Four-Manifolds,

Einstein Metrics, &

Differential Topology

Claude LeBrun
Stony Brook University

Ohio State University, 10/22/15
Let \((M^n, g)\) be a Riemannian \(n\)-manifold, \(p \in M\).
Let \((M^n, g)\) be a Riemannian \(n\)-manifold, \(p \in M\). Metric defines locally shortest curves, called geodesics. Following geodesics from \(p\) defines a map

\[
\exp : T_p M \to M
\]
Let \((M^n, g)\) be a Riemannian \(n\)-manifold, \(p \in M\). Metric defines locally shortest curves, called \textit{geodesics}. Following geodesics from \(p\) defines a map

\[\exp : T_p M \to M\]

which is a diffeomorphism on a neighborhood of 0:
Let \((M^n, g)\) be a Riemannian \(n\)-manifold, \(p \in M\). Metric defines locally shortest curves, called \textit{geodesics}. Following geodesics from \(p\) defines a map

\[
\exp : T_p M \rightarrow M
\]

which is a diffeomorphism on a neighborhood of 0:

Now choosing \(T_p M \xrightarrow{\cong} \mathbb{R}^n\) via some orthonormal basis gives us special coordinates on \(M\).
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r^{jk} x_j x_k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \right] d\mu_{\text{Euclidean}}, \]
In these “geodesic normal” coordinates the metric volume measure is given by

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + \right] d\mu_{\text{Euclidean}},$$
In these “geodesic normal” coordinates the metric volume measure is given by

\[
d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}},
\]
In these “geodesic normal” coordinates the metric volume measure is given by

\[
d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}},
\]

where \(r \) is the \textit{Ricci tensor}\n
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \(r \) is the \textit{Ricci tensor} \(r_{jk} = \mathcal{R}^i_{jk} \).
In these “geodesic normal” coordinates the metric volume measure is given by

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the Ricci tensor $r_{jk} = \mathcal{R}^i_{jk}$.

The Ricci curvature
In these “geodesic normal” coordinates the metric volume measure is given by

$$d\mu_g = \left[1 - \frac{1}{6} \ r_{jk} \ x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}},$$

where \(r \) is the Ricci tensor \(r_{jk} = R^i_{\ jik} \).

The Ricci curvature is by definition the function on the unit tangent bundle
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \(r \) is the Ricci tensor \(r_{jk} = \mathcal{R}_i{}^{jk} \).

The Ricci curvature is by definition the function on the unit tangent bundle

\[STM = \{ v \in TM \mid g(v, v) = 1 \} \]
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \(r \) is the Ricci tensor \(r_{jk} = R^i_{jik} \).

The Ricci curvature is by definition the function on the unit tangent bundle

\[STM = \{ v \in TM \mid g(v, v) = 1 \} \]

given by

\[v \mapsto r(v, v). \]
Definition. A Riemannian metric g is said to be **Einstein** if it has **constant** Ricci curvature.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric g is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...
Definition. A Riemannian metric g is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.

Has same sign as the scalar curvature

$$s = r^j_j = \mathcal{R}^{ij}ij.$$
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.

Has same sign as the scalar curvature

$$s = r^j_j = \mathcal{R}^{ij}{}_{ij}.$$
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.
Definition. A Riemannian metric g is said to be **Einstein** if it has **constant Ricci curvature** — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

$n = 2, 3$: Einstein \iff constant sectional
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

$n = 2, 3$: Einstein \iff constant sectional

$n \geq 4$: Einstein \iff constant sectional
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:
same number of equations as unknowns.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:
same number of equations as unknowns.

g_{jk}: $\frac{n(n+1)}{2}$ components.

r_{jk}: $\frac{n(n+1)}{2}$ components.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:
same number of equations as unknowns.

g_{jk}: $\frac{n(n+1)}{2}$ components.

r_{jk}: $\frac{n(n+1)}{2}$ components.

$\mathcal{R}_{j k l m}$: $\frac{n^2(n^2-1)}{12}$ components.
Definition. A Riemannian metric g is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.

$$\Delta x^j = 0 \implies r_{jk} = \frac{1}{2} \Delta g_{jk} + \text{lots}.$$
Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?
Question (Yamabe). *Does every smooth compact simply-connected n-manifold admit an Einstein metric?*

What we know:
Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

What we know:

- When $n = 2$: Yes! (Riemann)
Question (Yamabe). *Does every smooth compact simply-connected n-manifold admit an Einstein metric?*

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: \iff Poincaré conjecture.
Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
Question (Yamabe). *Does every smooth compact simply-connected n-manifold admit an Einstein metric?*

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: \iff Poincaré conjecture. Hamilton, Perelman, . . . Yes!
- When $n = 4$: No! (Hitchin)
Question (Yamabe). *Does every smooth compact simply-connected \(n \)-manifold admit an Einstein metric?*

What we know:

- When \(n = 2 \): Yes! (Riemann)
- When \(n = 3 \): \(\iff\) Poincaré conjecture. Hamilton, Perelman, . . . Yes!
- When \(n = 4 \): No! (Hitchin)
- When \(n = 5 \): Yes?? (Boyer-Galicki-Kollár)
Question (Yamabe). *Does every smooth compact simply-connected n-manifold admit an Einstein metric?*

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When $n = 4$: No! (Hitchin)
- When $n = 5$: Yes?? (Boyer-Galicki-Kollár)
- When $n \geq 6$, wide open. Maybe???
Dimension ≤ 3:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
Dimension \(\leq 3 \):

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\[\implies \text{If } M^3 \text{ carries Einstein metric, } \pi_2(M) = 0. \]
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\Rightarrow If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\Rightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum $\#$:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum #:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum $\#$:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum $\#$:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum $\#$:
Dimension \(\leq 3 \):

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\(\implies \) If \(M^3 \) carries Einstein metric, \(\pi_2(M) = 0 \).

