Einstein Manifolds

and

Extremal Kähler Metrics

Claude LeBrun
Stony Brook University
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$ r = \lambda g $$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$ r = \lambda g $$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.

Has same sign as the *scalar curvature*

$$ s = r^j_j = R^{ij} _ { ij}. $$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J.
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits a (possibly unrelated) Einstein metric g with $\lambda > 0$.
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits a (possibly unrelated) Einstein metric g with $\lambda > 0$

$$\iff M \simeq \left\{ \mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, \right\}$$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits a (possibly unrelated) Einstein metric g with $\lambda > 0$

$$\iff M \approx \begin{cases}
\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\
\end{cases}$$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits a (possibly unrelated) Einstein metric g with $\lambda > 0$

\[\iff \quad M \approx \begin{cases} \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ or \\ S^2 \times S^2 \end{cases} \]
Recall:

\(\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \)
Recall:

\[\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \]

Connected sum \#:
Recall:

\(\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \)

Connected sum \(\# \):
Recall:

$\overline{\mathbb{CP}^2} = \text{reverse oriented } \mathbb{CP}^2.$

Connected sum $\#:$

\[
\begin{array}{c}
\text{Diagram}
\end{array}
\]
Recall:

$\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2$.

Connected sum $\#$:
Recall:

\[\overline{\mathbb{C}P^2} = \text{reverse oriented } \mathbb{C}P^2. \]

Connected sum \#:
Recall:

\(\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \)

Connected sum \#:
Recall:

\(\overline{\mathbb{CP}^2} = \text{reverse oriented } \mathbb{CP}^2. \)

Connected sum \(\# \):
Recall:

\(\overline{\mathbb{CP}^2} = \text{reverse oriented } \mathbb{CP}^2 \).

Connected sum \#:

Blowing up:
Recall:

\(\overline{\mathbb{CP}^2} = \text{reverse oriented } \mathbb{CP}^2. \)

Connected sum \#:

Blowing up:
If \(N \) is a complex surface, may replace \(p \in N \) with \(\mathbb{CP}^1 \)
Recall:

\(\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2. \)

Connected sum \#:

Blowing up:

If \(N \) is a complex surface, may replace \(p \in N \) with \(\mathbb{CP}_1 \) to obtain blow-up
Recall:
\[
\overline{\mathbb{CP}_2} = \text{reverse oriented } \mathbb{CP}_2.
\]

Connected sum \#:

Blowing up:

If \(N \) is a complex surface, may replace \(p \in N \) with \(\mathbb{CP}_1 \) to obtain blow-up

\[
M \approx N \# \overline{\mathbb{CP}_2}
\]
Recall:

\(\overline{\mathbb{C}P_2} = \text{reverse oriented } \mathbb{C}P_2. \)

Connected sum \#:

Blowing up:

If \(N \) is a complex surface, may replace \(p \in N \) with \(\mathbb{C}P_1 \) to obtain blow-up

\[M \approx N \# \overline{\mathbb{C}P_2} \]

in which new \(\mathbb{C}P_1 \) has self-intersection \(-1\).
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits a (possibly unrelated) Einstein metric g with $\lambda > 0$

$$\iff M \approx \begin{cases} \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ \text{or} \\ S^2 \times S^2 \end{cases}$$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits a (possibly unrelated) Einstein metric g with $\lambda > 0$

\[\iff M \approx \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ or \\ S^2 \times S^2 \end{cases} \]

Diffeotypes: Del Pezzo surfaces.
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits a (possibly unrelated) Einstein metric g with $\lambda > 0$

\[\iff M \cong \begin{cases} \mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\ or \\ S^2 \times S^2 \end{cases} \]

Diffeotypes: Del Pezzo surfaces. ($\exists J$ with $c_1 > 0$.)
Proofs of stated result involve two parts:
Proofs of stated result involve two parts:

- obstructions to Einstein metrics with $\lambda > 0$:
Proofs of stated result involve two parts:

- obstructions to Einstein metrics with $\lambda > 0$:
 - Hitchin-Thorpe Inequality: $c_1^2 > 0$.

Proofs of stated result involve two parts:

- **obstructions to Einstein metrics with \(\lambda > 0 \):**
 - Hitchin-Thorpe Inequality: \(c_1^2 > 0 \).
 - Seiberg-Witten Theory: invariant must vanish.
Proofs of stated result involve two parts:

- **obstructions to Einstein metrics with \(\lambda > 0 \):**
 - Hitchin-Thorpe Inequality: \(c_1^2 > 0 \).
 - Seiberg-Witten Theory: invariant must vanish.
 - Enriques-Kodaira Classification.
Proofs of stated result involve two parts:

- **obstructions to Einstein metrics with \(\lambda > 0 \):**
 - Hitchin-Thorpe Inequality: \(c_1^2 > 0 \).
 - Seiberg-Witten Theory: invariant must vanish.
 - Enriques-Kodaira Classification.

- **existence of Einstein metrics with \(\lambda > 0 \):**
Proofs of stated result involve two parts:

- **obstructions to Einstein metrics with** \(\lambda > 0 \):
 - Hitchin-Thorpe Inequality: \(c_1^2 > 0 \).
 - Seiberg-Witten Theory: invariant must vanish.
 - Enriques-Kodaira Classification.

- **existence of Einstein metrics with** \(\lambda > 0 \):
 - Kähler geometry:
Proofs of stated result involve two parts:

- **obstructions to Einstein metrics with** $\lambda > 0$:
 - Hitchin-Thorpe Inequality: $c_1^2 > 0$.
 - Seiberg-Witten Theory: invariant must vanish.
 - Enriques-Kodaira Classification.

- **existence of Einstein metrics with** $\lambda > 0$:
 - Kähler geometry:
 - Kähler-Einstein metrics.
Proofs of stated result involve two parts:

- **obstructions to Einstein metrics with \(\lambda > 0 \):**
 - Hitchin-Thorpe Inequality: \(c_1^2 > 0 \).
 - Seiberg-Witten Theory: invariant must vanish.
 - Enriques-Kodaira Classification.

