Einstein Metrics

and

Global Conformal Geometry

I

Claude LeBrun
SUNY Stony Brook
Let \((M^n, g)\) be a Riemannian \(n\)-manifold, \(p \in M\).
Let \((M^n, g)\) be a Riemannian \(n\)-manifold, \(p \in M\). Metric defines locally shortest curves, called geodesics. Following geodesics from \(p\) defines a map

\[
\exp : T_p M \rightarrow M
\]
Let \((M^n, g)\) be a Riemannian \(n\)-manifold, \(p \in M\). Metric defines locally shortest curves, called geodesics. Following geodesics from \(p\) defines a map

\[
\exp : T_p M \to M
\]

which is a diffeomorphism on a neighborhood of 0:
Let \((M^n, g)\) be a Riemannian \(n\)-manifold, \(p \in M\). Metric defines locally shortest curves, called geodesics. Following geodesics from \(p\) defines a map

\[
\exp : T_p M \to M
\]

which is a diffeomorphism on a neighborhood of 0:

Now choosing \(T_p M \cong \mathbb{R}^n\) via some orthonormal basis gives us special coordinates on \(M\).
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = d\mu_{\text{Euclidean}}, \]
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[ 1 - \frac{1}{6} r^{jk} x^j x^k + O(\left| x \right|^3) \right] d\mu_{\text{Euclidean}}, \]
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[ 1 - \frac{1}{6} r_{jk} x^j x^k + \right] d\mu_{\text{Euclidean}}, \]
In these “geodesic normal” coordinates the metric volume measure is given by

$$d\mu_g = \left[ 1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}},$$
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[ 1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \( r \) is the \textit{Ricci tensor}.
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[ 1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \( r \) is the Ricci tensor \( r_{jk} = \mathcal{R}^i_{\ jik} \).
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[ 1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \( r \) is the \textit{Ricci tensor} \( r_{jk} = \mathcal{R}^i_{\ jik} \).

Why?
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[ 1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \( r \) is the Ricci tensor \( r_{jk} = \mathcal{R}^i_{jk} \).

Why?

\[ g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^\ell x^m + O(|x|^3) \]

in these coordinates.
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[ 1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \( r \) is the Ricci tensor \( r_{jk} = \mathcal{R}^i_{\ jik} \).

Why?

\[ g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell k m} x^\ell x^m + O(|x|^3) \]

in these coordinates.

(Use Jacobi’s equation for geodesic deviation.)
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[ 1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \( r \) is the Ricci tensor \( r_{jk} = \mathcal{R}^i_{\ jik} \).

Why?

\[ g_{jk} = \delta_{jk} - \frac{1}{3} \mathcal{R}_{j\ell km} x^\ell x^m + O(|x|^3) \]

in these coordinates.

\[ d\mu_g = \sqrt{\det[g_{jk}]} \, dx^1 \wedge \cdots \wedge dx^n \]
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}}, \]

where \( r \) is the Ricci tensor \( r_{jk} = \mathcal{R}^i_{jik} \).

---

The Ricci curvature
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[ 1 - \frac{1}{6} r_{j k} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \( r \) is the \textit{Ricci tensor} \( r_{j k} = \mathcal{R}^i_{j ik} \).

The \textit{Ricci curvature} is by definition the function on the unit tangent bundle.
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[ 1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \( r \) is the \textit{Ricci tensor} \( r_{jk} = R^i_{jik} \).

The \textit{Ricci curvature} is by definition the function on the unit tangent bundle

\[ STM = \{ v \in TM \mid g(v, v) = 1 \} \]
In these “geodesic normal” coordinates the metric volume measure is given by

\[ d\mu_g = \left[ 1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \( r \) is the \textit{Ricci tensor} \( r_{jk} = \mathcal{R}^i_{\ jik} \).

