Einstein Metrics

and

Global Conformal Geometry

II

Claude LeBrun SUNY Stony Brook **Definition.** The Yamabe invariant of the smooth compact n-manifold M is given by

$$\mathcal{Y}(\mathbf{M}) = \sup_{\gamma} \inf_{g \in \gamma} V^{(2-n)/n} \int_{\mathbf{M}} \mathbf{s}_g \ d\mu_g$$

 $\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$

Not every manifold admits metrics with s > 0! $\mathcal{Y}(M) > 0 \iff M$ admits g with s > 0.

 $\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$

 $\therefore \exists$ manifolds with $\mathcal{Y}(M) \leq 0$.

 $\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$

 $\therefore \exists$ manifolds with $\mathcal{Y}(M) \leq 0$.

Proofs not like 2-dimensional Gauss-Bonnet!

 $\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$

 $\therefore \exists$ manifolds with $\mathcal{Y}(M) \leq 0$.

Proofs not like 2-dimensional Gauss-Bonnet!

One obstruction: index of Dirac operator.

 $\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$

 $\therefore \exists$ manifolds with $\mathcal{Y}(M) \leq 0$.

Proofs not like 2-dimensional Gauss-Bonnet!

One obstruction: index of Dirac operator.

Theorem (Gromov-Lawson/Stolz). For simply connected M^n , $n \geq 5$, index of Dirac operator is only obstruction to s > 0.

$$\pi_1(SO(n)) = \mathbb{Z}_2 \text{ if } n \geq 3.$$

$$\pi_1(SO(n)) = \mathbb{Z}_2 \text{ if } n \geq 3.$$

Double (universal) cover called Spin(n).

$$\pi_1(SO(n)) = \mathbb{Z}_2 \text{ if } n \geq 3.$$

Double (universal) cover called Spin(n).

Examples.

$$\pi_1(SO(n)) = \mathbb{Z}_2 \text{ if } n \geq 3.$$

Double (universal) cover called Spin(n).

Examples.

$$Spin(3) \cong Sp(1) = S^3 \subset \mathbb{H}^{\times}$$
.

Spin representation: acts on \mathbb{C}^2 .

$$\pi_1(SO(n)) = \mathbb{Z}_2 \text{ if } n \geq 3.$$

Double (universal) cover called Spin(n).

Examples.

$$\operatorname{Spin}(3) \cong Sp(1) = S^3 \subset \mathbb{H}^{\times}$$
.

Spin representation: acts on \mathbb{C}^2 .

$$Spin(4) \cong Sp(1) \times Sp(1).$$

Spin representation: acts on $\mathbb{C}^2 \oplus \mathbb{C}^2$.

$$\pi_1(SO(n)) = \mathbb{Z}_2 \text{ if } n \geq 3.$$

Double (universal) cover called Spin(n).

Examples.

$$Spin(3) \cong Sp(1) = S^3 \subset \mathbb{H}^{\times}$$
.

Spin representation: acts on \mathbb{C}^2 .

$$Spin(4) \cong Sp(1) \times Sp(1).$$

Spin representation: acts on $\mathbb{C}^2 \oplus \mathbb{C}^2$.

$$Spin(5) \cong Sp(2).$$

Spin representation: acts on \mathbb{C}^4 .

$$\pi_1(SO(n)) = \mathbb{Z}_2 \text{ if } n \geq 3.$$

Double (universal) cover called Spin(n).

Examples.

$$Spin(3) \cong Sp(1) = S^3 \subset \mathbb{H}^{\times}$$
.

Spin representation: acts on \mathbb{C}^2 .

$$Spin(4) \cong Sp(1) \times Sp(1).$$

Spin representation: acts on $\mathbb{C}^2 \oplus \mathbb{C}^2$.

$$\mathrm{Spin}(5) \cong Sp(2).$$

Spin representation: acts on \mathbb{C}^4 .

$$Spin(6) \cong SU(4).$$

Spin representation: acts on $\mathbb{C}^4 \oplus \mathbb{C}^4$.

$$\pi_1(SO(n)) = \mathbb{Z}_2 \text{ if } n \geq 3.$$

Double (universal) cover called Spin(n).

Examples.

$$Spin(3) \cong Sp(1) = S^3 \subset \mathbb{H}^{\times}$$
.