\(\implies \) Existence obstructed for connect sums \(M^3 \# N^3 \).

Connected sum \#:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum #:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”
Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
\implies Existence obstructed for connect sums $M^3 \# N^3$.
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.

First step in geometrization:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.

First step in geometrization:

Prime Decomposition.
Dimension ≥ 5:
Dimension ≥ 5:

There are many known Einstein metrics on S^n, $n \geq 5$ which do not have constant curvature.
Dimension ≥ 5:

There are many known Einstein metrics on S^n, $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)
Dimension ≥ 5:

There are many known Einstein metrics on S^n, $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(B"ohm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.
Dimension \(\geq 5 \):

There are many known Einstein metrics on \(S^n, n \geq 5 \) which do not have constant curvature.

The moduli space of Einstein metrics on \(S^2 \times S^3 \) has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of \(\lambda \rightarrow 0^+ \).

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Connected sums \((S^2 \times S^3) \# \cdots \# (S^2 \times S^3)\) admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected.
Dimension ≥ 5:

There are many known Einstein metrics on S^n, $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(B"ohm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Connected sums $(S^2 \times S^3)\# \cdots \#(S^2 \times S^3)$ admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected.

Similar results for most simply connected spin 5-manifolds. (Boyer, Galicki, Kollár, et al.)
Dimension 4:
Dimension 4:

Theorem (Berger). *Any* Einstein metric on 4-torus T^4 *is flat.*
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*

\implies Moduli space of Einstein metrics is connected.
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). *Any Einstein metric on K3 is Ricci-flat Kähler.*
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). *Any Einstein metric on $K3$ is Ricci-flat Kähler.*

(Terminology to be explained later!)
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). *Any Einstein metric on $K3$ is Ricci-flat Kähler.*
Dimension 4:

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on $K3$ is Ricci-flat Kähler.

\implies Moduli space of Einstein metrics is connected.
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus \(T^4 \) is flat.*

\[\implies \text{Moduli space of Einstein metrics is connected.} \]

Theorem (Hitchin). *Any Einstein metric on K3 is Ricci-flat Kähler.*

\[\implies \text{Moduli space of Einstein metrics is connected.} \]

(Kodaira, Yau, Siu, et al.)
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). *Any Einstein metric on $K3$ is Ricci-flat Kähler.*

\implies Moduli space of Einstein metrics is connected.

(Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). *There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ, up to scale and diffeos.*
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). *Any Einstein metric on $K3$ is Ricci-flat Kähler.*

\implies Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). *There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ, up to scale and diffeos.*

Theorem (L). *There is only one Einstein metric on compact complex-hyperbolic 4-manifold \mathcal{CH}_2/Γ, up to scale and diffeos.*
Four Dimensions is Exceptional
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension four to call this a geometrization.
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too common; have little to do with geometrization.
What’s so special about dimension 4?
What’s so special about dimension 4?

The Lie group $SO(4)$ is not simple
What’s so special about dimension 4?

The Lie group $SO(4)$ is not simple:

$$so(4) \cong so(3) \oplus so(3).$$
What’s so special about dimension 4?

The Lie group $SO(4)$ is not simple:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g),
What’s so special about dimension 4?

The Lie group $SO(4)$ is \textit{not simple}:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g), \implies

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$
What’s so special about dimension 4?

The Lie group $SO(4)$ is \textit{not simple}:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g), \Rightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1)-eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$
What’s so special about dimension 4?

The Lie group $SO(4)$ is not simple:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g), \implies

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^\pm are (± 1)-eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

Λ^+ self-dual 2-forms.
Λ^- anti-self-dual 2-forms.
Riemann curvature of g
\[\mathcal{R} : \Lambda^2 \to \Lambda^2 \]
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

splits into 4 irreducible pieces:
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

\[
\begin{array}{c|c|c}
\Lambda^+ & \Lambda^{+-} & \Lambda^{-*} \\
\hline
W_+ + \frac{s}{12} & \hat{r} & \\
\hline
\hat{r} & W_- + \frac{s}{12} & \\
\end{array}
\]
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

splits into 4 irreducible pieces:

<table>
<thead>
<tr>
<th></th>
<th>Λ^+</th>
<th>Λ^+*</th>
<th>Λ^-</th>
<th>Λ^-*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ^+</td>
<td>$W_+ + \frac{s}{12}$</td>
<td>\hat{r}</td>
<td>\hat{r}</td>
<td>$W_- + \frac{s}{12}$</td>
</tr>
</tbody>
</table>

where

$s = \text{scalar curvature}$

$\hat{r} = \text{trace-free Ricci curvature}$

$W_+ = \text{self-dual Weyl curvature}$

$W_- = \text{anti-self-dual Weyl curvature}$
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

<table>
<thead>
<tr>
<th>Λ^+</th>
<th>$W_+ + \frac{s}{12}$</th>
<th>\check{r}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ^-</td>
<td>\check{r}</td>
<td>$W_- + \frac{s}{12}$</td>
</tr>
</tbody>
</table>

where

$s = \text{scalar curvature}$

$\check{r} = \text{trace-free Ricci curvature}$

$W_+ = \text{self-dual Weyl curvature} \hspace{1cm} (\text{conformally invariant})$