The \textit{Ricci curvature} is by definition the function on the unit tangent bundle

\[ STM = \{ v \in TM \mid g(v, v) = 1 \} \]

given by

\[ v \mapsto r(v, v). \]
Definition. A Riemannian metric $g$ is said to be Einstein if it has constant Ricci curvature.
**Definition.** A Riemannian metric $g$ is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$. 
**Definition.** A *Riemannian metric* $g$ is said to be *Einstein* if it has *constant Ricci curvature* — i.e.

$$ r = \lambda g $$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.
Definition. A Riemannian metric $g$ is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:
same number of equations as unknowns.
Definition. A Riemannian metric $g$ is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:
same number of equations as unknowns.

$g_{jk}: \frac{n(n+1)}{2}$ components.

$r_{jk}: \frac{n(n+1)}{2}$ components.
**Definition.** A Riemannian metric $g$ is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

**Determined system:**
same number of equations as unknowns.

- $g_{jk}$: $\frac{n(n+1)}{2}$ components.
- $r_{jk}$: $\frac{n(n+1)}{2}$ components.
- $\mathcal{R}_{j klm}$: $\frac{n^2(n^2-1)}{12}$ components.
**Definition.** A Riemannian metric $g$ is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$ r = \lambda g $$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

**Determined system:**

same number of equations as unknowns.

**Elliptic non-linear PDE after gauge fixing.**
Definition. A Riemannian metric $g$ is said to be Einstein if it has constant Ricci curvature — i.e. 

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.

$$\Delta x^j = 0 \implies r_{jk} = \frac{1}{2} \Delta g_{jk} + \text{lots}.$$
**Definition.** A Riemannian metric $g$ is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$ r = \lambda g $$

for some constant $\lambda \in \mathbb{R}$. 

---
**Definition.** A Riemannian metric $g$ is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$ r = \lambda g $$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow
Definition. A Riemannian metric $g$ is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$. 
Definition. A Riemannian metric $g$ is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow
Definition. A Riemannian metric $g$ is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”
— A. Einstein, to G. Gamow

“Mathematicians are like Frenchmen:

— J.W. von Goethe
Definition. A Riemannian metric $g$ is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow

“Mathematicians are like Frenchmen: tell them something,

— J.W. von Goethe
Definition. A Riemannian metric $g$ is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow

“Mathematicians are like Frenchmen: tell them something, they translate it into their own language,

— J.W. von Goethe
Definition. A Riemannian metric $g$ is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow

“Mathematicians are like Frenchmen: tell them something, they translate it into their own language, and, before you know it, it’s something entirely different.”

— J.W. von Goethe
**Definition.** A Riemannian metric is said to be Einstein if it has constant Ricci curvature — i.e.
\[ r = \lambda g \]
for some constant \( \lambda \in \mathbb{R} \).
**Definition.** A Riemannian metric is said to be Einstein if it has constant Ricci curvature — i.e.,

\[ r = \lambda g \]

for some constant \( \lambda \in \mathbb{R} \).

---

**Proposition.** If \( n \geq 3 \), a Riemannian \( n \)-manifold \((M^n, g)\) is Einstein iff the trace-free part of its Ricci tensor vanishes:

\[ \hat{r} := r - \frac{s}{n} g = 0. \]
Here $s$ denotes the *scalar curvature*

\[ s = r^j_j = \mathcal{R}^{ij}_{ij}. \]
Here $s$ denotes the *scalar curvature*

$$s = r^i_j = \mathcal{R}^{ij}{}_{ij}.$$  

Meaning?
Here $s$ denotes the *scalar curvature*

$$s = r^j_j = R^{ij}{}_{ij}.$$
Here $s$ denotes the *scalar curvature*

$$s = r_{j}^{j} = \mathcal{R}^{ij}{}_{ij}. $$

Meaning? Metric distance balls

$$B_{\varepsilon}(p) = \{ q \in M \mid \exists \text{ path from } p \text{ to } q \text{ of length } < \varepsilon \}$$
Here $s$ denotes the *scalar curvature*

$$s = r^j_j = \mathcal{R}^{ij}_{\ ij}.$$ 

**Meaning?** Metric distance balls

$$B_\varepsilon(p) = \{q \in M \mid \exists \text{ path from } p \text{ to } q \text{ of length } < \varepsilon\}$$

