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Will explore a “toy model” of cosmology,

arising from new kind of twistor correspondence.

e Solutions are Lorentz manitfolds;

e Fiquation is hyperbolic;

e Solutions usually have low regularity:
e Conformal infinity plays central role;

e Global considerations play dominant role.

But — story takes place in (2 + 1)-dimensions!
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Weyl’s 1918 gauge theory
based on Weyl connections (|g|, V):

lg] = {uzg} conformal class of metrics

V compatible torsion-free connection

Vg=aK g
for some 1-form o.

Example: V = V, Levi-Civita for g € [g].

Conformal change g ~ u?%g

Vo~V + 5%@ + 5ZV]€ — gy
where v = d log .
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General Weyl connection:

Same formula
V=V + 5‘,1@ + 5%”/{ — gy

but 1-form v not necessarily closed.

Vg=aKg
with
o= —2U

Induced connection on (A™)* has curvature

F=ndv

where n = dim M .



Hermann Weyl

B = (@ + af) + EI"E'{I — 3 (e}

M = {f, + 1&*(0F @i + depi — gup”) .

Unter Vernachlassigung der winsigen Rosmologischen Terme erhalten wir
hier also genau die Rlassische Maxwell-Einsteinsche Theorie der Elekitrisitat
und Gravitation., Um Ubereinstimmung mit den in § 34 verwendeten
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because of first Bianchi identity for torsion-free V.
Einstein-Weyl equations

say symmetric, trace-free part vanishes:

Tik) = 9k

for some function f.
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I[f v =V, Levi-Civita of some ¢ € |g],

Einstein-Weyl ~~ Einstein:

ik = Ajk

In dimension n = 3, Einstein <= K constant.

Are Einstein-Weyl 3-manifolds similarly trivial?

E. Cartan (1943): No!

Equations <= d totally geodesic null surfaces.



Elie Cartan

[mj !'E!: | — | {‘j!illlij —_— Im::ﬂlil J-
[002824¢ ) + [w, 82y, ] == 0,
[ 038205 ] + [0,822] = 0,
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[ 004 8205 | == [ 0 L2, | = | w0, 24s |
[E'J:HHJ 4= [m_.;ﬂ“] == 0,
w3825 ] + [@,82:] =0,
w2, ]| + [ @82 ] = 0.

TukoreMe. — Les espaces de Weyl a trois dimensions qut admettent «* plans
tsotropes dépendent essentiellement de quatre fonctions arbitraires de deux
argumrm!s .
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from family of CIP{’s in some complex 2-manifold.

—> any Riemannian-signature solution real-analytic
Complex surface = space of geodesics of V
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Nigel Hitchin

and so if
RUxV,U)U=UxR(V,U)U, (2.2)

then we can define a linear map
JV)y=UxV (2.3)
which satisfies
JAHV)=Ux(UxV)=(U,VU—-(U,U)V=-V

We thus have a real complex surface G with a family of real lines of self-
intersection number 2. It can be shown that any such surface may be obtained by
the above geodesic construction, but using a Weyl structure rather than a
Riemannian structure. The integrability condition (2.2) is then the analogue of
Einstein’s equations (R;;=A1g,;;) for the Weyl structure (see [10]). This is the
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Theorem. There 1s a natural one-to-one corre-
spondence between

e smooth, space-time-oriented, conformally com-
pact, globally hyperbolic Lorentzian Einstein-

Weyl 3-manifolds (M, |g|, V); and

e orientation-reversing diffeomorphisms

b CPy — CP;.
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Conformal Lorentzian n-manifold (M, [g]) called
space-time oriented if structure group of T'M re-
duced to connected component S OT(l, n—1)xR"
of conformal Lorentz group.

— time-orientation: future vs. past.

X

—> M also oriented, in usual sense.
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Time-oriented conformal Lorentzian n-manifold (M [g])
called globally hyperbolic if has a Cauchy surface:

Space-like hypersurface >
which meets every endless time-like curve once.

— M~ xR
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(M, |g], V) conformally compact if

o V[ = X —0X for compact man.-w.-boundary X
e |¢] represented by smooth metric g on X
e  non-degenerate on 0X
e Vj=0a® g, where
a=2dlogu +

for u smooth defining function for 0.X
3 smooth 1-form with B|gx = 0.

