X X X
Y X FE
E |
CP
P

This gives CSCK orbifold.

Replace C? /75 with Eguchi-Hansen metrics.
Arrezzo-Pacard = 3 CSCK metric.

Systematic study: Yujen Shu’s thesis.
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Theorem (1. '10). Let M be the underlying smooth
4-manafold of a compact compler surface.

o If M of Kahler type, then M carries Einstein-
Mazwell solutions (h, F).

o If M s not of Kahler type and has p; = 0,
then M carries no Einstein-Mazxwell solutions.

Einstein-Maxwell deeply related to Kahler!
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The following thus seems entirely natural:

Question If M is the underlying 4-manifold of a
compact complex surface, is every Einstein-Maxwell
metric on M actually cscK?

However, the answer is No!

Theorem. Both CPo#CPy and S? x S? admit
famalies of Einstein-Mazxwell metrics which are
not csck.

We will show this using yet other Kahlerian ideas.
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We will study only a special class of solutions:

Definition. Let (M*, ) be a complex surface.
An FEinstein-Mazxwell solution (h, F') on (M, .J)
is called strongly Hermaitian iof h and F' are both

J-1nvariant:
h = h(J-,J-),
F=F(J-J).
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surface (M*,.]). Then 3 Kdhler metric g on
(M, .J), and a holomorphy potential f > 0 such
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form of g.
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holomorphy potential [ > 0 such that h = f~%g
has constant scalar curvature, then 4! F' with

FT = w such that (h,F) solves the Einstein-
Mazxwell equations.
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Up to biholomorphism,

Y. =PO @ O(k))
where k£ € N.

Up to diffeomorphism,

CPy#CPy, if k is odd; or
L R 9 9 : :
5% x 57, if k 1s even.
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Theorem. Let (M,J) = %, be the k™ Hirze-
bruch surface, with its fixed complex structure,
and let () be any Kdhler class on (M,.J). Then
3 Kahler g € ) which 1s conformal to Einstein-
Mazxwell metric h.

Moreover, if £ > 2, there 1s a unique such g
which is also U(2)-invariant, and this g is never
extremal.
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Theorem. Let €) be a Kahler class on
(M,J) — EQ — Cpl X Cpl

for which the area of one factor CIP; is more
than double the area of the other. Then () con-
tains a pair of Kahler metrics which engender
two geometrically distinct Einstein-Maxwell so-
lutions.
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Theorem. Let (M,J) = X1 ~ CPy#CPy be
the one-point blow-up of the complex projective
plane, and let

O =urL—vE e H*(M,R)

be a Kahler class, where £ and ‘E are respectively
the Poincaré duals of a projective line and the
exceptional curve. Thus u > v > 0.

o [fu/v <9, there is only one U(2)-invariant
g € {) conformal to an Einstein-Mazwell h.

o [fu/v>9, there are three distinct (g, f), with
g € 9, such that h = [~2q is Einstein-Mazwell;
however, two of the g are identical, and two of
the h are isometric, in an orientation-reversing
manmner.
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Theorem. For these metrics on X1 ~ CPy#CP,
there is a unique value of u/v, given by

B )

~1/2

_|_
v V142
1/2 >
1 (3 1 1 [ 3 1
e | (=]

and so ~ 3.18393, for which the Finstein-Mazwell
metric h becomes Page’s Finstein metric. For
other values of u/v, the Kahler metrics g € )
are not extremal, so the Einstein-Mazwell met-
rics h are not Bach-flat, and hence not even con-
formally Einstein.
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Theorem. Let smooth oriented 4-manifold M be
either CPo#CPy or 5% x S?. For Q) € H?(M,RR)
with Q02 > 0, let

{ Einstein-Mazwell (h, F) on M | F* € Q}

Diff u(M) x RF

where Diff y(M) = diffeomorphisms which act
trivially on H*(M).

M) =

Then, VN € N, dQO such that # ¢ has at least
N connected components.



Constructions & Proofs



Prototype:



Prototype: S? x S?



Prototype: S? x S?

Take g product metric: axisymmetric @ round.



Prototype: S? x S?
Take g product metric: axisymmetric @ round.

Use holomorphy potential f as coordinate .



Prototype: S? x S?
Take g product metric: axisymmetric & round.

Use holomorphy potential f as coordinate ¢.

~— T~ eb




Prototype: S? x S?
Take g product metric: axisymmetric @ round.