$W_- = \text{anti-self-dual Weyl curvature}$
Thus \((M^4, g)\) Einstein \iff \(\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2\) commutes with

\(\star : \Lambda^2 \rightarrow \Lambda^2\):

\[
\mathcal{R} = \begin{pmatrix}
W_+ + \frac{s}{12} & \dot{r} \\
\dot{r} & W_- + \frac{s}{12}
\end{pmatrix}.
\]
Thus (M^4, g) Einstein \iff

$$\mathcal{R}: \Lambda^2 \rightarrow \Lambda^2$$

commutes with

$$\star: \Lambda^2 \rightarrow \Lambda^2$$

such that

$$\mathcal{R} = \begin{pmatrix}
W_+ + \frac{s}{12} & 0 \\
0 & W_- + \frac{s}{12}
\end{pmatrix}. $$
Thus (M^4, g) Einstein \iff

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

commutes with

$$\star : \Lambda^2 \rightarrow \Lambda^2 :$$

$$\mathcal{R} = \begin{pmatrix}
W_+ + \frac{s}{12} & \mathring{r} \\
\mathring{r} & W_- + \frac{s}{12}
\end{pmatrix}.$$
Thus \((M^4, g)\) Einstein \iff
\[
\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2
\]
commutes with
\[
\star : \Lambda^2 \rightarrow \Lambda^2 :
\]

\[
\mathcal{R} = \begin{pmatrix}
W_+ + \frac{s}{12} & 0 \\
0 & W_- + \frac{s}{12}
\end{pmatrix}.
\]
Corollary. A Riemannian 4-manifold \((M, g)\) is Einstein if and only if sectional curvatures are equal for any pair of perpendicular 2-planes.
Corollary. A Riemannian 4-manifold \((M, g)\) is Einstein \(\iff\) sectional curvatures are equal for any pair of perpendicular 2-planes.
Corollary. A Riemannian 4-manifold \((M, g)\) is Einstein \(\iff\) sectional curvatures are equal for any pair of perpendicular 2-planes.
Corollary. A Riemannian 4-manifold \((M, g)\) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.

\[K(P) = K(P^\perp) \]
\((M, g)\) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

\[
\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + \ldots \right) d\mu
\]
(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$
\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 \right) d\mu
$$
(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 \right) d\mu$$
\((M, g)\) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

\[
\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\tilde{\nabla}|^2}{2} \right) d\mu
\]
\((M, g)\) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

\[
\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{\hat{r}^2}{2} \right) d\mu
\]

for Euler-characteristic \(\chi(M) = \sum_j (-1)^j b_j(M)\).
4-dimensional Hirzebruch signature formula

$$\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W^+|^2 \right) d\mu$$
4-dimensional Hirzebruch signature formula

$$\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu$$
4-dimensional Hirzebruch signature formula

\[\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu \]

for signature \(\tau(M) = b_+(M) - b_-(M) \).
Here $\tau(M) = b_+(M) - b_-(M)$ defined in terms of intersection pairing
Here $\tau(M) = b_+(M) - b_-(M)$ defined in terms of intersection pairing

$$H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \rightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \mapsto \int_M \varphi \wedge \psi$$
Here $\tau(M) = b_+(M) - b_-(M)$ defined in terms of intersection pairing

$$H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \rightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \mapsto \int_M \varphi \wedge \psi$$

Diagonalize:
Here $\tau(M) = b_+(M) - b_-(M)$ defined in terms of intersection pairing

$$H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \rightarrow \mathbb{R}$$

$$\left([\varphi], [\psi] \right) \mapsto \int_M \varphi \wedge \psi$$

Diagonalize:

$$\begin{bmatrix}
+1 \\
\vdots \\
+1 \\
-1 \\
\vdots \\
-1
\end{bmatrix}.$$
Here $\tau(M) = b_+(M) - b_-(M)$ defined in terms of intersection pairing

$$H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \rightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \mapsto \int_M \varphi \wedge \psi$$

Diagonalize:

$$
\begin{bmatrix}
+1 \\
\vdots \\
+1
\end{bmatrix}
\begin{cases}
b_+(M) \\
-b_-(M)
\end{cases}
.$$
For \((M^4, g)\) compact oriented Riemannian,

Euler characteristic

\[
\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{\|\mathring{r}\|^2}{2} \right) d\mu
\]

Signature

\[
\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu
\]
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

• they have the same Euler characteristic χ;
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ;
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.

$w_2 = 0 \quad w_2 \neq 0$
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.

\[w_2 = 0 \quad \text{or} \quad w_2 \neq 0 \]

Warning: “Exotic differentiable structures!”
Theorem (Freedman/Donaldson). *Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if*

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.

\[
w_2 = 0 \quad \quad \quad w_2 \neq 0
\]

Warning: “Exotic differentiable structures!”

No diffeomorphism classification currently known!
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic \(\chi \);
- they have the same signature \(\tau \); and
- both are spin, or both are non-spin.

\[w_2 = 0 \quad \text{or} \quad w_2 \neq 0 \]

Warning: “Exotic differentiable structures!”

No diffeomorphism classification currently known!