Spin representation: acts on \mathbb{C}^2 .

$$Spin(4) \cong Sp(1) \times Sp(1).$$

Spin representation: acts on $\mathbb{C}^2 \oplus \mathbb{C}^2$.

$$\mathrm{Spin}(5) \cong Sp(2).$$

Spin representation: acts on \mathbb{C}^4 .

$$Spin(6) \cong SU(4).$$

Spin representation: acts on $\mathbb{C}^4 \oplus \mathbb{C}^4$.

$$\operatorname{Spin}(2m-1)$$
 acts on $\mathbb{C}^{2^{m-1}}$

$$\pi_1(SO(n)) = \mathbb{Z}_2 \text{ if } n \geq 3.$$

Double (universal) cover called Spin(n).

Examples.

$$Spin(3) \cong Sp(1) = S^3 \subset \mathbb{H}^{\times}$$
.

Spin representation: acts on \mathbb{C}^2 .

$$Spin(4) \cong Sp(1) \times Sp(1).$$

Spin representation: acts on $\mathbb{C}^2 \oplus \mathbb{C}^2$.

$$Spin(5) \cong Sp(2).$$

Spin representation: acts on \mathbb{C}^4 .

$$Spin(6) \cong SU(4).$$

Spin representation: acts on $\mathbb{C}^4 \oplus \mathbb{C}^4$.

$$\operatorname{Spin}(2m-1)$$
 acts on $\mathbb{C}^{2^{m-1}}$

$$\operatorname{Spin}(2m)$$
 acts on $\mathbb{C}^{2^m} = \mathbb{C}^{2^{m-1}} \oplus \mathbb{C}^{2^{m-1}}$

$$w_2(TM) \in H^2(M, \mathbb{Z}_2).$$

$$w_2(TM) \in H^2(M, \mathbb{Z}_2).$$

When this vanishes, M called spin manifold.

$$w_2(TM) \in H^2(M, \mathbb{Z}_2).$$

When this vanishes, M called spin manifold.

[Choice of double cover $\longleftrightarrow H^1(M, \mathbb{Z}_2)$.]

$$w_2(TM) \in H^2(M, \mathbb{Z}_2).$$

When this vanishes, M called spin manifold.

[Choice of double cover $\longleftrightarrow H^1(M, \mathbb{Z}_2)$.]

Can then define spin bundle

$$\mathbb{C}^{2^{[(n-1)/2]}} \to \mathbb{S}$$

$$\downarrow$$

$$M$$

$$w_2(TM) \in H^2(M, \mathbb{Z}_2).$$

When this vanishes, M called spin manifold.

[Choice of double cover $\longleftrightarrow H^1(M, \mathbb{Z}_2)$.]

Can then define spin bundle

$$\mathbb{C}^{2^{[(n-1)/2]}} \to \mathbb{S}$$

$$\downarrow$$

$$M$$

If
$$n=2m$$
,

$$\mathbb{S}^* \otimes \mathbb{S} = \bigoplus_{k} \Lambda_{\mathbb{C}}^k$$
$$\mathbb{S} = \mathbb{S}_+ \oplus \mathbb{S}_-$$

$$\Lambda^1_{\mathbb{C}} \subset \operatorname{Hom}(\mathbb{S}_+, \mathbb{S}_-)$$

$$\Lambda^1_{\mathbb{C}} \subset \operatorname{Hom}(\mathbb{S}_+, \mathbb{S}_-)$$

so get natural Clifford multiplication map

$$\bullet: \Lambda^1 \otimes \mathbb{S}_+ \to \mathbb{S}_-.$$

$$\Lambda^1_{\mathbb{C}} \subset \operatorname{Hom}(\mathbb{S}_+, \mathbb{S}_-)$$

so get natural Clifford multiplication map

$$\bullet: \Lambda^1 \otimes \mathbb{S}_+ \to \mathbb{S}_-.$$

Also have covariant derivative

$$\nabla : \Gamma(\mathbb{S}_+) \to \Gamma(\Lambda^1 \otimes \mathbb{S}_+)$$

$$\Lambda^1_{\mathbb{C}} \subset \operatorname{Hom}(\mathbb{S}_+, \mathbb{S}_-)$$

so get natural Clifford multiplication map

$$\bullet: \Lambda^1 \otimes \mathbb{S}_+ \to \mathbb{S}_-.$$

Also have covariant derivative

$$\nabla : \Gamma(\mathbb{S}_+) \to \Gamma(\Lambda^1 \otimes \mathbb{S}_+)$$

Compose to get Dirac operator D:

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic and

$$\operatorname{ind}(D) = \dim \ker(D) - \dim \ker(D^*)$$

is topological invariant, called $\hat{A}(M)$.

