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Not every manifold admits metrics with s > 0!
Y(M) >0 <= M admits g with s > 0.

.. 3 manifolds with V(M) < 0.

Proofs not like 2-dimensional Gauss-Bonnet!

One obstruction: index of Dirac operator.

Theorem (Gromov-Lawson/Stolz). For simply con-
nected M"™, n > 5, index of Dirac operator is
only obstruction to s > 0.



SO(n) is not simply connected.



SO(n) is not simply connected.
m1(SO(n)) =7y if n > 3.



SO(n) is not simply connected.
m1(SO(n)) =7y if n > 3.

Double (universal) cover called Spin(n).



SO(n) is not simply connected.
m1(SO(n)) =7y if n > 3.
Double (universal) cover called Spin(n).

Examples.



SO(n) is not simply connected.
m1(SO(n)) = Zy if n > 3.
Double (universal) cover called Spin(n).

Examples.
Spin(3) & Sp(1) = S° c H* .

Spin representation: acts on C2.



SO(n) is not simply connected.
m1(SO(n)) = Zy if n > 3.
Double (universal) cover called Spin(n).

Examples.

Spin(3) & Sp(1) = S° c H* .

Spin representation: acts on C2.
Spin(4) = Sp(1) x Sp(1).

Spin representation: acts on C2 @ C2.



SO(n) is not simply connected.
m1(SO(n)) = Zy if n > 3.
Double (universal) cover called Spin(n).

Examples.

Spin(3) & Sp(1) = S° c H* .

Spin representation: acts on C2.
Spin(4) = Sp(1) x Sp(1).

Spin representation: acts on C2 @ C2.
Spin(b) = Sp(2).

Spin representation: acts on c*.



SO(n) is not simply connected.
m1(SO(n)) = Zy if n > 3.
Double (universal) cover called Spin(n).

Examples.

Spin(3) = Sp(1) = S% c H* .

Spin representation: acts on C2.
Spin(4) = Sp(1) x Sp(1).

Spin representation: acts on C2 @ C2.
Spin(b) = Sp(2).

Spin representation: acts on c*.
Spin(6) = SU(4).

Spin representation: acts on C* @ C*.



SO(n) is not simply connected.
m1(SO(n)) = Zy if n > 3.
Double (universal) cover called Spin(n).

Examples.

Spin(3) & Sp(1) = S° c H* .

Spin representation: acts on C2.
Spin(4) = Sp(1) x Sp(1).

Spin representation: acts on C? @ C2.
Spin(b) = Sp(2).

Spin representation: acts on c*.
Spin(6) = SU(4).

Spin representation: acts on C* @ C*.

Spin(2m — 1) acts on c2"!



SO(n) is not simply connected.
m1(SO(n)) = Zy if n > 3.
Double (universal) cover called Spin(n).

Examples.

Spin(3) & Sp(1) = S° c H* .

Spin representation: acts on C2.
Spin(4) = Sp(1) x Sp(1).

Spin representation: acts on C? @ C2.
Spin(5) = Sp(2).

Spin representation: acts on c*.
Spin(6) = SU(4).

Spin representation: acts on C* @ C*.

Spin(2m — 1) acts on c2"!

Spin(2m) acts on 2" — sz—l o (CQm_l
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Given oriented Riemannian manifold (M™,¢g),
obstruction to finding double of frame bundle to
get Spin(n) bundle:

wo(TM) € H* (M, Zs).
When this vanishes, M called spin manifold.
[Choice of double cover «—— H(M, Zs).]

Can then define spin bundle

C2[(%—1)/2} S
l
M
If n=2m,
k
k

S =S, ®S_
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Suppose (M?™, g) even-dimensional, spin.

A& € Hom(S4,S-)

so get natural Clifford multiplication map

o:A1®S+—>S_.

Also have covariant derivative

V:I(Sy) — (A @Sy

Compose to get Dirac operator D:

D
r(s,) - T(s.)

¥

NA'®Sy)
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Ativah-Singer: Dirac operator

D F(S_|_) — F(S_>
18 elliptic and
ind(D) = dimker(D) — dim ker(D™)

is topological invariant, called fl(M ).
Computable in terms of Pontrjagin classes.
Only non-trivial when n = 0 mod 4.

Weitzenbock formula:

D*D — v*v+§

Proposition (Lichnerowicz). If M W compact spin,
with A(M) # 0, then B metric g on M with s> 0.
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Hitchin:

Similar story when n = 1 or 2 mod 8.
But “index” now Zso valued:

dim ker(D) mod 2.