Typically, one homeotype \(\leftrightarrow \infty \) many diffeotypes.
Theorem (Freedman/Donaldson). *Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if*

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j \mathbb{CP}^2 \# k \overline{\mathbb{CP}^2} = \mathbb{CP}^2 \# \cdots \# \mathbb{CP}^2 \# \overline{\mathbb{CP}^2} \# \cdots \# \overline{\mathbb{CP}^2}$$
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{C}P^2 \# k\overline{\mathbb{C}P^2} = \underbrace{\mathbb{C}P^2 \# \cdots \# \mathbb{C}P^2}_j \# \underbrace{\overline{\mathbb{C}P^2} \# \cdots \# \overline{\mathbb{C}P^2}}_k$$

where $j = b_+(M)$ and $k = b_-(M)$.
Convention:

$\overline{\mathbb{CP}}_2 = \text{reverse oriented } \mathbb{CP}_2.$
Convention:

\[\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \]

Connected sum \#:
Convention:

\(\overline{\mathbb{CP}^2} = \) reverse oriented \(\mathbb{CP}^2 \).

Connected sum \#:

![Diagram of connected sum]

127
Convention:

\(\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \)

Connected sum \#:
Convention:

\(\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2.\)

Connected sum \#:
Convention:

$\text{CP}_2 = \text{reverse oriented CP}_2$.

Connected sum $\#$:
Convention:

$\overline{\mathbb{CP}}_2 = \text{reverse oriented } \mathbb{CP}_2$.

Connected sum $\#$:

![Connected sum diagram](image-url)
Convention:

$$\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2.$$
Convention:

\(\overline{\mathbb{CP}}_2 = \text{reverse oriented } \mathbb{CP}_2. \)

Connected sum \#:

\[
\begin{array}{c}
\text{Diagram}
\end{array}
\]
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2} = \mathbb{CP}^2 \# \cdots \# \mathbb{CP}^2 \# \overline{\mathbb{CP}^2} \# \cdots \# \overline{\mathbb{CP}^2}$$

where $j = b_+(M)$ and $k = b_-(M)$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{C}P_2 \# k\overline{\mathbb{C}P}_2$.
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}^2 \# k\overline{\mathbb{CP}}^2$.

What about spin case?
Corollary. *Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{C}P^2 \# k\overline{\mathbb{C}P^2}$.\n
What about spin case?\n
Need new building block!*
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}^2 \# k\overline{\mathbb{CP}}^2$.

What about spin case?

Need new building block!

$K3$ manifold...
$K3$ = Kummer-Kähler-Kodaira manifold.
$K3 = \text{Kummer-Kähler-Kodaira manifold}.$

Simply connected complex surface with $c_1 = 0.$
\(K3 = \text{Kummer-Kähler-Kodaira manifold.} \)

Simply connected complex surface with \(c_1 = 0 \).

Only one deformation type.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Simply connected complex surface with $c_1 = 0$.

Only one diffeomorphism type.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Simply connected complex surface with $c_1 = 0$.

Only one diffeomorphism type.

Spin, $\chi = 24$, $\tau = -16$.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2:
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4 / \mathbb{Z}_2:

![Diagram of Kummer construction](image_url)
\[K3 = \text{Kummer-Kähler-Kodaira manifold}. \]

Kummer construction:

Begin with \(T^4/\mathbb{Z}_2 \):

\[\text{Diagram of } T^4/\mathbb{Z}_2 \]
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2:

![Diagram of T^4/\mathbb{Z}_2]

1. Consider T^4/\mathbb{Z}_2 as a quotient of the 4-torus T^4 by the action of the 2-torus \mathbb{Z}_2.
2. The quotient space T^4/\mathbb{Z}_2 is obtained by identifying antipodal points on T^4.
3. The resulting space is a K3 surface, which is a complex surface with trivial canonical bundle and vanishing first Betti number.

The Kummer construction involves taking a certain quotient of a 4-torus and ensuring that the resulting space satisfies the properties of a K3 surface.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2:

![Diagram of T^4/\mathbb{Z}_2]

T^2
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4 / \mathbb{Z}_2:

![Diagram of T^4/Z_2]
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4 / \mathbb{Z}_2:

\[
\begin{array}{c}
\includegraphics[width=0.4\textwidth]{kummerconstruction.png}
\end{array}
\]
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with $\mathbb{T}^4 / \mathbb{Z}_2$:

![Diagram of T^4/\mathbb{Z}_2 construction]
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2:

Replace $\mathbb{R}^4/\mathbb{Z}_2$ neighborhood of each singular point with copy of T^*S^2.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2:

Replace $\mathbb{R}^4/\mathbb{Z}_2$ neighborhood of each singular point with copy of T^*S^2.

Result is a $K3$ surface.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2:
\textbf{K3} = Kummer-Kähler-Kodaira manifold.

Kummer construction:

Begin with T^4 / \mathbb{Z}_2: Singular quartic in \mathbb{CP}_3.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2: Singular quartic in \mathbb{CP}_3.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2: Singular quartic in \mathbb{CP}_3.

$T^4 = \text{Picard torus of curve of genus 2.}$
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2: Singular quartic in \mathbb{CP}^3.

Remove singularities by deforming equation.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2: Singular quartic in $\mathbb{C}P_3$.

Remove singularities by deforming equation.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2: Singular quartic in \mathbb{CP}_3.

Remove singularities by deforming equation.
\(K3 = \text{Kummer-Kähler-Kodaira manifold.}\)

Kummer construction:

Begin with \(T^4/\mathbb{Z}_2: \) \(\text{Singular quartic in } \mathbb{CP}_3.\)

Remove singularities by deforming equation.
$K3$ = Kummer-Kähler-Kodaira manifold.

Kummer construction:

Begin with T^4/\mathbb{Z}_2: Singular quartic in \mathbb{CP}_3.