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic and

$$\operatorname{ind}(D) = \dim \ker(D) - \dim \ker(D^*)$$

is topological invariant, called $\hat{A}(M)$.

Computable in terms of Pontrjagin classes.

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic and

$$\operatorname{ind}(D) = \dim \ker(D) - \dim \ker(D^*)$$

is topological invariant, called $\hat{A}(M)$.

Computable in terms of Pontrjagin classes.

Only non-trivial when $n \equiv 0 \mod 4$.

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic and

$$\operatorname{ind}(D) = \dim \ker(D) - \dim \ker(D^*)$$

is topological invariant, called $\hat{A}(M)$.

Computable in terms of Pontrjagin classes.

Only non-trivial when $n \equiv 0 \mod 4$.

Weitzenböck formula:

$$D^*D = \nabla^*\nabla + \frac{s}{4}$$

$$D:\Gamma(\mathbb{S}_+)\to\Gamma(\mathbb{S}_-)$$

is elliptic and

$$\operatorname{ind}(D) = \dim \ker(D) - \dim \ker(D^*)$$

is topological invariant, called $\hat{A}(M)$.

Computable in terms of Pontrjagin classes.

Only non-trivial when $n \equiv 0 \mod 4$.

Weitzenböck formula:

$$D^*D = \nabla^*\nabla + \frac{s}{4}$$

Proposition (Lichnerowicz). If M^{4k} compact spin, with $\hat{A}(M) \neq 0$, then $\not\equiv metric\ g\ on\ M\ with\ s>0$.

Hitchin:

Similar story when $n \equiv 1 \text{ or } 2 \mod 8$.

Hitchin:

Similar story when $n \equiv 1$ or $2 \mod 8$.

But "index" now \mathbb{Z}_2 valued:

 $\dim \ker(D) \mod 2$.

Hitchin:

Similar story when $n \equiv 1 \text{ or } 2 \mod 8$.

But "index" now \mathbb{Z}_2 valued:

 $\dim \ker(D) \mod 2$.

Computable in terms of spin cobordism.

Definition. The Yamabe invariant of the smooth compact n-manifold M is given by

$$\mathcal{Y}(\mathbf{M}) = \sup_{\gamma} \inf_{g \in \gamma} V^{(2-n)/n} \int_{\mathbf{M}} \mathbf{s}_g \ d\mu_g$$

 $\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.$

Theorem. Let M be a compact simply connected n-manifold, $n \geq 3$. If $n \neq 4$, $\mathcal{Y}(M) \geq 0$.

Theorem. There exist infinitely many compact simply connected 4-manifolds with $\mathcal{Y}(M) < 0$.

When n=4, existence for Einstein depends delicately on smooth structure.

When n=4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

This is intimately tied to the fact that $\mathcal{Y}(M)$ depends strongly on the smooth structure in dimension four.

The Lie group SO(4) is not simple

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented (M^4, g) ,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star: \Lambda^2 \to \Lambda^2,$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$

$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

 Λ^- anti-self-dual 2-forms.

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$

Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.

 T_xM

Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.

 T_xM

Corollary. A Riemannian 4-manifold (M, g) is $Einstein \iff sectional \ curvatures \ are \ equal \ for$ $any \ pair \ of \ perpendicular \ 2-planes.$

$$K(P) = K(P^{\perp})$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + \right) d\mu$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |\mathbf{W}_+|^2 \right) d\mu$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 \right) \frac{d\mu}{24}$$

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

4-dimensional Gauss-Bonnet formula

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

for Euler-characteristic $\chi(\mathbf{M}) = \sum_{j} (-1)^{j} b_{j}(\mathbf{M}).$

4-dimensional signature formula

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) \frac{d\mu}{d\mu}$$

4-dimensional signature formula

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) \frac{d\mu}{d\mu}$$

for signature $\tau(M) = b_{+}(M) - b_{-}(M)$.