- **existence of Einstein metrics with \(\lambda > 0 \):**
 - Kähler geometry:
 * Kähler-Einstein metrics.
 * Conformally Kähler metrics.
Kähler metrics:
Kähler metrics:

\[(M^{2m}, g) \text{ Kähler } \iff \text{holonomy } \subseteq U(m)\]
Kähler metrics:

\((M^4, g)\) Kähler \iff \text{holonomy} \subset U(2)\)
Kähler metrics:

\((M^4, g)\) Kähler ⇐⇒ holonomy \(\subset U(2)\)

\(\iff\) \(\exists\) almost complex-structure \(J\) with \(\nabla J = 0\) and \(g(J\cdot, J\cdot) = g\).
Kähler metrics:

\((M^4, g)\) Kähler \iff\text{holonomy} \subset U(2) \iff\exists\text{almost complex-structure } J \text{ with } \nabla J = 0 \text{ and } g(J\cdot, J\cdot) = g. \iff (M^4, J) \text{ is a complex surface and } \exists J\text{-invariant closed 2-form } \omega \text{ such that } g = \omega(\cdot, J\cdot).
Kähler metrics:

\[(M^4, g) \text{ Kähler } \iff \text{holonomy } \subset U(2)\]

\[\iff \exists \text{ almost complex-structure } J \text{ with } \nabla J = 0 \text{ and } g(J\cdot, J\cdot) = g.\]

\[\iff (M^4, J) \text{ is a complex surface and } \exists J\text{-invariant closed 2-form } \omega \text{ such that } g = \omega(\cdot, J\cdot).\]

If we merely assume that
Kähler metrics:

\((M^4, g)\) Kähler \iff \text{holonomy } \subset U(2)\n
\iff \exists \text{ almost complex-structure } J \text{ with } \nabla J = 0 \text{ and } g(J \cdot, J \cdot) = g.\n
\iff (M^4, J) \text{ is a complex surface and } \exists J\text{-invariant closed 2-form } \omega \text{ such that } g = \omega(\cdot, J \cdot).\n
If we merely assume that

- \(J\) is integrable, and
Kähler metrics:

\((M^4, g)\) Kähler \iff \text{holonomy } \subset U(2) \iff \exists \text{ almost complex-structure } J \text{ with } \nabla J = 0 \text{ and } g(J\cdot, J\cdot) = g.\)

\iff (M^4, J) \text{ is a complex surface and } \exists J\text{-invariant closed 2-form } \omega \text{ such that } g = \omega(\cdot, J\cdot).\)

If we merely assume that

- \(J\) is integrable, and
- \(g(J\cdot, J\cdot) = g\)
Kähler metrics:

\[(M^4, g) \text{ Kähler} \iff \text{holonomy } \subset U(2)\]

\iff \exists \text{ almost complex-structure } J \text{ with } \nabla J = 0 \text{ and } g(J \cdot, J \cdot) = g.

\iff (M^4, J) \text{ is a complex surface and } \exists J\text{-invariant closed 2-form } \omega \text{ such that } g = \omega(\cdot, J \cdot).

If we merely assume that

- \(J\) is integrable, and
- \(g(J \cdot, J \cdot) = g\)

then \((M, J, g)\) is called Hermitian.
Kähler metrics:

\((M^4, g)\) Kähler \iff \text{holonomy} \subset U(2)

\iff \exists \text{almost complex-structure } J \text{ with } \nabla J = 0 \text{ and } g(J \cdot, J \cdot) = g.

\iff (M^4, J) \text{ is a complex surface and } \exists J\text{-invariant closed 2-form } \omega \text{ such that } g = \omega(\cdot, J \cdot).

If we merely assume that

- \(J\) is integrable, and
- \(g(J \cdot, J \cdot) = g\)

then \((M, J, g)\) is called Hermitian.

Much weaker!
Kähler metrics:

\((M^4, g)\) Kähler \iff \text{holonomy} \subset U(2)

\iff \exists \text{almost complex-structure } J \text{ with } \nabla J = 0 \text{ and } g(J \cdot, J \cdot) = g.

\iff (M^4, J) \text{ is a complex surface and } \exists J\text{-invariant closed 2-form } \omega \text{ such that } g = \omega(\cdot, J \cdot).
Kähler metrics:

\((M^4, g)\) Kähler ⇐⇒ holonomy \(\subset U(2)\)

⇐⇒ \(\exists\) almost complex-structure \(J\) with \(\nabla J = 0\)

and \(g(J\cdot, J\cdot) = g\).

⇐⇒ \((M^4, J)\) is a complex surface and \(\exists\) \(J\)-invariant closed 2-form \(\omega\) such that \(g = \omega(\cdot, J\cdot)\).

Kähler magic:

The 2-form

\(i\gamma(J\cdot, \cdot)\)
Kähler metrics:

\((M^4, g) \text{ Kähler } \iff \text{ holonomy } \subset U(2)\)

\iff \exists \text{ almost complex-structure } J \text{ with } \nabla J = 0 \text{ and } g(J\cdot, J\cdot) = g.

\iff (M^4, J) \text{ is a complex surface and } \exists J\text{-invariant closed 2-form } \omega \text{ such that } g = \omega(\cdot, J\cdot).

Kähler magic:

The 2-form

\(i\omega(J\cdot, \cdot)\)

is curvature of canonical line bundle \(K = \Lambda^{m,0}\).
Kähler metrics:

\((M^4, g)\) Kähler \iff\ \text{holonomy} \subset U(2)

\iff\ \exists\ \text{almost complex-structure } J \text{ with } \nabla J = 0 \text{ and } g(J\cdot, J\cdot) = g.

\iff\ \((M^4, J) \) is a complex surface and \(\exists J\)-invariant closed 2-form \(\omega \) such that \(g = \omega(\cdot, J\cdot) \).

Kähler magic:

The 2-form

\[i\omega(J\cdot, \cdot) \]

is curvature of canonical line bundle \(K = \Lambda^{2,0} \).
Conformal geometry:
Conformal geometry:

Two Riemannian metrics g and h are said to be conformally related if
Conformal geometry:

Two Riemannian metrics \(g \) and \(h \) are said to be conformally related if

\[h = f g \]

for some smooth function \(f : M \rightarrow \mathbb{R}^+ \).
Conformal geometry:

Two Riemannian metrics g and h are said to be conformally related if

$$h = fg$$

for some smooth function $f : M \to \mathbb{R}^+$.

If g is Kähler, we will then say that h is conformally Kähler.
Conformal geometry:

Two Riemannian metrics g and h are said to be conformally related if

$$h = fg$$

for some smooth function $f : M \to \mathbb{R}^+$.

If g is Kähler, we will then say that h is conformally Kähler.

When complex dimension $m \geq 2$, $f \neq \text{const} \implies h$ never Kähler for same J.
Conformal geometry:

Two Riemannian metrics g and h are said to be conformally related if

$$h = fg$$

for some smooth function $f : M \to \mathbb{R}^+$.