Computable in terms of spin cobordism.



Definition. The Yamabe invariant of the smooth
compact n-manifold M 1s given by

V(M) = sup inf ye=m/n /M sg dpg

Y(M) >0 <= M admits g with s > 0.



Theorem. Let M be a compact simply connected
n-manifold, n > 3. If n # 4, Y(M) > 0.

Theorem. There exist infinitely many compact
simply connected 4-manifolds with Y (M) < 0.
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Four Dimensions is Exceptional

When n = 4, existence for Einstein depends deli-
cately on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

This is intimately tied to the fact that V(M) de-
pends strongly on the smooth structure in dimen-
sion four.
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What'’s so special about dimension 47

The Lie group SO(4) is not simple:

50(4) = s50(3) @ s0(3).
On oriented (M4, g), —
A =AtoA~
where AF are (£1)-eigenspaces of
x: A% — /\2,
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

where

s = scalar curvature
trace-free Riccl curvature

o
|

=
:
|

= self-dual Weyl curvature
W _ = anti-selt-dual Weyl curvature
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Corollary. A Riemannian 4-manifold (M, g) is
FEinstein <= sectional curvatures are equal for
any pair of perpendicular 2-planes.

K(P) = K(PY)
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(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

= | Il
X =gz [l T e RSN

for Euler-characteristic y (M) = Z(—l)j bi(M).
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4-dimensional signature formula

1
W=k [ (- o) e
(M) = 5 [ (W= 1w

for signature 7(M) = by (M) — b_(M).

Here b4 (M) = maxdim subspaces C H?(M,R)
on which intersection pairing

H?(M,R) x H¥(M,R) — R
(4. 1) = [ on

is positive (resp. negative) definite.
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Hodge theory:

H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} &H,

where

Hy = {p € T(\") | dp = 0}

self-dual & anti-self-dual harmonic forms. Then

b+ (M) = dimH.



H2
(M, R)



{a|a-a=0}C HXM,R)



{a|a-a=0}cC HXM,R)



(M, g) compact oriented Riemannian
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Theorem (Freedman/Donaldson). Two smooth com-
pact simply connected oriented 4-manifolds are
orientedly homeomorphic if and only if

e they have the same Euler characteristic y;
e they have the same signature T; and

e hoth are spin, or both are non-spin.

Warning: “Exotic differentiable structures!”
No diffeomorphism classification currently known!

Typically, one homeotype «+— oo many diffeotypes.
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Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) >0
and
(2x — 37)(M) > 0.
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Example.

Let CPy = reverse-oriented CP5. Then

JCPy#kCPy = CPy# - - - #CPy # CPo# - - - #CP,
7 I

has
2x + 31 =445 — k

so 3 Einstein metric if k > 4 + 55.
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Hitchin-Thorpe Inequality:

1 5° > P
(2x £37)(M) = 57 T 2[W4] — | g

A2 Mo\ 24
Einstein = 1 52+2\W 2] g
11Steln = —

A2 Jas \ 24 + Mg

Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) >0
and
(2x — 37)(M) > 0.

Both inequalilies strict unless finitely covered by
flat T*, Calabi-Yau K3, or Calabi-Yau K 3.
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K3 = Kummer-Kahler-Kodaira manifold.
Simply connected complex surface with ¢; = 0.
Only one deformation type.

In particular, only one diffeotype.

Spin manifold, b4 = 3, b = 19.

Theorem (Yau). K3 admits Ricci-flat metrics.
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Kummer construction of K3:

Begin with 7% /Zo;

T2

Replace R4 /7,5 neighborhood of each singular point
with copy of T*S2.



Theorem (Freedman/Donaldson). Two smooth com-
pact simply connected oriented 4-manifolds are
orientedly homeomorphic if and only if

e they have the same Euler characteristic y;
e they have the same signature T; and

e hoth are spin, or both are non-spin.



Corollary. Any smooth compact simply connected
non-spin 4-manifold M 1s homeomorphic to a
connect sum

JCPy#kCPy = CPy# - - - #CPy # CPo# - - - #CPy
7 &
where j = by (M) and k= b_(M).




Conjecture (11/8 Conjecture). Any smooth com-
pact simply connected spin 4-manifold M is (un-

orientedly) homeomorphic to either S* or a con-
nected sum j I 34#k(S? x S?).
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Examples of Einstein 4-Manifolds

Richest source: Kahler geometry:.