4-dimensional signature formula

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

for signature $\tau(M) = b_{+}(M) - b_{-}(M)$.

Here $b_{\pm}(M) = \max \dim \text{ subspaces } \subset H^2(M, \mathbb{R})$ on which intersection pairing

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \longmapsto \int_{M} \varphi \wedge \psi$$

is positive (resp. negative) definite.

Associated 'square-norm'

$$H^{2}(\mathbf{M}, \mathbb{R}) \longrightarrow \mathbb{R}$$

$$[\varphi] \longmapsto [\varphi]^{2} := \int_{\mathbf{M}} \varphi \wedge \varphi$$

Associated 'square-norm'

$$H^{2}(M, \mathbb{R}) \longrightarrow \mathbb{R}$$

$$[\varphi] \longmapsto [\varphi]^{2} := \int_{M} \varphi \wedge \varphi$$

$$H^2(M, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

$$H^2(\mathbf{M}, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

$$H^2(\mathbf{M}, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms.

$$H^2(\mathbf{M}, \mathbb{R}) = \{ \varphi \in \Gamma(\Lambda^2) \mid d\varphi = 0, \ d \star \varphi = 0 \}.$$

Since \star is involution of RHS, \Longrightarrow

$$H^2(M,\mathbb{R}) = \mathcal{H}_g^+ \oplus \mathcal{H}_g^-,$$

where

$$\mathcal{H}_g^{\pm} = \{ \varphi \in \Gamma(\Lambda^{\pm}) \mid d\varphi = 0 \}$$

self-dual & anti-self-dual harmonic forms. Then

$$b_{\pm}(M) = \dim \mathcal{H}_g^{\pm}.$$

$$H^2(M,\mathbb{R})$$

$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$

$$\{a \mid a \cdot a = 0\} \subset H^2(M, \mathbb{R})$$

(M,g) compact oriented Riemannian

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

Warning: "Exotic differentiable structures!"

No diffeomorphism classification currently known!

Typically, one homeotype $\longleftrightarrow \infty$ many diffeotypes.

$$(2\chi \pm 3\tau)(\mathbf{M}) = \frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + 2|W_{\pm}|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu_g$$

$$(2\chi \pm 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_{\pm}|^2 - \frac{|\mathring{r}|^2}{2}\right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_{\pm}|^2\right) d\mu_g$

$$(2\chi \pm 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_{\pm}|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_{\pm}|^2 \right) d\mu_g$

Theorem (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then

$$(2\chi + 3\tau)(\mathbf{M}) \ge 0$$

and

$$(2\chi - 3\tau)(\mathbf{M}) \ge 0.$$

Example.

Let $\overline{\mathbb{CP}}_2$ = reverse-oriented \mathbb{CP}_2 .

Example.

Let $\overline{\mathbb{CP}}_2$ = reverse-oriented \mathbb{CP}_2 .

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\overline{\mathbb{CP}}_2\#\cdots\#\overline{\mathbb{CP}}_2}_{k},$$

Example.

Let $\overline{\mathbb{CP}}_2$ = reverse-oriented \mathbb{CP}_2 .

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\overline{\mathbb{CP}}_2\#\cdots\#\overline{\mathbb{CP}}_2}_{k},$$

Example.

Let $\overline{\mathbb{CP}}_2$ = reverse-oriented \mathbb{CP}_2 . Then

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\overline{\mathbb{CP}}_2\#\cdots\#\overline{\mathbb{CP}}_2}_{k},$$

has

$$2\chi + 3\tau = 4 + 5j - k$$

so $\not\equiv$ Einstein metric if $k \geq 4 + 5j$.

$$(2\chi \pm 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_{\pm}|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_{\pm}|^2 \right) d\mu_g$

Theorem (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then

$$(2\chi + 3\tau)(\mathbf{M}) \ge 0$$

and

$$(2\chi - 3\tau)(\mathbf{M}) \ge 0.$$

$$(2\chi \pm 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_{\pm}|^2 - \frac{|\mathring{r}|^2}{2}\right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_{\pm}|^2\right) d\mu_g$

Theorem (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then

$$(2\chi + 3\tau)(\mathbf{M}) \ge 0$$

and

$$(2\chi - 3\tau)(\mathbf{M}) \ge 0.$$

Both inequalities strict unless finitely covered by flat T^4 , Calabi-Yau K3, or Calabi-Yau $\overline{K3}$.