If g is Kähler, we will then say that h is conformally Kähler.

When complex dimension $m \geq 2$,

$f \neq \text{const} \implies h$ never Kähler for same J.

Conformally Kähler \implies Hermitian.
Conformal geometry:

Two Riemannian metrics g and h are said to be conformally related if

$$h = fg$$

for some smooth function $f : M \to \mathbb{R}^+$.

If g is Kähler, we will then say that h is conformally Kähler.

When complex dimension $m \geq 2$,

$f \neq \text{const} \iff h$ never Kähler for same J.

Conformally Kähler \Rightarrow Hermitian.
Einstein metrics which are Kähler
Kähler-Einstein metrics
Kähler-Einstein metrics on (M^4, J):
Kähler-Einstein metrics on (M^4, J):

Hardest case: $\lambda > 0$.
Kähler-Einstein metrics on \((M^4, J)\):

Hardest case: \(\lambda > 0\).

(Siu, Tian-Yau): \(\exists\) K-E metric \(g\) with \(\lambda > 0\) on
\[\mathbb{CP}^2 \# \mathbb{CP}^2 \# \cdots \# \mathbb{CP}^2.\]
\[3 \leq k \leq 8\]
Kähler-Einstein metrics on \((M^4, J)\):

Hardest case: \(\lambda > 0\).

(Siu, Tian-Yau): \(\exists\) K-E metric \(g\) with \(\lambda > 0\) on
\[\mathbb{CP}_2 \# \overline{\mathbb{CP}_2} \# \cdots \# \overline{\mathbb{CP}_2}\].

3 \leq k \leq 8

Full K-E moduli space: Tian, Chen-Wang.
Kähler-Einstein metrics on (M^4, J):

Hardest case: $\lambda > 0$.

(Siu, Tian-Yau): \exists K-E metric g with $\lambda > 0$ on $\mathbb{CP}^2 \# \overline{\mathbb{CP}^2} \# \cdots \# \overline{\mathbb{CP}^2}$. $3 \leq k \leq 8$

Full K-E moduli space: Tian, Chen-Wang.

Of course, \mathbb{CP}^2 and $S^2 \times S^2$ also admit K-E metrics with $\lambda > 0$ — namely, obvious homogeneous ones!
But $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$ or $\mathbb{CP}_2 \# 2 \overline{\mathbb{CP}}_2$ cannot admit Kähler-Einstein metrics.
But $\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$ or $\mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}$ cannot admit Kähler-Einstein metrics.

(Matsushima):

(M, J, g) compact K-E $\implies \text{Aut}(M, J)$ reductive.
But $\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}$ or $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$ cannot admit Kähler-Einstein metrics.

(Matsushima):

(M, J, g) compact K-E \implies Aut(M, J) reductive.

(Isom(M, g) is compact real form.)
But $\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}$ or $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$ cannot admit Kähler-Einstein metrics.

(Matsushima):

(M, J, g) compact K-E \implies Aut(M, J) reductive.

(Isom(M, g) is compact real form.)

Since $\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}$ and $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$ have non-reductive automorphism groups, no K-E metrics.
However, Page (’79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.
However, Page (’79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.

Derdziński (’83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.
However, Page (’79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$.

Derdziński (’83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.

Companion of Page metric:
However, Page (’79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}$.

Derdziński (’83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber ’08). *There is a $\lambda > 0$, conformally Kähler, Einstein metric h on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$.*
However, Page (’79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.

Derdziński (’83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber ’08). *There is a $\lambda > 0$, conformally Kähler, Einstein metric h on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$.***

Toric (cohomogeneity two).
However, Page (’79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}_2}$.

Derdziński (’83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber ’08). *There is a $\lambda > 0$, conformally Kähler, Einstein metric h on $\mathbb{CP}_2 \# 2 \overline{\mathbb{CP}_2}$.***

Toric (cohomogeneity two).
But not constructed explicitly.
However, Page (’79) discovered an explicit, $\lambda > 0$, cohomogeneity one Einstein metric on $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$.

Derdziński (’83) then discovered that this metric is conformally Kähler, and proved fundamental structure theorems concerning conformally Kähler, Einstein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber ’08). *There is a $\lambda > 0$, conformally Kähler, Einstein metric h on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$.***

Note both of above Einstein metrics are Hermitian.
Theorem A.
Theorem A. Let \((M^4, J)\) be a compact complex surface,
Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M.
Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:
Theorem A. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[h(J\cdot, J\cdot) = h. \]
Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J\cdot, J\cdot) = h.$$

Then either
Theorem A. Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J\cdot, J\cdot) = h.$$

Then either

- (M, J, h) is Kähler-Einstein; or
Theorem A. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[h(J\cdot, J\cdot) = h. \]

Then either

- \((M, J, h)\) is Kähler-Einstein; or
- \(M \approx \mathbb{C}P_2 \# \overline{\mathbb{C}P}_2\), and \(h\) is a constant times the Page metric; or
Theorem A. Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\):

\[h(J\cdot, J\cdot) = h. \]

Then either

- \((M, J, h)\) is Kähler-Einstein; or

- \(M \approx \mathbb{CP}_2 \# \mathbb{CP}_2\), and \(h\) is a constant times the Page metric; or

- \(M \approx \mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2\) and \(h\) is a constant times the CLW metric.
Proposition (L ’96). Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J:

$$h(J\cdot, J\cdot) = h.$$
Proposition (L ’96). Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\). Then \(h\) is conformal to a \(J\)-compatible Kähler metric \(g\).
Proposition (L ’96). Let (M^4, J) be a compact complex surface, and suppose that h is an Ein-stein metric on M which is Hermitian with respect to J. Then h is conformal to a J-compatible Kähler metric g.

Moreover, if h is not itself Kähler, then
Proposition (L ’96). Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J. Then h is conformal to a J-compatible Kähler metric g.

Moreover, if h is not itself Kähler, then

- (M, J) has $c_1 > 0$;
Proposition (L ‘96). Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\). Then \(h\) is conformal to a \(J\)-compatible Kähler metric \(g\).

Moreover, if \(h\) is not itself Kähler, then

- \((M, J)\) has \(c_1 > 0\);
- \(M \approx \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, k = 1, 2, 3;\)
Proposition (L ’96). Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\). Then \(h\) is conformal to a \(J\)-compatible Kähler metric \(g\).