Remove singularities by deforming equation.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with $\mathbf{T}^4/\mathbb{Z}_2$: Singular quartic in \mathbb{CP}_3.

Generic quartic is then a $K3$ surface.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Kummer construction:

Begin with T^4/\mathbb{Z}_2: Singular quartic in \mathbb{CP}_3.

Generic quartic is then a $K3$ surface. Example:

$$0 = x^4 + y^4 + z^4 + w^4$$
\[K3 = \text{Kummer-Kähler-Kodaira manifold.} \]

Kummer construction:

Begin with \(T^4/\mathbb{Z}_2 \): Singular quartic in \(\mathbb{CP}_3 \).

Generic quartic is then a \(K3 \) surface. Example:

\[
0 = (x^2 + y^2 + z^2 - w^2)^2 - 8[(1 - z^2)^2 - 2x^2][(1 + z^2)^2 - 2y^2]
\]
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}^2 \# k\mathbb{CP}^2$.
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (un-orientedly) homeomorphic to either S^4 or a connected sum $jK3 \# k(S^2 \times S^2)$.
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (un-orientedly) homeomorphic to either S^4 or a connected sum $jK3\# k(S^2 \times S^2)$.

Equivalent to asserting that such manifolds satisfy

$$b_2 \geq \frac{11}{8} |\tau|.$$
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}^2\#k\overline{\mathbb{CP}^2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (un-orientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2 \times S^2)$.

Equivalent to asserting that such manifolds satisfy

$$b_2 \geq \frac{11}{8}|\tau|.$$

Certainly true of all examples in this lecture!
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, J) is a compact complex surface,
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, J) is a compact complex surface, when does M^4
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g?
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J)?
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry is rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J)?

Even Narrower Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J) with Einstein constant $\lambda \geq 0$?
Theorem (L ‘09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J.
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g.
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$.
Theorem (L’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \cong \begin{cases} \mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, \\ \mathbb{S}^2 \times \mathbb{S}^2, \\ K^3, \\ K^3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, \\ T^4/\mathbb{Z}_3, \\ T^4/\mathbb{Z}_4, \\ T^4/ (\mathbb{Z}_2 \oplus \mathbb{Z}_2), \\ T^4/ (\mathbb{Z}_3 \oplus \mathbb{Z}_3), \\ or \\ T^4/ (\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\cong} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ \mathbb{T}^4, & \mathbb{T}^4 / \mathbb{Z}_2, \mathbb{T}^4 / \mathbb{Z}_3, \mathbb{T}^4 / \mathbb{Z}_4, \mathbb{T}^4 / (\mathbb{Z}_2 \oplus \mathbb{Z}_2), \mathbb{T}^4 / (\mathbb{Z}_3 \oplus \mathbb{Z}_3), \mathbb{T}^4 / (\mathbb{Z}_2 \oplus \mathbb{Z}_4) & \end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{CP}^2 \# k \mathbb{CP}^2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & \end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M^{\text{diff}} \cong \begin{cases}
\mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2,
\end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases}
\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, & \\
T^4, & \\
\end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{CP}_2 \# k \mathbb{CP}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases}
\mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M^{\text{diff}} \cong \begin{cases}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, & \\
K3, & \\
K3/\mathbb{Z}_2, & \\
T^4, & \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, & \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), & \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}$$

Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surface, Hyper-elliptic surfaces.
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M^{\text{diff}} \cong \begin{cases}
\mathbb{CP}_2 \# k\overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}$$

Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surface, Hyper-elliptic surfaces.

Similarly when M symplectic instead of complex.
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M^{\text{diff}} \cong \begin{cases}
\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}$$
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$

Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M^{\text{diff}} \cong \begin{cases} \mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$

No others: Hitchin-Thorpe, Seiberg-Witten, …
\(\mathbb{CP}_2 \# k\mathbb{CP}_2, \quad 0 \leq k \leq 8,\)
\(S^2 \times S^2,\)
\(K3,\)
\(K3/\mathbb{Z}_2,\)
\(T^4,\)
\(T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,\)
\(T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \) or \(T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).\)
Definitive list . . .

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]
$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8,$

$S^2 \times S^2,$

$K3,$

$K3/\mathbb{Z}_2,$

$T^4,$

$T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$

$T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3),$ or $T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \mathbb{CP}_2, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3 / \mathbb{Z}_2, \]
\[T^4, \]
\[T^4 / \mathbb{Z}_2, T^4 / \mathbb{Z}_3, T^4 / \mathbb{Z}_4, T^4 / \mathbb{Z}_6, \]
\[T^4 / (\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4 / (\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4 / (\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:
But we understand some cases better than others!

\[\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.
Kähler metrics:
Kähler metrics:

Original definition:
Kähler metrics:

Original definition:

\(M \) can be made into a complex manifold,
Kähler metrics:

Original definition:

M can be made into a complex manifold, in such a manner that, locally,
Kähler metrics:

Original definition:

M can be made into a complex manifold, in such a manner that, locally,

$$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$
Kähler metrics:

Original definition:

M can be made into a complex manifold, in such a manner that, locally,

$$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

for a locally defined function f.
Kähler metrics:

Original definition:

M can be made into a complex manifold, in such a manner that, locally,

\[
g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]
\]

for a locally defined function f.

Modern definition:
Kähler metrics:

Original definition:

M can be made into a complex manifold, in such a manner that, locally,

$$g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

for a locally defined function f.