Simply connected complex surface with $c_1 = 0$.

Simply connected complex surface with $c_1 = 0$.

Only one deformation type.

In particular, only one diffeotype.

Simply connected complex surface with $c_1 = 0$.

Only one deformation type.

In particular, only one diffeotype.

Spin manifold, $b_+ = 3$, $b_- = 19$.

Simply connected complex surface with $c_1 = 0$.

Only one deformation type.

In particular, only one diffeotype.

Spin manifold, $b_{+}=3$, $b_{-}=19$.

Theorem (Yau). K3 admits Ricci-flat metrics.

Kummer construction of K3:

Kummer construction of K3:

Begin with T^4/\mathbb{Z}_2 :

Kummer construction of K3:

Begin with T^4/\mathbb{Z}_2 :

Replace $\mathbb{R}^4/\mathbb{Z}_2$ neighborhood of each singular point with copy of T^*S^2 .

Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}_2} = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{k}$$
where $j = b_+(M)$ and $k = b_-(M)$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Richest source: Kähler geometry.

Richest source: Kähler geometry.

Kähler: g compatible with complex structure

$$\nabla J = 0$$

Richest source: Kähler geometry.

Kähler: g compatible with complex structure

$$\nabla J = 0$$

 $\implies ir(J\cdot,\cdot) = \text{curvature of line bundle!}$

Richest source: Kähler geometry.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m} , J) admits compatible Kähler-Einstein metric with s < 0

Richest source: Kähler geometry.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $s < 0 \iff$

Richest source: Kähler geometry.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists$ holomorphic embedding $j: M \hookrightarrow \mathbb{CP}_k$

Richest source: Kähler geometry.

Theorem (Aubin/Yau). Compact complex manifold (M^{2m}, J) admits compatible Kähler-Einstein metric with $s < 0 \iff \exists$ holomorphic embedding $j: M \hookrightarrow \mathbb{CP}_k$

such that $c_1(M)$ is negative multiple of $j^*c_1(\mathbb{CP}_k)$.

Remark. This happens $\Leftrightarrow -c_1(M)$ is a Kähler class. Short-hand: $c_1(M) < 0$.

Remark. When m = 2, such M are necessarily minimal complex surfaces of general type.

Corollary. For any $\ell \geq 5$, the degree ℓ surface $t^{\ell} + u^{\ell} + v^{\ell} + w^{\ell} = 0$

in \mathbb{CP}_3 admits s < 0 Kähler-Einstein metric.

Corollary. For any $\ell \geq 5$, the degree ℓ surface $t^{\ell} + u^{\ell} + v^{\ell} + w^{\ell} = 0$

in \mathbb{CP}_3 admits s < 0 Kähler-Einstein metric.

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which new \mathbb{CP}_1 has self-intersection -1.

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which new \mathbb{CP}_1 has self-intersection -1.

A complex surface X is called minimal if it is not the blow-up of another complex surface.

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which new \mathbb{CP}_1 has self-intersection -1.

A complex surface X is called minimal if it is not the blow-up of another complex surface.

Any complex surface M can be obtained from a minimal surface X by blowing up a finite number of times:

$$M \approx X \# k \overline{\mathbb{CP}}_2$$

One says that X is minimal model of M.

Compact complex surface (M^4, J) general type if $\dim \Gamma(M, \mathcal{O}(K^{\otimes \ell})) \sim a\ell^2$, $\ell \gg 0$, where $K = \Lambda^{2,0}$ is canonical line bundle.

Compact complex surface (M^4, J) general type if $\dim \Gamma(M, \mathcal{O}(K^{\otimes \ell})) \sim a\ell^2$, $\ell \gg 0$, where $K = \Lambda^{2,0}$ is canonical line bundle.

If $\ell \geq 5$, then $\Gamma(M, \mathcal{O}(K^{\otimes \ell}))$ gives holomorphic map

$$f_{\ell}:M\to\mathbb{CP}_N$$

which just collapses each \mathbb{CP}_1 with self-intersection -1 or -2 to a point.

generalized Kähler geometry of non-Kähler 4-manifolds.

generalized Kähler geometry of non-Kähler 4-manifolds.