Moreover, if \(h\) is not itself Kähler, then

- \((M, J)\) has \(c_1 > 0\);
- \(M \cong \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, k = 1, 2, 3;\)
- \(h\) has positive Einstein constant;
Proposition (L ’96). Let (M^4, J) be a compact complex surface, and suppose that h is an Einstein metric on M which is Hermitian with respect to J. Then h is conformal to a J-compatible Kähler metric g.

Moreover, if h is not itself Kähler, then

- (M, J) has $c_1 > 0$;
- $M \approx \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k = 1, 2, 3$;
- h has positive Einstein constant;
- g is an extremal Kähler metric;
Proposition (L ’96). Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\). Then \(h\) is conformal to a \(J\)-compatible Kähler metric \(g\).

Moreover, if \(h\) is not itself Kähler, then

- \((M, J)\) has \(c_1 > 0\);
- \(M \cong \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, \ k = 1, 2, 3\);
- \(h\) has positive Einstein constant;
- \(g\) is an extremal Kähler metric;
- \(g\) has scalar curvature \(s > 0\); and
Proposition (L ’96). Let \((M^4, J)\) be a compact complex surface, and suppose that \(h\) is an Einstein metric on \(M\) which is Hermitian with respect to \(J\). Then \(h\) is conformal to a \(J\)-compatible Kähler metric \(g\).

Moreover, if \(h\) is not itself Kähler, then

- \((M, J)\) has \(c_1 > 0\);
- \(M \cong \mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, k = 1, 2, 3\);
- \(h\) has positive Einstein constant;
- \(g\) is an extremal Kähler metric;
- \(g\) has scalar curvature \(s > 0\); and
- after normalization, \(h = s^{-2}g\).
Ingredients:
Ingredients:

• **Goldberg-Sachs Theorem**
Ingredients:

- Goldberg-Sachs Theorem

 \(-T^{1,0}M\) isotropic, integrable, \(\nabla^a(W_+)_{abcd} = 0\)
Ingredients:

- **Goldberg-Sachs Theorem**
 \[-T^{1,0}M \text{ isotropic, integrable, } \nabla^a (W_+)_{abcd} = 0\]

- **Derdzinski’s Theorem**
Ingredients:

- **Goldberg-Sachs Theorem**
 \[T^{1,0} M \text{ isotropic, integrable, } \nabla^a (W_+)_{abcd} = 0 \]

- **Derdzinski’s Theorem**
 \[h \text{ Einstein, } W_+ \text{ special } \Rightarrow \text{ conformally Kähler} \]
Ingredients:

- **Goldberg-Sachs Theorem**

 \[T^{1,0}_M \text{ isotropic, integrable, } \nabla^a (W_+)^{abcd} = 0 \]

- **Derdzinski’s Theorem**

 \[h \text{ Einstein, } W_+ \text{ special } \Rightarrow \text{ conformally Kähler} \]

- **c_1 > 0**
Ingredients:

- **Goldberg-Sachs Theorem**
 \[-T^{1,0} \mathcal{M} \text{ isotropic, integrable, } \nabla^a (W_+)_{abcd} = 0\]

- **Derdzinski’s Theorem**
 \[-h \text{ Einstein, } W_+ \text{ special } \Rightarrow \text{ conformally Kähler}\]

- **\(c_1 > 0\)**
 \[-\text{because } \rho + 2i \partial \bar{\partial} \log s \text{ positive } (1, 1)-\text{form.}\]
Ingredients:

- **Goldberg-Sachs Theorem**

 \[- T^{1,0} M \text{ isotropic, integrable, } \nabla^a (W_+)^{abcd} = 0 \]

- **Derdzinski’s Theorem**

 \[- h \text{ Einstein, } W_+ \text{ special } \Rightarrow \text{ conformally Kähler} \]

- **c_1 > 0**

 \[- \text{ because } \rho + 2i \partial \bar{\partial} \log s \text{ positive } (1, 1)-\text{form.} \]

- **Automorphism group non-trivial, non-semi-simple.**
Ingredients:

- Goldberg-Sachs Theorem
 \[-T^{1,0} M \text{ isotropic, integrable, } \nabla^a (W_+)^{abcd} = 0\]

- Derdzinski’s Theorem
 \[-h \text{ Einstein, } W_+ \text{ special } \Rightarrow \text{ conformally Kähler}\]

- \(c_1 > 0\)
 \[-\text{because } \rho + 2i\partial\bar{\partial}\log s \text{ positive (1, 1)-form.}\]

- Automorphism group non-trivial, non-semi-simple.
 \[-g \text{ is extremal, } s \text{ non-constant.}\]
Calabi: $\text{Iso}(g) \subset \text{Aut}(M)$ maximal compact.
Calabi: $\text{Iso}(g) \subset \text{Aut}(M)$ maximal compact.

Bérard-Bergery: cohomogeneity-1 Einstein class’n.
Calabi: $\text{Iso}(g) \subset \text{Aut}(M)$ maximal compact.

Bérard-Bergery: cohomogeneity-1 Einstein class’n.

Proposition. *Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{C}P_2 \# \overline{\mathbb{C}P}_2$, namely the Page metric.*
Calabi: \(\text{Iso}(g) \subset \text{Aut}(M) \) maximal compact.

Bérard-Bergery: cohomogeneity-1 Einstein class’n.

Proposition. *Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric \(h \) on \(M = \mathbb{CP}^2 \# \overline{\mathbb{CP}^2} \), namely the Page metric.*

But need new ideas to prove the following...
Theorem 1. *Up to automorphisms and rescaling,*
Theorem 1. *Up to automorphisms and rescaling, there is exactly one*
Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler,
Theorem 1. *Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$.***
Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}^2 \# 2 \overline{\mathbb{CP}^2}$. This is the CLW metric.
Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling,
Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling, there is exactly one
Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling, there is exactly one conformally Kähler,
Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2 \overline{\mathbb{CP}_2}$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h
Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}^2 \# 2\mathbb{CP}^2$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}^2 \# 3\mathbb{CP}^2$.
Theorem 1. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 2 \overline{\mathbb{CP}}_2$. This is the CLW metric.

Theorem 2. Up to automorphisms and rescaling, there is exactly one conformally Kähler, Einstein metric h on $M = \mathbb{CP}_2 \# 3 \overline{\mathbb{CP}}_2$. However, this metric is Kähler-Einstein.
Calabi:
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]

where \(g = g_\omega \) for \(J \) and \([\omega] \in H^2(M, \mathbb{R}) \) fixed.
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]

where \(g = g_\omega \) for \(J \) and \([\omega] \in H^2(M, \mathbb{R}) \) fixed.