have metric volume
Here $s$ denotes the *scalar curvature*

$$s = r^i_j = \mathcal{R}^{ij}_{\ ij}.$$ 

Meaning? Metric distance balls

$$B_\varepsilon(p) = \{q \in M \mid \exists \text{ path from } p \text{ to } q \text{ of length } < \varepsilon\}$$ 

have metric volume

$$\text{vol}_g(B_\varepsilon(p))$$
Here $s$ denotes the scalar curvature 

$$s = r^j_j = R^{ij}{}_{ij}.$$  

Meaning? Metric distance balls

$$B_\varepsilon(p) = \{ q \in M \mid \exists \text{ path from } p \text{ to } q \text{ of length } < \varepsilon \}$$

have metric volume

$$\frac{\text{vol}_g(B_\varepsilon(p))}{c_n \varepsilon^n}.$$
Here $s$ denotes the \textit{scalar curvature} 
\[
s = r^j_j = \mathcal{R}^{ij}{}_{ij}.
\]

Meaning? Metric distance balls 
\[
B_{\varepsilon}(p) = \{ q \in M \mid \exists \text{ path from } p \text{ to } q \text{ of length } < \varepsilon \}
\]
have metric volume 
\[
\frac{\text{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 -
\]
Here $s$ denotes the *scalar curvature* 

$$ s = r^j_j = \mathcal{R}^{ij}{}_{ij}. $$

Meaning? Metric distance balls 

$$ B_\varepsilon(p) = \{ q \in M \mid \exists \text{ path from } p \text{ to } q \text{ of length } < \varepsilon \} $$

have metric volume 

$$ \frac{\text{vol}_g(B_\varepsilon(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + $$
Here $s$ denotes the scalar curvature
\[ s = r^j_j = \mathcal{R}^{ij}{}_{ij}. \]

Meaning? Metric distance balls
\[ B_\varepsilon(p) = \{ q \in M \mid \exists \text{ path from } p \text{ to } q \text{ of length } < \varepsilon \} \]
have metric volume
\[ \frac{\text{vol}_g(B_\varepsilon(p))}{c_n\varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4) \]
Here $s$ denotes the *scalar curvature*

$$s = r^j_j = \mathcal{R}^{ij}ij.$$ 

**Meaning?** Metric distance balls

$$B_{\varepsilon}(p) = \{q \in M \mid \exists \text{ path from } p \text{ to } q \text{ of length } < \varepsilon\}$$

have metric volume

$$\frac{\text{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$

where $c_n = \pi^{n/2}/(n/2)!$
Question (Yamabe). Does every smooth compact 1-connected $n$-manifold admit an Einstein metric?
**Question (Yamabe).** Does every smooth compact 1-connected $n$-manifold admit an Einstein metric?

What we know:
**Question** (Yamabe). Does every smooth compact 1-connected \( n \)-manifold admit an Einstein metric?

What we know:

- When \( n = 2 \): Yes! (Riemann)
**Question** (Yamabe). *Does every smooth compact 1-connected n-manifold admit an Einstein metric?*

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: $\iff$ Poincaré conjecture.
**Question (Yamabe).** Does every smooth compact 1-connected $n$-manifold admit an Einstein metric?

**What we know:**

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: $\iff$ Poincaré conjecture.

On a 3-manifold,

$$\frac{s}{2} - r(v,v) = K(v^\perp)$$

for any unit vector $v$, so Einstein $\Rightarrow$ constant sectional curvature $\lambda/2$. 
**Question** (Yamabe). *Does every smooth compact 1-connected $n$-manifold admit an Einstein metric?*

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: $\Longleftrightarrow$ Poincaré conjecture. Hamilton, Perelman, ... Yes!
**Question (Yamabe).** Does every smooth compact 1-connected \( n \)-manifold admit an Einstein metric?

What we know:

- When \( n = 2 \): Yes! (Riemann)
- When \( n = 3 \): \( \iff \) Poincaré conjecture. Hamilton, Perelman, . . . Yes!
- When \( n = 4 \): No! (Hitchin)
Question (Yamabe). Does every smooth compact 1-connected $n$-manifold admit an Einstein metric?