Example: V = V Levi-Civita of ¢ € [g] with
g=u"’g
a = 2 dlogu

5= 0.
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de Sitter 3-space

M = 5% % (0,n)

Setting 7 = 2tan~ H(t + V2 + 1),
g = csc?(7) [—dTQ + h}

where h = standard metric on S2.
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considered same ift
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for Mobius transformations ¢, ¢ € PSL(2,C).
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e orientation-reversing diffeomorphisms
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Example: de Sitter «+— antipodal map of CPy.
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In one direction, direct geometrical interpretation
of correspondence in terms of scattering maps.

Will begin by associating scattering map
(R CPy — CPy

to Einstein-Weyl (113, [¢], V) satisfying hypotheses.
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all the null geodesics emanating from p refocus
at a unique point q € .. Moreover, I+ ~ S2,
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Thus define scattering map v : CP; — CP; as-
sociated with (M, |g], V) to be function given by
J_ 3 pr— q € S after some choice of oriented
conformal isomorphisms .#1 = CIPy.

N
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twistor disk construction

Graph of orientation-reversing diffeomorphism
w : Cpl — Cpl
is totally real 2-sphere P C CIPy x CPy.

Strategy: construct 3-manitold M = M,

as moduli space of holomorphic disks D
in Z/ = CPy x CPy with 0D on P C Z.
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When ) is the antipodal map,
disks are explicitly given by

(— ([al+b:cC+d],[-dC —¢: b +a))
as ( ranges over the unit disk || < 1in C.

Choice of
a b

c d

represents choice of parameterized disk.

] e SL(2,C)

Boundaries of disks:
standard round circles in P = S2.

Moduli space M of disks mod reparameterization:

de Sitter space SL(2,C)/SL(2,R).






Now deform P — CPy x CIP4



Now deform P — CPy x CIP4

by replacing graph of anti-podal map with
oraph of orientation-reversing diffeomorphism

Qﬂ ; Cpl — Cpl.
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Lemma. Let ¢ : CIPy — CIPy be any orientation-
reversing diffeomorphism, and let

P c CP; x CIP4

be the graph of 1. Then there is a Kahler metric
h on Z = CPy x CPPy such that

e P is Lagrangian w/resp. to Kdhler form w;
and

o W] =2mci(Z) € H*(Z,R).

Proof. Let wy be standard area form on CPy.
Set wi; = —Y*wo.

Then w = wiw; + wiwy satisfies

wlp = —1*wy + 1wy = 0.
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Lemma. Let ¢ : CIPy — CIPy be any orientation-
reversing diffeomorphism, let

P C 7 = CPy x CP;

be its graph, and let F: (D? 0D?%) — (Z, P) be
any holomorphic disk representing the generator

a€ HyZ,P7) 2 7.

Then F' 1s a holomorphic embedding, is smooth
up to the boundary, and sends interior of D? to
the complement of P. Moreover, F'(D?) is the
graph of a biholomorphism between two regions
bounded by smooth Jordan curves.

If (3,0%) — (Z,P) is any holomorphic curve
with boundary representing a, then . is either a

holomorphic disk as above, or is a factor CIPy of
7 = CPy x CPq.
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Proof. Regularity: Chirka, Alinhac-Baouendi-Rothschild
But need to show is that disk is actually a graph!



Proof. Consider abstract double D U, D.



Proof. Consider abstract double D U, D.



Proof. Consider abstract double D U, D.



Proof. Consider abstract double D U, D.

S

and continuous map

q)ZDUaDE;)(CIP)l



Proof. Consider abstract double D U, D.

S

and continuous map

(IDZDUaDE;)(CIP}l

Plp = wjoF
Pl = v owgo F



Proof. Consider abstract double D U, D.

S

and continuous map (quasi-regular /quasi-conformal

q)ZDUaDE;)(CIP)l

Plp = wjoF
Pl = v owgo F



Proof. Consider abstract double D U, D.

S

and continuous map

(IDZDUaDE;)(CIP}l

Plp = wjoF
Pl = v owgo F



Proof. Consider abstract double D U, D.

S

and continuous map

CPZDU@DE;)(CIPH

Plp = wjoF
Pl = v owgo F
Then

/ ®*w1:/F*w:47T:/ w1
DU, D D CP,



Proof. Consider abstract double D U, D.