Modern definition:

(M^{2m}, g) has holonomy $\subset U(m)$.
Kähler metrics:

Original definition:

\(M \) can be made into a complex manifold, in such a manner that, locally,

\[
 g = \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]
\]

for a locally defined function \(f \).

Modern definition:

\((M^{2m}, g)\) has holonomy \(\subset \text{U}(m) \).

Ricci-flat Kähler:

\((\widetilde{M}^{2m}, g)\) has holonomy \(\subset \text{SU}(m) \).
Theorem (Yau).
Theorem (Yau). A compact complex manifold
Theorem (Yau). A compact complex manifold admits *Ricci-flat* Kähler metrics,
Theorem (Yau). A compact complex manifold admits Ricci-flat Kähler metrics, compatible with the given complex structure,
Theorem (Yau). A compact complex manifold admits \textit{Ricci-flat} Kähler metrics, compatible with the given complex structure, if and only if
Theorem (Yau). A compact complex manifold admits Ricci-flat Kähler metrics, compatible with the given complex structure, if and only if

- it admits Kähler metrics, and
Theorem (Yau). A compact complex manifold admits Ricci-flat Kähler metrics, compatible with the given complex structure, if and only if

• it admits Kähler metrics, and
• its first Chern class $c_1 \in H^2(M, \mathbb{R})$ is zero.
Theorem (Yau). A compact complex manifold admits Ricci-flat Kähler metrics, compatible with the given complex structure, if and only if

- it admits Kähler metrics, and
- its first Chern class $c_1 \in H^2(M, \mathbb{R})$ is zero.

“Calabi-Yau metrics.”
Corollary. $\exists \lambda = 0$ \textit{Einstein metrics on }$K3$.
Corollary. \(\exists \lambda = 0 \) Einstein metrics on \(K3 \).
Corollary. \(\exists \lambda = 0 \) Einstein metrics on \(K3 \).
Corollary. \(\exists \lambda = 0 \) Einstein metrics on \(K3 \).
Corollary. $\exists \lambda = 0$ Einstein metrics on $K3$.

Indeed, \exists sequences of these \longrightarrow flat orbifold T^4/\mathbb{Z}_2.
Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W + |^2 - \frac{|\hat{r}|^2}{2} \right) d\mu_g$$
Hitchin-Thorpe Inequality:

\[(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W+|^2 - \frac{\|\hat{r}\|^2}{2} \right) d\mu_g \]

Einstein \(\Rightarrow\) = \(\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W+|^2 \right) d\mu_g \)
Hitchin-Thorpe Inequality:

\[(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\dot{r}|^2}{2} \right) d\mu_g\]

Einstein \(\Rightarrow\)

\[
\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g
\]

Theorem (Hitchin-Thorpe Inequality). *If smooth compact oriented \(M^4\) admits Einstein \(g\), then

\[(2\chi + 3\tau)(M) \geq 0,\]

with equality only if \((M, g)\) finitely covered by flat \(T^4\) or Calabi-Yau \(K3\).
Theorem (L ’09). Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

\[M^\text{diff} \approx \begin{cases}
\mathbb{CP}^2 \# k\mathbb{CP}^2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases} \]
But we understand some cases better than others!

\[\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.
But we understand some cases better than others!

\[
\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \)
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) = \{ \text{Einstein } g \}/(\text{Diffeos} \times \mathbb{R}^+) \)
But we understand some cases better than others!

\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) completely understood.
But we understand some cases better than others!

\[\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) connected!
\[\mathbb{CP}_2 \# k\overline{\mathbb{CP}}_2, \quad 0 \leq k \leq 8, \quad S^2 \times S^2, \]

\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) connected!
Above the line:

\[\mathbb{CP}_2 \#^k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M) \) connected!
Above the line:

Know an Einstein metric on each manifold.

\[\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8, \]
\[S^2 \times S^2, \]
\[K3, \]
\[K3/\mathbb{Z}_2, \]
\[T^4, \]
\[T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \]
\[T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space \(\mathcal{E}(M)\) connected!
Above the line:

Moduli space $\mathcal{E}(M) \neq \emptyset$.

$$\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8,$$
$$S^2 \times S^2,$$
$$K3,$$
$$K3/\mathbb{Z}_2,$$
$$T^4,$$
$$T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6,$$
$$T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).$$

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathcal{E}(M)$ connected!
Above the line:

Moduli space $\mathcal{E}(M) \neq \emptyset$. But is it connected?

\[
\begin{align*}
\mathbb{CP}^2 & \# k\overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), & \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{align*}
\]

Below the line:

Every Einstein metric is Ricci-flat Kähler.

Moduli space $\mathcal{E}(M)$ connected!
In the remaining cases,
In the remaining cases, all known Einstein metrics are conformally Kähler:
In the remaining cases, all known Einstein metrics are \textit{conformally} Kähler:

\[g = uh \]
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]

for some Kähler metric \(h \) and a positive function \(u \).
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]

for some Kähler metric \(h \) and a positive function \(u \).

Derdziński ’83: breakthrough paper on this subject.
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]

for some Kähler metric \(h \) and a positive function \(u \).

These live on Del Pezzo surfaces,
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]

for some Kähler metric \(h \) and a positive function \(u \).

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with \(b_+ = 1 \).
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]

for some Kähler metric \(h \) and a positive function \(u \).

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with \(b_+ = 1 \).

As Riemannian metrics, they satisfy a curious curvature condition.
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]

for some Kähler metric \(h \) and a positive function \(u \).

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with \(b_+ = 1 \).