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: $\iff$ Poincaré conjecture. Hamilton, Perelman, . . . Yes!
- When $n = 4$: No! (Hitchin)
- When $n = 5$: Yes?? (Boyer-Galicki-Kollár)
Question (Yamabe). Does every smooth compact 1-connected $n$-manifold admit an Einstein metric?

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: $\iff$ Poincaré conjecture. Hamilton, Perelman, . . . Yes!
- When $n = 4$: No! (Hitchin)
- When $n = 5$: Yes?? (Boyer-Galicki-Kollár)
- When $n \geq 6$, wide open. Maybe???
Variational Approach

If $M$ smooth compact $n$-manifold, $n \geq 3$,

$\mathcal{G}_M = \{ \text{smooth metrics } g \text{ on } M \}$
Variational Approach

If $M$ smooth compact $n$-manifold, $n \geq 3,$

$$G_M = \{ \text{smooth metrics } g \text{ on } M \}$$

then Einstein metrics = critical points of

*Einstein-Hilbert action* functional
Variational Approach

If $M$ smooth compact $n$-manifold, $n \geq 3$,

$$\mathcal{G}_M = \{ \text{smooth metrics } g \text{ on } M \}$$

then Einstein metrics = critical points of\

*Einstein-Hilbert action* functional

$$\mathcal{S} : \mathcal{G}_M \longrightarrow \mathbb{R}$$

$$g \longmapsto \int_M s_g d\mu_g$$
Variational Approach

If $M$ smooth compact $n$-manifold, $n \geq 3$,

$$\mathcal{G}_M = \{ \text{smooth metrics } g \text{ on } M \}$$

then Einstein metrics = critical points of normalized \textit{Einstein-Hilbert action} functional

$$S : \mathcal{G}_M \longrightarrow \mathbb{R}$$

$$g \longmapsto V^{(2-n)/n} \int_M s_g d\mu_g$$
Variational Approach

If $M$ smooth compact $n$-manifold, $n \geq 3$,

$$\mathcal{G}_M = \{ \text{smooth metrics } g \text{ on } M \}$$

then Einstein metrics = critical points of normalized Einstein-Hilbert action functional

$$\mathcal{S} : \mathcal{G}_M \longrightarrow \mathbb{R}$$

$$g \longmapsto V^{(2-n)/n} \int_M s_g d\mu_g$$

where $V = \text{Vol}(M, g)$ inserted to make scale-invariant.
Basic difficulty:
Basic difficulty:

\[ S(g) = V^{(2-n)/n} \int_M s_g d\mu_g \]

not bounded above or below.
Basic difficulty:

\[ S(g) = V^{(2-n)/n} \int_M s_g d\mu_g \]

not bounded above or below.

Yamabe:
Consider any conformal class

\[ \gamma = [g_0] = \{ f g_0 \mid u : M \to \mathbb{R}^+ \}, \]
Basic difficulty:

\[ S(g) = V^{(2-n)/n} \int_M s_g d\mu_g \]

not bounded above or below.

Yamabe:
Consider any conformal class

\[ \gamma = [g_0] = \{ fg_0 \mid u : M \to \mathbb{R}^+ \} , \]

Then restriction \( S|\gamma \) is bounded below.
Yamabe:

Set $p = \frac{2n}{n-2}$. 
Yamabe:

Set $p = \frac{2n}{n-2}$.

Conformal rescaling:

$\hat{g} = u^{p-2} g$
Yamabe:

Set \( p = \frac{2n}{n-2} \).

Conformal rescaling:

\[ \hat{g} = u^{p-2}g \] then has \( d\hat{\mu} = u^p \, d\mu \)
Yamabe:

Set $p = \frac{2n}{n-2}$.

Conformal rescaling:

$\hat{g} = u^{p-2}g$ then has $d\mu = u^p d\mu$

and its scalar curvature satisfies

$$\hat{s}u^{p-1} = [(p + 2)\Delta + s]u$$
Yamabe:
Set \( p = \frac{2n}{n-2} \).