Use holomorphy potential f as coordinate .

dt? 2
g =—+ O(t)d6* + N

(1)



Prototype: S? x S?
Take g product metric: axisymmetric @ round.

Use holomorphy potential f as coordinate .

dt? 2
g =—+ O(t)d6* + N

(1)



Prototype: S? x S?
Take g product metric: axisymmetric @ round.

Use holomorphy potential f as coordinate .

dt? 5 2
= ——+ P(t)do —
g ®<t>+ () + = 9g2

g
h:t—2

Equation for i to have s = d = const:



Prototype: S? x S?
Take g product metric: axisymmetric @ round.

Use holomorphy potential f as coordinate .

dt? 5 2
= ——+ P(t)do —
g ®(t>+ () + = 9g2

g
h:t—2

Equation for i to have s = d = const:

20" — 6td’ + 120 = ct? — d.



Prototype: S? x S?
Take g product metric: axisymmetric @ round.

Use holomorphy potential f as coordinate .

dt? 5 2
= ——+ P(t)do —
g ®(t>+ () + = 9g2

g
h:t—2

Equation for i to have s = d = const:

20" — 6td’ + 120 = ct? — d.

d
— O(t) = At4+Bt3+§t2 5
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CIPy x CIPy also carries a CSCK metric
in every Kahler class.

These aren’t those!



Other Hirzebruch Surfaces:



Other Hirzebruch Surfaces:

g=(r+a) | =—=—+2(0q

2W
Tr + «

03



Other Hirzebruch Surfaces:

g=(x+a) |=—+2(0y

and

20
Tr + «

03



Other Hirzebruch Surfaces:

dCCQ 9 9 2\11 9
= — +2
g=(x+ ) S (017 + 097) +x+a03
and
_9
=

where {0} left-inv. o.n. coframe on S? =8SU(2),



Other Hirzebruch Surfaces:

da? A
g=(z+a) 2%+2(012+022) +x+@032
and

_9
=5
where {0} left-inv. o.n. coframe on S? =8SU(2),

¢
@(x):%x4+%m3+x2+€x+7&



Other Hirzebruch Surfaces:

da? A
g=(z+a) 2%+2(012+022) +x+&032
and

_9
=5
where {0} left-inv. o.n. coframe on S? =8SU(2),

¢
@(x):%x4+%x3+x2+€x+7&

generic quartic with ¥”7(0) = 2.
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b — _
U(x) = ( bx)_(xa a) k(x+a)+ Eb —z)(x — a)
with
kao—(k+1)a—(k—1)b
E—
a? + 4ab + b?
and
—;L—bb for any k € Z™; or

2
—(ii]SQ for k= 1.
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Einstein-Hilbert Functional:

Hirzebruch, k£ > 1:

b? — a2 + kab
sth1/2:87T\/6 arha

v k(b? — a2)(a? + 4ab + b2).

Tends to S*/Z;. value as b/a — oco.

Special family, k£ = 1:

6(3b? + 4ab + 5a’

Sth1/2:47T\/< 1+ 2ab + a).
(a+b)

Tends to CPy value as b/a — oc.

Are any of these metrics Yamabe?



Some interesting problems:



Some interesting problems:

e [ixistence on other complex surfaces?



Some interesting problems:
e [ixistence on other complex surfaces?

Koca & Tonnesen-Friedman: minimal ruled.



Some interesting problems:
e [ixistence on other complex surfaces?

Koca & Tonnesen-Friedman: minimal ruled.

Ann. Glob. An. Geom. 50 (2016) 29-46.



Some interesting problems:

e [ixistence on other rational surfaces?



Some interesting problems:

e [ixistence on other rational surfaces?

e 'Toric case?



Some interesting problems:

e [ixistence on other rational surfaces?

e 'Toric case?

Pioneering work by Apostolov-Calderbank-Gauduchon.



Some interesting problems:

e [ixistence on other rational surfaces?

e 'Toric case?

Pioneering work by Apostolov-Calderbank-Gauduchon.
J. reine angew. Math. 721 (2016) 109-147.
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e Preferred Killing field?

Futaki-Ono 2017: Variational approach.
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e Obstructions?

e Hermitian vs. Strongly Hermitian?

e Non-Kahler surfaces with p, # 07

e [issentially non-Kahler solutions?

e General 4-manifolds?



