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Existence of these K-E metrics: Tian-Yau 87
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Question. What about Kahler-Einstein orbifolds?

Odaka-Spotti-Sun '16: Classified the A > 0 K-E
orbifolds that are limits of smooth Kahler-Einstein
manifolds.

Most K-E orbifolds simply aren’t such limits!

But could these K-E orbifolds sometimes be limits
of sequences of general Einstein manifolds?

(Goal: Show that this doesn’t change anything!
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Special character of dimension 4:

On oriented (M4, g),
A= AT @A™
where A* are (£1)-eigenspaces of
%A% — A2,
* = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.

Reversing orientation interchanges A1 ews A7
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Technical Hitch! Whatever you may have been told,
ALE Ricci-flat 4-manifolds have not been classified!

All known examples all have W, = 0. ..
at least when correctly oriented!
Longstanding folk-conjecture: There are no others!

We avoid this question by means of a definition!
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Definition. Suppose that (M, g;) — (X, goo) in
the Gromov-Hausdorff sense, where the g; are
Einstein metrics of fizred A > 0 on a connected
compact oriented M*, and where X* is a com-
pact orbifold with only isolated singularities. Then
we will say that (X, goo) s an orbifold limit of
expected type if every oriented gravitational in-

stanton that bubbles off in the limiting process
satisfies W = 0.
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and suppose that (X, goo) s an orbifold limit of
expected type for a sequence {(M,g;)} of Ein-
stein metrics of firted A > 0 on a connected com-
pact smooth oriented 4-manifold M. Then all
but finitely many of the g; are Kahler-Einstein,
and M 1is diffeomorphic to

CPy#kCPs
for some k € {5,6,7,8}.

Corollary. The Odaka-Spotti-Sun classification
applies to (X, goo).
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By the Riemannian Goldberg-Sachs Theorem, the
Hermitian assumption is equivalent to assuming that
the orbifold Einstein metric goo is conformally Kahler.
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This assertion is peculiar to dimension 4.
It is false in all higher dimensions!
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A more transparent proof was then given in L. "21.
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Theorem (Wu 21, L. '21). Let (M, g) be a simply-
connected compact oriented Einstein 4-manifold,
and suppose that its self-dual Weyl curvature

W AT — AT
satisfies
det(W ™) > 0
at every point of M. Then g is conformal to an

orientation-compatible extremal Kahler metric h
with scalar curvature s > 0 on M.

In most cases, this implies that g is Kahler-Einstein.
There are two exceptions, but these are both rigid,

and thus never lead to non-trivial G-H limits.
Conversely, A > 0 K-E = det(WW ") > 0.
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Applying Peng Wu's criterion to prove Theorems A
and D 1s technically very delicate.

Condition det(W4) > 0 is required everywhere!
Easy away from “gravitational instanton” regions.
Harder in the regions of singularity formation!
But results of Biquard and Ozuch come to rescue!

Curvature tensor behaves roughly like Kahler paradigm
in regions of singularity formation.

Technically hardest when curvature accumulates on
many different length-scales, giving rise to a com-

plicated bubble tree.
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4-dimensional Ricci-flat ALE spaces with W, = 0
were completely classified by Fvan Wright "12.

They are all Kahler, although only the simply-connected
ones are hyper-Kahler. loana Suvaina 12 showed
that their tangent cones at infinity are exactly the
so-called T-singularities of complex surfaces.

Correspond to certain finite groups I C U(2):

o [' C SU(2) finite groups <— rational double
points <— Dynkin diagrams of type A-D-E.

o Cyclic gr'ps Z,, > C U(2), m > 2, generated by

oo
Cémn—l

where ¢ = e2m/£m2, n < m, and gcd(m,n) = 1.

Corresponding singularities: type 6_77112(1’ {mn —1).
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Example. CPy/Z,,, where the Z,, action is gen-
erated by

1
p2mi/m

)

o2/ m

If m > 51is a prime, this is K-E orbifold with only
isolated singularities which cannot be a limit of ex-
pected type. In fact, even forbidden if we allow
reverse-oriented instantons!

By contrast, if m = 3% = 9, then it is actually
a limit of K-E metrics on CPo#8CPy! One Ag
singularity, and two of type %(1, 2).
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Given I' C SU(2) finite subgroup,
the orbifold C?/T" can be viewed as
singular complex surface C C3 by

choosing 3 generators of [-invariant polynomials.

I p2mi/m
Example. —2rifm c SU(2)
generates I' = Zy,. Setting
wesEG-),  a =), y-
—5\F1 T2 ) $—22’1+Zz : Y = 2122,

then identifies C?/I" with

w? + 2+ ¢y =0.
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Felix Klein’s Table of Singularities (1884)

Qo Ly — w? 4+ 22+ y™ =0

M Dihy, — <— w? +y(2? +y™) = 0

P

' T* <o w? + 23+ y* =0
' O* C w? 4+ 23 + 23 =0
. I* —> w? + 23 +° =0
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Two ways to get rid of a singularity:

e Smooth it, by deformation:

w? + 22 y° =
e Resolve it, by blowing up, iteratively:

w? + 2% + > =0
O(=2) — O(-1)

| !
CPy — CPy

Usually these are topologically different.
Warning:

For those, smoothing is the relevant option.
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McKay Correspondence

Given p : [' < SU(2) finite subgroup,
construct Dynkin diagram, as follows:

One node for each non-trivial irred. representation
pj ' — End(V;)

Next decompose

p @ pj = Plpy) "t
4
as sum of irreducibles. Then n;p =mny; =0 or 1.

Now draw edge joining nodes j & £ if n;p 7 0.

Reproduces Dynkin diagram of crepant resolution!
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With orbifold degenenerations included, exactly
parameterized by

HY (Y)®R* 2 h @ R?,

where by 1s the Cartan subalgebra of the g defined
by Dynkin diagram associated with 1.
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Theorem (Kronheimer '89). Let I' € SU(2) fi-
nite, and let Y be the smooth 4-manifold gotten
by resolving the singularity of R4/F. Then Y
admaits a family of ALE Ricci-flat metrics. Ev-
ery such metric s hyper-Kahler, and the moduls
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Theorem (Nakajima '90). For finite I' C SU(2),
these are the only Ricci-flat ALE 4-manifolds

that are simply connected, spin, asymptotic to
R*/T', and such that

S, — ST

has trivial monodromy at infinity.

Cf. Witten’s proof of the positive mass theorem.
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