S

and continuous map

CPZDU@DE;)(CIPH

Plp = wjoF
Pl = v owgo F
Then

/ ®*w1:/F*w:47T:/ w1
DU, D D CP,

So deg & = 1.



Proof. Consider abstract double D U, D.

S

and continuous map

@2DU@DE4>CP1

Plp = wjoF
Pl = v owgo F

Then
/ ®*w1:/F*w:47T:/ w1
DU, D D CP;
So deg ® = 1.

Since ¢ quasi-recular = homeomorphism.
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If P C CPPy x CPPy graph of orientation-reversing
diffeomorphism CPP;{ — CIPy, this Lemma says any
such disk diffeomorphically conjugate to a disk in
our de Sitter example, and therefore has the same
normal Maslov index.

Meaning”
Use normal bundles Nof D C Z & vof 0D C P

to construct hol. vector bundle over double

E =N U, N
Lol
CPy =D Uyp D
Normal Maslov index is degree of E.
Equals 2 in our case:

E~00Q).



If P C CPPy x CPPy graph of orientation-reversing
diffeomorphism CPP;{ — CIPy, this Lemma says any
such disk diffeomorphically conjugate to a disk in
our de Sitter example, and therefore has the same
normal Maslov index.

L(CPy,02)) = 0
h(CPy, 02)) = 3

cf. Kodaira’s Theorem
on deformation of complex submanifolds
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If P C CPPy x CPPy graph of orientation-reversing
diffeomorphism CPP;{ — CIPy, this Lemma says any
such disk diffeomorphically conjugate to a disk in
our de Sitter example, and therefore has the same
normal Maslov index.

(Forsternic, Gromov, et al.)
Perturbation of holomorphic disks.

Our disks Fredholm regular, & index 3 =
moduli space of disks is smooth 3-manifold.

Non-empty? Connected?
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any sequence has convergent subsequence. . .



Once again, we use the

Lemma. Let ) : CIPy — CIPy be any orientation-
reversing diffeomorphism, and let

P c CPy x CPPy

be the graph of 0. Then there is a Kdahler metric
h on Z = CPy x CPy such that

e P is Lagrangian w/resp. to Kdhler form w;
and

o W] = 2rc1(Z) € HX(Z,R).

Allows one to use Gromov compactness theorem.

Tricky point: disks can degenerate to factor CIP;.
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Introduce function
A M b= (0, 47)

on moduli space which assigns to disk

F:(D?,8D%) — (Z,P)
the area of its projection to first factor CPy.

Gromov-compactness & lemma: proper map.
In particular, level sets are compact.
Since 1 is continuous deformation of antipodal.

Continuity method = each level set non-empty!
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Einstein-Weyl structure on moduli space M7

Conformal structure |g] = [g],, on M = M ;:

TpM = {f € I(D,O(N)) | flop € T(OD,v)}
Double of N = O(2) = TCPy, so
TDM = 5[(2,R)

infinitesimal Mobius transformations of the disk.

= up to homothety T'ph M carries Lorentz metric,
modelled on Killing form of s[(2, R).



Trichotomy:

TM s[(2,R)
space-like | hyperbolic

null parabolic
time-like | elliptic

X
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X

Space-like vector = infinitesimal variation with
two distinct zeroes on 9D.

X

Null vector = infinitesimal variation with a
a repeated zero on 0D.

X

Time-like vector = infinitesimal variation with a
single zero in interior of D: none along 0D.
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Hence area function A has derivative # 0
in any time-like direction.

A is time function on (M, [g],)!
.. No critical points.

.. Gromov-compactness = for all ¢ € (0, 47),
level set A_l(c) are compact surfaces

Every endless time-like curve goes from
A=0to A=4nr.

So A~ () is Cauchy surface.
M globally hyperbolic!

By deformation: Cauchy surface topologically S2.
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Space-like geodesic:
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r =1y in P.

Null geodesic:
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e & Mason, Duke Math. J. 136 (2007) 205-273.
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Proof that there is such a V:

quotient of selt-dual split-signature metric
on S? x S? with isometric Sl-action.

Gotten by lifting disks to CIP3
with boundaries on a totally real RP3,

Infinity arises from fixed-point set (two CIP;’s).

Also gives direct proof of conformal compactness.
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pact, globally hyperbolic Lorentzian Einstein-
Weyl 3-manifolds (M, |g|, V); and

e orientation-reversing diffeomorphisms

(R CPy — CP;.

e