Can't hope to generalize $\bar{\partial}$ operator to this setting.

generalized Kähler geometry of non-Kähler 4-manifolds.

Can't hope to generalize $\bar{\partial}$ operator to this setting.

But $\bar{\partial} + \bar{\partial}^*$ does generalize:

generalized Kähler geometry of non-Kähler 4-manifolds.

Can't hope to generalize $\bar{\partial}$ operator to this setting.

But $\bar{\partial} + \bar{\partial}^*$ does generalize:

 $spin^c$ Dirac operator, preferred connection on L.

Let $L = \Lambda^{2,0}$ be its anti-canonical line bundle.

Let $L = \Lambda^{2,0}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$

$$V_{-} = \Lambda^{0,1}$$

Let $L = \Lambda^{2,0}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$
$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

Let $L = \Lambda^{2,0}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$
$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

where S_{\pm} are left & right-handed spinor bundles.

Let $L = \Lambda^{2,0}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$

$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

where \mathbb{S}_{\pm} are left & right-handed spinor bundles.

Every unitary connection A on L induces $spin^c$ Dirac operator

$$D_A:\Gamma(V_+)\to\Gamma(V_-)$$

generalizing $\bar{\partial} + \bar{\partial}^*$.

Seiberg-Witten equations:

$$D_A \Phi = 0$$

$$F_A^+ = -\frac{1}{2} \Phi \odot \overline{\Phi}$$

Unknowns:

both Φ and A.

Here F_A^+ = self-dual part of curvature of A. Non-linear, but elliptic once 'gauge-fixing'

$$d^*(A - A_0) = 0$$

imposed to eliminate automorphisms of $L \to M$.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact.

Seiberg-Witten invariant:

solutions

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

 \Longrightarrow moduli space compact.

Seiberg-Witten invariant:

solutions (mod gauge, with multiplicities).

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

 \Longrightarrow moduli space compact.

Seiberg-Witten invariant:

solutions (mod gauge, with multiplicities).

When invariant is non-zero, solutions guaranteed.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

 \Longrightarrow moduli space compact.

Seiberg-Witten invariant:

solutions (mod gauge, with multiplicities).

When invariant is non-zero, solutions guaranteed.

$$\Longrightarrow \exists g \text{ with } s > 0.$$

Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

$$\int_{M} s^{2} d\mu_{g} \ge 32\pi^{2} c_{1}^{2}(X)$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \ge 72\pi^{2} c_{1}^{2}(X)$$

where X is the minimal model of M.

Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} c_{1}^{2}(X)$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} c_{1}^{2}(X)$$

where X is the minimal model of M.

Moreover, equality holds in either case iff M = X, and g is Kähler-Einstein with $\lambda < 0$.

Theorem. Up to rescaling and diffeomorphisms, there is only one Einstein metric on a complex-hyperbolic manifold $\mathbb{C}\mathcal{H}_2/\Gamma$.

Similar theorem in real hyperbolic case:

Besson-Courtois-Gallot.

Theorem. Let X be a minimal surface of general type, and let

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \ge c_1^2(M)/3$.

(Better than Hitchin-Thorpe by a factor of 3.)

So being "very" non-minimal is an obstruction.

Theorem. Let M be the 4-manifold underlying a non-minimal surface of general type. Then M does not admit a supreme Einstein metric.

Theorem. Let M be the 4-manifold underlying a complex surface of general type. Then any supreme Einstein metric. on M is Kähler, with $\lambda < 0$.

Theorem. Let M be the 4-manifold underlying a compact complex surface of general type, with minimal model X:

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then the Yamabe invariant of M is independent of k, and is given by

$$\mathcal{Y}(M) = -4\pi\sqrt{2c_1^2(X)}.$$

Theorem. Let M be the 4-manifold underlying a compact complex surface of general type, with minimal model X:

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then the Yamabe invariant of M is independent of k, and is given by

$$\mathcal{Y}(M) = -4\pi\sqrt{2c_1^2(X)}.$$

Similar results for certain connected sums of complex surfaces.

Question. Are there any non-minimal M of general type which actually admit Einstein metrics?

If so, very different from Kähler-Einstein metrics!