Theorem (Aubin/Yau). Compact complex man-
ifold (M?™,.J) admits compatible Kdhler-Einstein
metric with s < 0 <= 4 holomorphic embedding

j M — (CIP)k
such that c1(M) is negative multiple of 3¢ (CPy.).

Remark.  This happens < —ci(M) is a Kéhler
class. Short-hand: ¢ (M) < 0.

Remark.  When m = 2, such M are necessarily
minimal complex surfaces of general type.
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Blowing up:

If NV is a complex surface, may replace p € NV
with CIPy to obtain blow-up

M ~ N#CP,

in which new CIP; has self-intersection —1.

A complex surface X is called minimal if it is not
the blow-up of another complex surtace.

Any complex surface M can be obtained from a
minimal surface X by blowing up a finite number
of times:

M ~ X#kCP,
One says that X is minimal model of M.
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Compact complex surface (M?, J) general type if
dm (M, O(K®Y) ~al?, >0,

where & = A%V is canonical line bundle.

I[f ¢ > 5, then I'(M,O(K ®£)) gives holomorphic
map

fo: M — CPy

which just collapses each CIPy with self-intersection
—1 or —2 to a point.
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Seiberg-Witten theory:

generalized Kahler geometry of non-Kahler 4-manifolds.
Can’t hope to generalize O operator to this setting.

But 0 + 9* does generalize:

spin® Dirac operator, preferred connection on L.
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Let J be any almost complex structure on M.
Let L = A%V be its anti-canonical line bundle.

Vg on M, the bundles

V_|_ _ AO’O @/\072
V. = AO,l

can formally be written as
Ve =S4+ ® LY/ 2,
where S are left & right-handed spinor bundles.

Every unitary connection A on L induces
spin® Dirac operator

DA . F(V+> — F(V_)
generalizing 9 + 0*.



Seiberg-Witten equations:

Ds® =0
1
+ _

Unknowns:

both ® and A.

Here F' jéi — self-dual part of curvature of A.
Non-linear, but elliptic once ‘gauge-fixing’

d*(A — Ag) = 0

imposed to eliminate automorphisms of L — M.
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Weitzenbock formula becomes

0 = 2A|D? + 4|V 4P| + 5O + |0

—> moduli space compact.

Seiberg-Witten invariant:

# solutions (mod gauge, with multiplicities).

When invariant is non-zero, solutions guaranteed.

—> Ag with s > 0.
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Theorem (Curvature Estimates). For any Rie-
mannian metric g on a compact compler sur-
face M of general type, the following curvature
bounds are satisfied:

/ 32d,ug > 327%¢12(X)
M 2
/ (3 — \/6\W+\) dig > 7211 %(X)
M

where X s the minimal model of M.

Moreover, equality holds in either case iff M =
X, and g 1s Kahler-Einstein with A < 0.



Theorem. Up to rescaling and diffeomorphisms,
there 1s only one Einstein metric on a complez-

hyperbolic manifold CHy/T.

Similar theorem in real hyperbolic case:

Besson-Courtois-Gallot.



Theorem. Let X be a minimal surface of gen-
eral type, and let

M = X#kCP,.
Then M cannot admit an Einstein metric if

k> c?(M)/3.

(Better than Hitchin-Thorpe by a factor of 3.)

So being “very’ non-minimal is an obstruction.



Theorem. Let M be the 4-manifold underlying
a non-minimal surface of general type. Then M
does not admit a supreme Einstein metric.

Theorem. Let M be the 4-manifold underlying
a complex surface of general type. Then any

supreme Einstein metric. on M 1is Kahler, with
A< 0.



Theorem. Let M be the 4-manifold underlying

a compact complex surface of general type, with
minimal model X :

M = X#kCP,.

Then the Yamabe invariant of M 1is independent
of k, and 1s given by

V(M) = —4my/2¢,2(X).




Theorem. Let M be the 4-manifold underlying

a compact complex surface of general type, with
minimal model X :

M = X#kCP,.

Then the Yamabe invariant of M 1is independent
of k, and 1s given by

V(M) = —4my/2¢,2(X).

Similar results for certain connected sums of com-
plex surtaces.



Question. Are there any non-minimal M of gen-
eral type which actually admit Einstein metrics?

If so, very different from Kahler-Einstein metrics!