Euler-Lagrange equations
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]

where \(g = g_\omega \) for \(J \) and \([\omega] \in H^2(M, \mathbb{R})\) fixed.

Euler-Lagrange equations \iff

\(\nabla^{1,0} s \) is a holomorphic vector field.
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]

where \(g = g_\omega \) for \(J \) and \([\omega] \in H^2(M, \mathbb{R}) \) fixed.

Euler-Lagrange equations \(\iff \)

\(J \nabla s \) is a Killing field.
Calabi:

Extremal Kähler metrics = critical points of

$$g \mapsto \int_M s^2 d\mu_g$$

where $g = g_\omega$ for J and $[\omega] \in H^2(M, \mathbb{R})$ fixed.

Euler-Lagrange equations \iff

$J \nabla s$ is a Killing field.

X.X. Chen: always minimizers.
Calabi:

Extremal Kähler metrics = critical points of

\[g \mapsto \int_M s^2 d\mu_g \]

where \(g = g_\omega \) for \(J \) and \([\omega] \in H^2(M, \mathbb{R})\) fixed.

Euler-Lagrange equations \(\iff \)

\(J\nabla s \) is a Killing field.

Donaldson/Mabuchi/Chen-Tian:
unique in Kähler class, modulo bihomorphisms.
Explicit lower bound:

Any Kähler \((M^4, g, J)\) satisfies

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g \geq \mathcal{A}([\omega])
\]
Explicit lower bound:

Any Kähler \((M^4, g, J)\) satisfies

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g \geq \mathcal{A}([\omega])
\]

with \(= \iff g\) extremal
Explicit lower bound:

Any Kähler \((M^4, g, J)\) satisfies

\[
\frac{1}{32\pi^2} \int s^2 d\mu_g \geq \mathcal{A}([\omega])
\]

with \(= \iff g\) extremal, where

\[
\mathcal{A}([\omega]) := \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} + \frac{1}{32\pi^2} \| \mathcal{F}_{[\omega]} \|^2
\]

where \(\mathcal{F}\) is Futaki invariant.
(M, J) Del Pezzo. $\mathcal{K} \subset H^2(M, \mathbb{R})$ Kähler cone.
Proposition. Suppose that h is an Einstein metric on M which is conformally related to a J-compatible Kähler metric g with Kähler class $[\omega] = \Omega \in \mathcal{K}$.

(M, J) Del Pezzo. $\mathcal{K} \subset H^2(M, \mathbb{R})$ Kähler cone.

Proposition. Suppose that h is an Einstein metric on M which is conformally related to a J-compatible Kähler metric g with Kähler class $[\omega] = \Omega \in \mathcal{K}$.

(M, J) Del Pezzo. $\mathcal{K} \subset H^2(M, \mathbb{R})$ Kähler cone.
\((M, J)\) Del Pezzo. \(\mathcal{K} \subset H^2(M, \mathbb{R})\) Kähler cone.

Proposition. Suppose that \(h\) is an Einstein metric on \(M\) which is conformally related to a \(J\)-compatible Kähler metric \(g\) with Kähler class \([\omega] = \Omega \in \mathcal{K}\). Then \(\Omega\) is a critical point of

\[\mathcal{A} : \mathcal{K} \to \mathbb{R}. \]
(\(M, J\)) Del Pezzo. \(\mathcal{K} \subset H^2(M, \mathbb{R})\) Kähler cone.

Proposition. Suppose that \(h\) is an Einstein metric on \(M\) which is conformally related to a \(J\)-compatible Kähler metric \(g\) with Kähler class \([\omega] = \Omega \in \mathcal{K}\). Then \(\Omega\) is a critical point of

\[
\mathcal{A} : \mathcal{K} \rightarrow \mathbb{R}.
\]

Moreover, \(g\) is an extremal Kähler metric, and the scalar curvature \(s\) of \(g\) is everywhere positive.
Proposition. Suppose that \(h \) is an Einstein metric on \(M \) which is conformally related to a \(J \)-compatible Kähler metric \(g \) with Kähler class \([\omega] = \Omega \in \mathcal{K}\). Then \(\Omega \) is a critical point of

\[
\mathcal{A} : \mathcal{K} \to \mathbb{R}.
\]

Moreover, \(g \) is an extremal Kähler metric, and the scalar curvature \(s \) of \(g \) is everywhere positive.

Conversely, if \(\Omega \in \mathcal{K} \) is a critical point of \(\mathcal{A} \), and if \(\omega \in \Omega \) is the Kähler form of an extremal Kähler metric \(g \) with scalar curvature \(s > 0 \), then \(h = s^{-2}g \) is an Einstein metric on \(M \).
(M, J) Del Pezzo. $\mathcal{K} \subset H^2(M, \mathbb{R})$ Kähler cone.

Proposition. Suppose that h is an Einstein metric on M which is conformally related to a J-compatible Kähler metric g with Kähler class $[\omega] = \Omega \in \mathcal{K}$. Then Ω is a critical point of $A : \mathcal{K} \to \mathbb{R}$.

Moreover, g is an extremal Kähler metric, and the scalar curvature s of g is everywhere positive.

Conversely, if $\Omega \in \mathcal{K}$ is a critical point of A, and if $\omega \in \Omega$ is the Kähler form of an extremal Kähler metric g with scalar curvature $s > 0$, then $h = s^{-2}g$ is an Einstein metric on M.

Lemma. For any extremal Kähler g on any Del Pezzo M, scalar curvature $s > 0$ everywhere.
(M, J) Del Pezzo. $\mathcal{K} \subset H^2(M, \mathbb{R})$ Kähler cone.

Proposition. Suppose that h is an Einstein metric on M which is conformally related to a J-compatible Kähler metric g with Kähler class $[\omega] = \Omega \in \mathcal{K}$. Then Ω is a critical point of

$$A : \mathcal{K} \to \mathbb{R}.$$

Moreover, g is an extremal Kähler metric.

Conversely, if $\Omega \in \mathcal{K}$ is a critical point of A, and if $\omega \in \Omega$ is the Kähler form of an extremal Kähler metric g,

then $h = s^{-2}g$ is an Einstein metric on M.