Conformal rescaling:
\( \hat{g} = u^{p-2} g \) then has \( \hat{d}\mu = u^p d\mu \)
and its scalar curvature satisfies
\[
\hat{s}u^{p-1} = [(p + 2)\Delta + s]u
\]
where \( \Delta = -\nabla \cdot \nabla \).
Yamabe:

Set $p = \frac{2n}{n-2}$.

Conformal rescaling:
\[ \hat{g} = u^{p-2} g \] then has $\hat{d\mu} = u^p d\mu$

and its scalar curvature satisfies
\[ \hat{s} u^{p-1} = [(p + 2) \Delta + s] u \]

where $\Delta = -\nabla \cdot \nabla$. Hence

\[
S(\hat{g}) = \frac{\int_M \left( s u^2 + (p + 2) |\nabla u|^2 \right) d\mu}{\left[ \int_M u^p d\mu \right]^{2/p}}
\]
Yamabe:

Set \( p = \frac{2n}{n-2} \).

Conformal rescaling:

\( \hat{g} = u^{p-2} g \) then has \( \hat{d\mu} = u^p d\mu \)

and its scalar curvature satisfies

\[
\hat{s} u^{p-1} = [(p+2)\Delta + s] u
\]

where \( \Delta = -\nabla \cdot \nabla \). Hence

\[
S(\hat{g}) = \frac{\int_M (s u^2 + (p+2) |\nabla u|^2) d\mu}{\left[ \int_M u^p d\mu \right]^{2/p}}
\]

Difficulty: \( L_1^2 \hookrightarrow L^p \) bounded, but not compact.
Yamabe (1950s)
Yamabe (1950s)
Trudinger (1960s)
Yamabe (1950s)
Trudinger (1960s)
Aubin (1970s)
Yamabe (1950s)
Trudinger (1960s)
Aubin (1970s)
Schoen (1980s)
Yamabe (1950s)
Trudinger (1960s)
Aubin (1970s)
Schoen (1980s)

\[ \exists \text{ metric } g \in \gamma \text{ which minimizes } S|_\gamma. \]
Yamabe (1950s)
Trudinger (1960s)
Aubin (1970s)
Schoen (1980s)

\exists \text{ metric } g \in \gamma \text{ which mimimizes } S|_{\gamma}.

Has \( s = \text{ constant} \).
Yamabe (1950s)
Trudinger (1960s)
Aubin (1970s)
Schoen (1980s)

∃ metric $g \in \gamma$ which minimizes $S|_{\gamma}$.
Has $s = \text{constant}$.
Unique up to scale when $s \leq 0$. 
\[ Y_\gamma = \inf_{g \in \gamma} \frac{\int_M s_g \, d\mu_g}{(\int_M d\mu_g)^{\frac{n-2}{n}}}; \]
\[ Y_\gamma = \inf_{g \in \gamma} \frac{\int_M sg \, d\mu_g}{\left( \int_M d\mu_g \right)^{\frac{n-2}{n}}}; \]

If \( g \) has \( s \) of fixed sign, agrees with sign of \( Y_{[g]} \).
\[ Y_\gamma = \inf_{g \in \gamma} \frac{\int_M s_g \, d\mu_g}{\left( \int_M d\mu_g \right)^{n-2}}; \]

If \( g \) has \( s \) of fixed sign, agrees with sign of \( Y_{[g]} \).

Aubin:

\[ Y_\gamma \leq S(S^n, g_{\text{round}}) \]
\[ g_{jk} = \delta_{jk} + O(|x|^2) \]
\[ Y_\gamma = \inf_{g \in \gamma} \frac{\int_M s_g \, d\mu_g}{(\int_M d\mu_g)^{n-2}} ; \]

If \( g \) has \( s \) of fixed sign, agrees with sign of \( Y[g] \).