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if \(\omega \) is a non-trivial self-dual harmonic 2-form,
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]

for some Kähler metric \(h \) and a positive function \(u \).

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with \(b^+_+ = 1 \).

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if \(\omega \) is a non-trivial self-dual harmonic 2-form, they satisfy

\[W_+ (\omega, \omega) > 0 \]
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]

for some Kähler metric \(h \) and a positive function \(u \).

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with \(b_+ = 1 \).

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if \(\omega \) is a non-trivial self-dual harmonic 2-form, they satisfy

\[W_+(\omega,\omega) > 0 \]

everywhere on \(M \).
In the remaining cases, all known Einstein metrics are conformally Kähler:

\[g = uh \]

for some Kähler metric \(h \) and a positive function \(u \).

These live on Del Pezzo surfaces, which are, in particular, oriented 4-manifolds with \(b_+ = 1 \).

As Riemannian metrics, they satisfy a curious curvature condition. Namely, if \(\omega \) is a non-trivial self-dual harmonic 2-form, they satisfy

\[W_+(\omega, \omega) > 0 \]

everywhere on \(M \). This scalar condition is a conformally invariant analog of the more familiar condition \(s > 0 \).
Theorem (L’14).

Let \((M, g)\) be a smooth compact Einstein 4-manifold with \(b^+ = 1\). If \(h\) satisfies everywhere on \(M\), then \(h\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.
Theorem (L ’14). Let \((M, g)\) be a smooth compact 4-manifold with \(b^+ = 1\). If \(h\) satisfies everywhere on \(M\), then \(h\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.
Theorem (L ’14). Let \((M, g)\) be a smooth compact Einstein 4-manifold. If \(h\) satisfies everywhere on \(M\), then \(h\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.
Theorem (L ’14). Let \((M, g)\) be a smooth compact Einstein 4-manifold with \(b_+ = 1\).
Theorem (L ’14). Let \((M, g)\) be a smooth compact Einstein 4-manifold with \(b_+ = 1\). If \(g\) satisfies

\[W_+(\omega, \omega) > 0 \]

then \(h\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.
Theorem (L ’14). Let \((M, g)\) be a smooth compact Einstein 4-manifold with \(b_+ = 1\). If \(g\) satisfies
\[W_+(\omega, \omega) > 0 \]
everywhere on \(M\),
Theorem (L ’14). Let \((M, g)\) be a smooth compact Einstein 4-manifold with \(b_+ = 1\). If \(g\) satisfies
\[
W_+(\omega, \omega) > 0
\]
everywhere on \(M\), then \(g\) is conformally Kähler
Theorem (L ’14). Let (M, g) be a smooth compact Einstein 4-manifold with $b_+ = 1$. If g satisfies

$$W_+(\omega,\omega) > 0$$

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$.
Theorem (L ’14). Let (M, g) be a smooth compact Einstein 4-manifold with $b_+ = 1$. If g satisfies

\[W_+ (\omega, \omega) > 0 \]

everywhere on M, then g is conformally Kähler and has Einstein constant $\lambda > 0$. Moreover, M is diffeomorphic to a Del Pezzo surface.
Theorem (L ’14). Let \((M, g) \) be a smooth compact Einstein 4-manifold with \(b_+ = 1 \). If \(g \) satisfies
\[
W_+(\omega, \omega) > 0
\]
everywhere on \(M \), then \(g \) is conformally Kähler and has Einstein constant \(\lambda > 0 \). Moreover, \(M \) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.
Theorem (L ’14). Let \((M, g)\) be a smooth compact Einstein 4-manifold with \(b_+ = 1\). If \(g\) satisfies

\[W_+(\omega, \omega) > 0 \]

everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties.
Theorem (L ’14). Let \((M, g)\) be a smooth compact Einstein 4-manifold with \(b_+ = 1\). If \(g\) satisfies

\[W_+(\omega, \omega) > 0 \]

everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are
Theorem (L ’14). Let \((M, g)\) be a smooth compact Einstein 4-manifold with \(b_+ = 1\). If \(g\) satisfies

\[
W_+(\omega, \omega) > 0
\]

everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with \(\lambda > 0\);
Theorem (L ’14). Let \((M, g)\) be a smooth compact Einstein 4-manifold with \(b_+ = 1\). If \(g\) satisfies
\[
W_+(\omega, \omega) > 0
\]
everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with \(\lambda > 0\);
- the Page metric on \(\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2\); and
Theorem \((L \ ’14) \). Let \((M, g)\) be a smooth compact Einstein 4-manifold with \(b_+ = 1\). If \(g\) satisfies
\[
W_+(\omega, \omega) > 0
\]
everywhere on \(M\), then \(g\) is conformally Kähler and has Einstein constant \(\lambda > 0\). Moreover, \(M\) is diffeomorphic to a Del Pezzo surface. Conversely, every Del Pezzo surface admits Einstein metrics with these properties.

In fact, all known Einstein metrics on Del Pezzo surfaces have these properties. They are

- the Kähler-Einstein metrics with \(\lambda > 0\);
- the Page metric on \(\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2\); and
- the CLW metric on \(\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2\).
Del Pezzo surfaces:
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}^2\) at \(k\) distinct points, in general position,
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\)”.

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position,
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[\omega]$.
Shorthand: “$c_1 > 0$.”

Blow-up of \mathbb{CP}^2 at k distinct points, $0 \leq k \leq 8$,
in general position, or $\mathbb{CP}^1 \times \mathbb{CP}^1$.

Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0.\)”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).
Blowing up:
Blowing up:

If N is a complex surface,
Blowing up:

If N is a complex surface, may replace $p \in N$
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}_2}$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}_2}$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.

![Diagram of blowing up](image)
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}_2}$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.
Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}_2}$$

in which added \mathbb{CP}_1 has normal bundle $\mathcal{O}(-1)$.
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[\omega]$. Shorthand: “$c_1 > 0.$”

Blow-up of \mathbb{CP}_2 at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{C}P_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{C}P_1 \times \mathbb{C}P_1\).

No 3 on a line,
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[\omega]$.
Shorthand: “$c_1 > 0$.”

Blow-up of \mathbb{CP}^2 at k distinct points, $0 \leq k \leq 8$, in general position, or $\mathbb{CP}^1 \times \mathbb{CP}^1$.

No 3 on a line, no 6 on conic,
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

No 3 on a line, no 6 on conic, no 8 on nodal cubic.
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\)”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

Theorem. *Each Del Pezzo* \((M^4, J)\) *admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms and rescaling.*
Del Pezzo surfaces:

(M^4, J) for which c_1 is a Kähler class $[\omega]$.
Shorthand: “$c_1 > 0$.”

Blow-up of \mathbb{CP}^2 at k distinct points, $0 \leq k \leq 8$,
in general position, or $\mathbb{CP}_1 \times \mathbb{CP}_1$.

Theorem. Each Del Pezzo (M^4, J) admits a compatible conformally Kähler Einstein metric, and this metric is unique up to automorphisms and rescaling.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber…

Uniqueness: Bando-Mabuchi, L ’12…
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

For each topological type:
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).
Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

For each topological type:

Moduli space of such \((M^4, J)\) is connected.
Del Pezzo surfaces:

\((M^4, J)\) for which \(c_1\) is a Kähler class \([\omega]\).

Shorthand: “\(c_1 > 0\).”

Blow-up of \(\mathbb{CP}_2\) at \(k\) distinct points, \(0 \leq k \leq 8\), in general position, or \(\mathbb{CP}_1 \times \mathbb{CP}_1\).

For each topological type:

Moduli space of such \((M^4, J)\) is connected.

Just a point if \(b_2(M) \leq 5\).
For M^4 a Del Pezzo surface, set
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } g \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } g \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}_\omega(M) = \{\text{Einstein } g \text{ with } W^+(\omega, \omega) > 0\}/\sim$$
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } g \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}^+_{\omega}(M) = \{\text{Einstein } g \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Theorem (L ’14).
For M^4 a Del Pezzo surface, set

$$E(M) = \{\text{Einstein } g \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$E^+_\omega(M) = \{\text{Einstein } g \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Theorem (L ’14). $E^+_\omega(M)$ is connected.
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } g \text{ on } M\}/(\text{Diffeos} \times \mathbb{R}^+)$$

$$\mathcal{E}_\omega^+(M) = \{\text{Einstein } g \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Theorem (L ’14). $\mathcal{E}_\omega^+(M)$ is connected. Moreover, if $b_2(M) \leq 5$,

For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } g \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}^+\omega(M) = \{\text{Einstein } g \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Theorem (L ’14). $\mathcal{E}^+\omega(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}^+\omega(M) = \{\text{point}\}.$
For M^4 a Del Pezzo surface, set

$$\mathcal{E}(M) = \{\text{Einstein } g \text{ on } M\}/(\text{Diffeos } \times \mathbb{R}^+)$$

$$\mathcal{E}^+_\omega(M) = \{\text{Einstein } g \text{ with } W^+(\omega, \omega) > 0\}/\sim$$

Theorem (L ’14). $\mathcal{E}^+_\omega(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}^+_\omega(M) = \{\text{point}\}$.

Corollary.
For M^4 a Del Pezzo surface, set

$\mathcal{E}(M) = \{\text{Einstein } g \text{ on } M\}/(\text{Diffeos} \times \mathbb{R}^+)$

$\mathcal{E}_\omega^+(M) = \{\text{Einstein } g \text{ with } W^+(\omega, \omega) > 0\}/\sim$

Theorem (L '14). $\mathcal{E}_\omega^+(M)$ is connected. Moreover, if $b_2(M) \leq 5$, then $\mathcal{E}_\omega^+(M) = \{\text{point}\}$.

Corollary. $\mathcal{E}_\omega^+(M)$ is exactly one connected component of $\mathcal{E}(M)$.
Today’s talk has focused on Einstein 4-manifolds with $\lambda \geq 0$.
Today’s talk has focused on Einstein 4-manifolds with $\lambda \geq 0$.

But the real moral is that most Einstein 4-manifolds have $\lambda < 0$!
Today’s talk has focused on Einstein 4-manifolds with $\lambda \geq 0$.

But the real moral is that most Einstein 4-manifolds have $\lambda < 0$!

We have also learned a huge amount about this negative case in recent years.
Today’s talk has focused on Einstein 4-manifolds with $\lambda \geq 0$.

But the real moral is that most Einstein 4-manifolds have $\lambda < 0$!

We have also learned a huge amount about this negative case in recent years.

In this setting, Seiberg-Witten theory plays the starring role.
Today’s talk has focused on Einstein 4-manifolds with $\lambda \geq 0$.

But the real moral is that most Einstein 4-manifolds have $\lambda < 0$!

We have also learned a huge amount about this negative case in recent years.

In this setting, Seiberg-Witten theory plays the starring role.

But that would be the subject of an an entirely different colloquium!