Lemma. For any extremal Kähler g on any Del Pezzo M, scalar curvature $s > 0$ everywhere.
Special character of dimension 4:
Special character of dimension 4:

On oriented \((M^4, g)\),

\[\Lambda^2 = \Lambda^+ \oplus \Lambda^- \]
Special character of dimension 4:

On oriented \((M^4, g)\),

\[\Lambda^2 = \Lambda^+ \oplus \Lambda^- \]

where \(\Lambda^\pm\) are \((\pm 1)\)-eigenspaces of

\[\star : \Lambda^2 \to \Lambda^2, \]

\[\star^2 = 1. \]
Special character of dimension 4:

On oriented \((M^4, g)\),
\[\Lambda^2 = \Lambda^+ \oplus \Lambda^- \]
where \(\Lambda^\pm\) are \((\pm 1)\)-eigenspaces of \(\star: \Lambda^2 \to \Lambda^2\),
\[\star^2 = 1. \]

\(\Lambda^+\) self-dual 2-forms.
\(\Lambda^-\) anti-self-dual 2-forms.
Riemann curvature of g

$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

\[
\begin{array}{cc}
\Lambda^+ & \Lambda^{*+} \\
W_+ + \frac{s}{12} & W_0 \\
\Lambda^- & \Lambda^{*-} \\
\hat{r} & \hat{r}
\end{array}
\]
Riemann curvature of g

$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$

splits into 4 irreducible pieces:

\[
\begin{array}{cccc}
\Lambda^+ & W_+ + \frac{s}{12} & \hat{r} \\
\Lambda^- & \hat{r} & W_- + \frac{s}{12} \\
\end{array}
\]

where

$s = \text{scalar curvature}$

$\hat{r} = \text{trace-free Ricci curvature}$

$W_+ = \text{self-dual Weyl curvature}$

$W_- = \text{anti-self-dual Weyl curvature}$
Riemann curvature of g

$R : \Lambda^2 \rightarrow \Lambda^2$

splits into 4 irreducible pieces:

![Diagram of Riemann curvature components]

where

$s = \text{scalar curvature}$

$\hat{r} = \text{trace-free Ricci curvature}$

$W_+ = \text{self-dual Weyl curvature (conformally invariant)}$

$W_- = \text{anti-self-dual Weyl curvature}$
Kähler case:

$$\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^{-}$$
Kähler case:

\[\Lambda^{1,1} = \mathbb{R} \omega \oplus \Lambda^- \]

\[\Lambda^+ = \mathbb{R} \omega \oplus \text{Re}(\Lambda^{2,0}) \]
Kähler case:

\[\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^- \]

\[\Lambda^+ = \mathbb{R}\omega \oplus \Re(\Lambda^{2,0}) \]

\[\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \]
Kähler case:

\[\Lambda^{1,1} = \mathbb{R} \omega \oplus \Lambda^- \]

\[\Lambda^+ = \mathbb{R} \omega \oplus \mathbb{R} \text{e}(\Lambda^{2,0}) \]

\[\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \]

\[W_+ + \frac{s}{12} = \begin{pmatrix} 0 & \ast \\ 0 & 0 \end{pmatrix} \]
Kähler case:

\[\Lambda^{1,1} = \mathbb{R} \omega \oplus \Lambda^- \]

\[\Lambda^+ = \mathbb{R} \omega \oplus \Re(\Lambda^{2,0}) \]

\[\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \implies \]

\[W_+ + \frac{s}{12} = \begin{pmatrix} 0 \\ 0 \\ \frac{s}{4} \end{pmatrix} \]
Kähler case:

\[\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^- \]

\[\Lambda^+ = \mathbb{R}\omega \oplus \Re(\Lambda^{2,0}) \]

\[\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \implies \]

\[
W_+ = \begin{pmatrix}
-\frac{s}{12} & \frac{s}{6} \\
-\frac{s}{12} & \frac{s}{6}
\end{pmatrix}
\]
Kähler case:

\[\Lambda^{1,1} = \mathbb{R}\omega \oplus \Lambda^- \]

\[\Lambda^+ = \mathbb{R}\omega \oplus \Re(\Lambda^{2,0}) \]

\[\nabla J = 0 \implies \mathcal{R} \in \text{End}(\Lambda^{1,1}) \implies \]

\[|W_+|^2 = \frac{s^2}{24} \]
The Bach Tensor

Conformally invariant Riemannian functional:

\[\mathcal{W}(g) = \int_{M} |W|_{g}^{2} d\mu_{g}. \]
The Bach Tensor

Conformally invariant Riemannian functional:

\[\mathcal{W}(g) = 2 \int_M |W_+|^2 d\mu_g - 12\pi^2 \tau(M) \]
The Bach Tensor

Conformally invariant Riemannian functional:

\[\mathcal{W}(g) = \int_M |W|^2_g d\mu_g. \]
The Bach Tensor

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_M |W|^2_g d\mu_g.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$
The Bach Tensor

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_M |W|^2_g d\mu_g.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\left. \frac{d}{dt} \mathcal{W}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} d\mu_g$$
The Bach Tensor

Conformally invariant Riemannian functional:

$$\mathcal{W}(g) = \int_M |W|^2_g d\mu_g.$$

1-parameter family of metrics

$$g_t := g + t\dot{g} + O(t^2)$$

First variation

$$\frac{d}{dt} \mathcal{W}(g_t) \bigg|_{t=0} = - \int \dot{g}^{ab} B_{ab} \, d\mu_g$$

where

$$B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \tilde{\nabla}^{cd}) W_{acbd} \cdot$$

is the Bach tensor of g.
The Bach Tensor

Conformally invariant Riemannian functional:

\[\mathcal{W}(g) = \int_M |W|^2_g d\mu_g. \]

1-parameter family of metrics

\[g_t := g + t\dot{g} + O(t^2) \]

First variation

\[\left. \frac{d}{dt} \mathcal{W}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \, d\mu_g \]

where

\[B_{ab} = 2(\nabla^c \nabla^d + \frac{1}{2} \mathring{r}^{cd})(W+)_{acbd}. \]

is the Bach tensor of \(g \).
The Bach Tensor

Conformally invariant Riemannian functional:
\[\mathcal{W}(g) = \int_M |W|^2_g d\mu_g. \]

1-parameter family of metrics
\[g_t := g + t\dot{g} + O(t^2) \]

First variation
\[\frac{d}{dt} \mathcal{W}(g_t) \bigg|_{t=0} = - \int \dot{g}^{ab} B_{ab} d\mu_g \]

where
\[B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \hat{r}^{cd}) W_{acbd} . \]

is the Bach tensor of \(g \). Symmetric, trace-free.
The Bach Tensor

Conformally invariant Riemannian functional:
\[\mathcal{W}(g) = \int_M |W|^2_g d\mu_g. \]