Aubin:
\[ Y_\gamma \leq S(S^n, g_{\text{round}}) \]
\[ Y_\gamma = \inf_{g \in \gamma} \frac{\int_M s_g \, d\mu_g}{\left( \int_M d\mu_g \right)^{\frac{n-2}{n}}} ; \]

If \( g \) has \( s \) of fixed sign, agrees with sign of \( Y_{[g]} \).

Aubin:
\[ Y_\gamma \leq S(S^n, g_{\text{round}}) \]

Schoen:
\[ = \text{ only for round sphere.} \]
Yamabe’s Dream
Yamabe’s Dream
Yamabe’s Dream

\[ g \in \gamma \]
Yamabe’s Dream

Too good to be true!
Yamabe’s Dream

$g \in \gamma$

Too good to be true! But ...
**Definition.** The *Yamabe invariant* of the smooth compact $n$-manifold $M$ is given by

$$\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma}$$
Definition. The Yamabe invariant of the smooth compact $n$-manifold $M$ is given by

$$\mathcal{Y}(M) = \sup_{\gamma} Y_\gamma = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_M s_g \, d\mu_g}{(\int_M d\mu_g)^{\frac{n-2}{n}}}.$$
**Definition.** The *Yamabe invariant* of the smooth compact $n$-manifold $M$ is given by

\[ \mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_M s_g \, d\mu_g}{\left( \int_M d\mu_g \right)^{\frac{n-2}{n}}}. \]

H. Yamabe, O. Kobayashi, R. Schoen.
Definition. The Yamabe invariant of the smooth compact $n$-manifold $M$ is given by

$$Y(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_{M} s_{g} \, d\mu_{g}}{(\int_{M} d\mu_{g})^{\frac{n-2}{n}}}.$$ 

H. Yamabe, O. Kobayashi, R. Schoen.

$Y(M) > 0 \iff M$ admits $g$ with $s > 0$. 
**Definition.** The *Yamabe invariant* of the smooth compact $n$-manifold $M$ is given by

$$
\mathcal{Y}(M) = \sup_{\gamma} Y_{\gamma} = \sup_{\gamma} \inf_{g \in \gamma} \frac{\int_M s_g \, d\mu_g}{(\int_M d\mu_g)^{\frac{n-2}{n}}}.
$$

H. Yamabe, O. Kobayashi, R. Schoen.

$$
\mathcal{Y}(M) > 0 \iff M \text{ admits } g \text{ with } s > 0.
$$

**Problem.** Compute actual value of $\mathcal{Y}(M)$ for concrete, interesting manifolds.
Definition. An Einstein metric $g$ on a smooth compact manifold $M$ will be called a supreme Einstein metric if

$$\mathcal{Y}(M) = S(g).$$
**Definition.** An Einstein metric $g$ on a smooth compact manifold $M$ will be called a *supreme* Einstein metric if

$$\mathcal{Y}(M) = S(g).$$

**Example**  The round metric on $S^n$ is a supreme Einstein metric.
Definition. An Einstein metric $g$ on a smooth compact manifold $M$ will be called a supreme Einstein metric if

$$\mathcal{Y}(M) = S(g).$$

Problem. Which manifolds admit supreme Einstein metrics?
**Definition.** An Einstein metric $g$ on a smooth compact manifold $M$ will be called a supreme Einstein metric if

$$\mathcal{Y}(M) = S(g).$$

**Problem.** Which manifolds admit supreme Einstein metrics?

**Problem.** Think of your favorite examples of Einstein metrics. Are any of them supreme?
3-manifolds:
3-manifolds:

**Theorem** (Bray-Neves). *The constant curvature metric on $\mathbb{RP}^3$ is a supreme Einstein metric.*
3-manifolds:

**Theorem (Bray-Neves).** The constant curvature metric on $\mathbb{RP}^3$ is a supreme Einstein metric.

**Theorem (Schoen-Yau/Gromov-Lawson).** Flat metrics on $T^3$ (indeed, on $T^n$) are supreme Einstein metrics.
3-manifolds:

**Theorem (Bray-Neves).** The constant curvature metric on \( \mathbb{RP}^3 \) is a supreme Einstein metric.

**Theorem (Schoen-Yau/Gromov-Lawson).** Flat metrics on \( T^3 \) (indeed, on \( T^n \)) are supreme Einstein metrics.

**Theorem (Perelman/Anderson).** \( K = -1 \) metric on any hyperbolic 3-manifold is a supreme Einstein metric.
3-manifolds:

**Theorem (Bray-Neves).** The constant curvature metric on $\mathbb{RP}^3$ is a supreme Einstein metric.

**Theorem (Schoen-Yau/Gromov-Lawson).** Flat metrics on $T^3$ (indeed, on $T^n$) are supreme Einstein metrics.

**Theorem (Perelman/Anderson).** $K = -1$ metric on any hyperbolic 3-manifold is a supreme Einstein metric.

$S^3/\Gamma$ open, except when $\Gamma = \mathbb{Z}_2$. 
4-manifolds:
4-manifolds:

**Theorem (LeBrun).** The Fubini-Study metric on $\mathbb{CP}_2$ is a supreme Einstein metric.
4-manifolds:

**Theorem (LeBrun).** The Fubini-Study metric on $\mathbb{CP}^2$ is a supreme Einstein metric.

**Theorem (Lichnerowicz).** The Calabi-Yau metrics on $K3$ are supreme Einstein metrics.
4-manifolds:

**Theorem (LeBrun).** The Fubini-Study metric on $\mathbb{CP}^2$ is a supreme Einstein metric.

**Theorem (Lichnerowicz).** The Calabi-Yau metrics on $K3$ are supreme Einstein metrics.

**Theorem (LeBrun).** Kähler-Einstein metrics with $\lambda < 0$ are supreme Einstein metrics.
4-manifolds:

Theorem (LeBrun). The Fubini-Study metric on $\mathbb{CP}^2$ is a supreme Einstein metric.

Theorem (Lichnerowicz). The Calabi-Yau metrics on $K3$ are supreme Einstein metrics.

Theorem (LeBrun). Kähler-Einstein metrics with $\lambda < 0$ are supreme Einstein metrics.

In particular, complex-hyperbolic metric on $\mathbb{CH}_2/\Gamma$ is supreme Einstein.
4-manifolds:

**Theorem (LeBrun).** The Fubini-Study metric on $\mathbb{CP}^2$ is a supreme Einstein metric.

**Theorem (Lichnerowicz).** The Calabi-Yau metrics on $K3$ are supreme Einstein metrics.

**Theorem (LeBrun).** Kähler-Einstein metrics with $\lambda < 0$ are supreme Einstein metrics.

In particular, complex-hyperbolic metric on $\mathbb{CH}_2/\Gamma$ is supreme Einstein.

Open question for hyperbolic 4-manifolds $\mathcal{H}^4/\Gamma$!
Theorem (Petean). Let $M^n$ be a simply connected $n$-manifold, $n \geq 5$. Then $\mathcal{Y}(M) \geq 0$. 
**Theorem (Petean).** Let $M^n$ be a simply connected $n$-manifold, $n \geq 5$. Then $\mathcal{Y}(M) \geq 0$.

Inspiration:

**Theorem (Gromov/Lawson).** Let $M^n$ be a simply connected $n$-manifold, $n \geq 5$. If $M$ is not spin, then $M$ carries a metric $g$ with $s > 0$. That is,

$$w_2(TM) \neq 0 \implies \mathcal{Y}(M) > 0.$$
Theorem. Let $M$ be a compact simply connected $n$-manifold, $n \geq 3$. If $n \neq 4$, $\mathcal{V}(M) \geq 0$. 
Theorem. Let $M$ be a compact simply connected $n$-manifold, $n \geq 3$. If $n \neq 4$, $\mathcal{Y}(M) \geq 0$.

Theorem. There exist infinitely many compact simply connected 4-manifolds with $\mathcal{Y}(M) < 0$. 
Four Dimensions is Exceptional
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.
Four Dimensions is Exceptional

When \( n = 4 \), existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

This is intimately tied to the fact that $\mathcal{Y}(M)$ depends strongly on the smooth structure in dimension four.