1-parameter family of metrics
\[g_t := g + t\dot{g} + O(t^2) \]

First variation
\[\frac{d}{dt} \mathcal{W}(g_t) \bigg|_{t=0} = -\int \dot{g}^{ab} B_{ab} \ d\mu_g \]

where
\[B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \hat{\tau}^{cd}) W_{acbd}. \]

is the Bach tensor of \(g \). Symmetric, trace-free.

\[\nabla^a B_{ab} = 0 \]
The Bach Tensor

Conformally invariant Riemannian functional:
\[\mathcal{W}(g) = \int_M |W|^2_g d\mu_g. \]

1-parameter family of metrics
\[g_t := g + t\dot{g} + O(t^2) \]

First variation
\[\left. \frac{d}{dt} \mathcal{W}(g_t) \right|_{t=0} = -\int \dot{g}^{ab} B_{ab} \, d\mu_g \]

where
\[B_{ab} := (\nabla^c \nabla^d + \frac{1}{2} \mathbb{R}^{cd}) W_{acbd}. \]

is the Bach tensor of \(g \).

Conformally Einstein \(\implies B = 0 \)
Restriction of \mathcal{W} to Kähler metrics?
Restriction of \mathcal{W} to Kähler metrics?

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$
Restriction of \mathcal{W} to Kähler metrics?

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.
Restriction of \mathcal{W} to Kähler metrics?

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Now for an extremal Kähler metric

$$B = \frac{1}{12} \left[s\dot{r} + 2\text{Hess}_0(s) \right]$$
Restriction of \mathcal{W} to Kähler metrics?

On Kähler metrics,

$$\int |W_+|^2 d\mu = \int \frac{s^2}{24} d\mu$$

so any critical point of restriction must be extremal in sense of Calabi.

Now for an extremal Kähler metric

$$B = \frac{1}{12} \left[s\dot{r} + 2\text{Hess}_0(s) \right]$$

and corresponds to harmonic primitive $(1, 1)$-form

$$\psi := B(J\cdot, \cdot) = \frac{1}{12} \left[s\rho + 2i\partial\bar{\partial}s \right]_0$$
Restriction of \mathcal{W} to Kähler metrics.
Restriction of \mathcal{W} to Kähler metrics.

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics,
Restriction of \mathcal{W} to Kähler metrics.

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to

$$\omega_t = \omega + t\psi$$
Restriction of \mathcal{W} to Kähler metrics.

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to

$$\omega_t = \omega + t\psi$$

and first variation is

$$\left. \frac{d}{dt} \mathcal{W}(g_t) \right|_{t=0} = \int \dot{g}^{ab} B_{ab} \ d\mu_g$$

$$= - \int |B|^2 \ d\mu_g$$
Restriction of \mathcal{W} to Kähler metrics.

Hence if g is extremal Kähler metric,

$$g_t = g + tB$$

is a family of Kähler metrics, corresponding to

$$\omega_t = \omega + t\psi$$

and first variation is

$$\left. \frac{d}{dt} \mathcal{W}(g_t) \right|_{t=0} = \int \dot{g}^{ab} B_{ab} \, d\mu_g$$

$$= - \int |B|^2 \, d\mu_g$$

So the critical points of restriction of \mathcal{W} to \{Kähler metrics\} also have $B = 0$!
Bach-flat Kähler metrics?
Bach-flat Kähler metrics?

If \((M^4, J, g)\) Kähler, \(s^{-1}W_+\) parallel.
Bach-flat Kähler metrics?

If (M^4, J, g) Kähler, $s^{-1}W_+$ parallel. Hence

$$\nabla^a(s^{-1}W_+)^{abcd} = 0.$$
Bach-flat Kähler metrics?

If \((M^4, J, g)\) Kähler, \(s^{-1} W_+\) parallel. Hence

\[\nabla^a (s^{-1} W_+)_{abcd} = 0. \]

Conformally invariant, with appropriate weight!
Bach-flat Kähler metrics?

If \((M^4, J, g)\) Kähler, \(s^{-1}W_+\) parallel. Hence
\[
\nabla^a(s^{-1}W_+)_{abcd} = 0.
\]
Conformally invariant, with appropriate weight!

Hence \(h = s^{-2}g\) satisfies
\[
\nabla^a(W_+)_{abcd} = 0
\]
where defined.
Bach-flat Kähler metrics?

If \((M^4, J, g)\) Kähler, \(s^{-1}W_+\) parallel. Hence

\[
\nabla^a(s^{-1}W_+)_{abcd} = 0.
\]

Conformally invariant, with appropriate weight!

Hence \(h = s^{-2}g\) satisfies

\[
\nabla^a(W_+)_{abcd} = 0
\]

where defined.

\[
B_{ab} = 2(\nabla^c \nabla^d + \frac{1}{2} \tilde{r}^{cd})(W_+)_{acbd}.
\]
Bach-flat Kähler metrics?

If \((M^4, J, g)\) Kähler, \(s^{-1}W_+\) parallel. Hence

\[
\nabla^a(s^{-1}W_+)_{abcd} = 0.
\]

Conformally invariant, with appropriate weight!

Hence \(h = s^{-2}g\) satisfies

\[
\nabla^a(W_+)_{abcd} = 0
\]

where defined.

\[
B_{ab} = 2(\nabla^c\nabla^d + \frac{1}{2}\bar{\mathring{r}}^{cd})(W_+)_{abcd}.
\]

If \(g\) Bach-flat, \(h = s^{-2}g\) Einstein satisfies

\[
0 = \bar{\mathring{r}}^{cd}(W_+)_{abcd}
\]
Bach-flat Kähler metrics?

If \((M^4, J, g)\) Kähler, \(s^{-1}W_+\) parallel. Hence
\[
\nabla^a (s^{-1}W_+)_{abcd} = 0.
\]

Conformally invariant, with appropriate weight!

Hence \(h = s^{-2}g\) satisfies
\[
\nabla^a (W_+)_{abcd} = 0
\]
where defined.

\[
B_{ab} = 2(\nabla^c \nabla^d + \frac{1}{2} r^{cd})(W_+)_{acbd}.
\]

If \(g\) Bach-flat, \(h = s^{-2}g\) Einstein satisfies
\[
0 = \hat{r}^{cd}(W_+)_{acbd}
\]
and so Einstein when \(s \neq 0\).
Bach-flat Kähler metrics?

If \((M^4, J, g)\) Kähler, \(s^{-1}W_+\) parallel. Hence
\[
\nabla^a(s^{-1}W_+)_{abcd} = 0.
\]

Conformally invariant, with appropriate weight!

Hence \(h = s^{-2}g\) satisfies
\[
\nabla^a(W_+)_{abcd} = 0
\]
where defined.

\[
B_{ab} = 2(\nabla^c \nabla^d + \frac{1}{2} \hat{r}^{cd})(W_+)_{abcd}.
\]

If \(g\) Bach-flat, \(h = s^{-2}g\) Einstein satisfies
\[
0 = \hat{r}^{cd}(W_+)_{abcd}
\]
and so Einstein when \(s \neq 0\).

Del Pezzo case: \(s \neq 0\) everywhere!
To prove uniqueness results, show that

\[\mathcal{A} : \mathcal{K} \to \mathbb{R} \]

has unique critical point for relevant \(M \).
To prove uniqueness results, show that

\[\mathcal{A} : \mathcal{K} \rightarrow \mathbb{R} \]

has unique critical point for relevant \(M \).

\(\mathcal{A} \) is explicit rational function —
To prove uniqueness results, show that

\[\mathcal{A} : \mathcal{K} \rightarrow \mathbb{R} \]

has unique critical point for relevant \(M \).

\(\mathcal{A} \) is explicit rational function — but quite complicated!
To prove uniqueness results, show that

\[\mathcal{A} : \mathcal{K} \rightarrow \mathbb{R} \]

has unique critical point for relevant \(M \).

\(\mathcal{A} \) is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under full automorphism group of \(M \).
To prove uniqueness results, show that

\[\mathcal{A} : \mathcal{K} \rightarrow \mathbb{R} \]

has unique critical point for relevant \(M \).

\(\mathcal{A} \) is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under full automorphism group of \(M \).

Done by showing \(\mathcal{A} \) convex on certain lines.
To prove uniqueness results, show that

\[\mathcal{A} : \mathcal{K} \to \mathbb{R} \]

has unique critical point for relevant \(M \).

\(\mathcal{A} \) is explicit rational function — but quite complicated!

Proof proceeds by showing critical point invariant under full automorphism group of \(M \).

Done by showing \(\mathcal{A} \) convex on certain lines.

Necessary calculations also led to new existence proof. . .
Theorem B. There is a Kähler metric g on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$ which is conformal to an Einstein metric.
Theorem B. There is a Kähler metric g on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family
Theorem B. There is a Kähler metric g on $\mathbb{CP}_2 \# 2 \overline{\mathbb{CP}}_2$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family

$$[0, 1) \ni t \mapsto g_t$$
Theorem B. There is a Kähler metric g on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family $[0, 1) \ni t \mapsto g_t$ of extremal Kähler metrics on $\mathbb{CP}_2 \# 3\overline{\mathbb{CP}}_2$ s.t.
Theorem B. There is a Kähler metric g on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family $[0, 1) \ni t \mapsto g_t$ of extremal Kähler metrics on $\mathbb{CP}_2 \# 3\overline{\mathbb{CP}}_2$ s.t.

- g_0 is Kähler-Einstein, and such that
Theorem B. There is a Kähler metric g on $\mathbb{CP}_2\#2\overline{\mathbb{CP}}_2$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family $[0, 1) \ni t \mapsto g_t$ of extremal Kähler metrics on $\mathbb{CP}_2\#3\overline{\mathbb{CP}}_2$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \to g$ in the Gromov-Hausdorff sense
Theorem B. There is a Kähler metric g on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$ which is conformal to an Einstein metric. Moreover, there is a 1-parameter family

$$[0, 1) \ni t \mapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2 \# 3\overline{\mathbb{CP}}_2$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \to g$ in the Gromov-Hausdorff sense

for some $t_j \uparrow 1$.
Theorem 3. Let $M = \mathbb{CP}_2 \# 3 \overline{\mathbb{CP}}_2$ be the blow-up of \mathbb{CP}_2 at three non-collinear points, and let
Theorem 3. Let $M = \mathbb{CP}_2 \# 3\overline{\mathbb{CP}}_2$ be the blow-up of \mathbb{CP}_2 at three non-collinear points, and let $[\omega]$ be a Kähler class on M for which

$$\mathcal{T}([\omega]) := \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \leq \frac{3}{2}c_1^2 - \frac{1}{4} = c_1^2 + 2.75.$$
Theorem 3. Let $M = \mathbb{CP}_2 \# 3 \overline{\mathbb{CP}}_2$ be the blow-up of \mathbb{CP}_2 at three non-collinear points, and let $[\omega]$ be a Kähler class on M for which

$$\mathcal{T}([\omega]) := \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \leq \frac{3}{2} c_1^2 - \frac{1}{4} = c_1^2 + 2.75.$$

Then there is an extremal Kähler metric g on M with Kähler form $\omega \in [\omega]$.
\(\mathcal{K} \subset H^{1,1}(M, \mathbb{R}) = H^2(M, \mathbb{R}) \)
\[\mathcal{T}([\omega]) = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \leq \text{const} \]
\[\mathcal{T}([\omega]) = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \leq \text{const} \]
\[\mathcal{T}([\omega]) = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \leq \text{const} \]
\[T([\omega]) = \frac{(c_1 \cdot [\omega])^2}{[\omega]^2} \leq \text{const} \]
Theorem 4. Let Ω be any Kähler class on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$ for which

$$\mathcal{T}(\Omega) < 8.75 = c_1^2 + 1.75.$$
Theorem 4. Let Ω be any Kähler class on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$ for which
\[T(\Omega) < 8.75 = c_1^2 + 1.75. \]
Then there is an extremal Kähler metric g in Ω,
Theorem 4. Let Ω be any Kähler class on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$ for which

$$\mathcal{T}(\Omega) < 8.75 = c_1^2 + 1.75.$$

Then there is an extremal Kähler metric g in Ω, and a 1-parameter family

$$[0, 1) \ni t \mapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2 \# 3\overline{\mathbb{CP}_2}$.
Theorem 4. Let Ω be any Kähler class on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}}_2$ for which

$$\mathcal{T}(\Omega) < 8.75 = c_1^2 + 1.75.$$

Then there is an extremal Kähler metric g in Ω, and a 1-parameter family

$$[0, 1) \ni t \mapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2 \# 3\overline{\mathbb{CP}}_2$ s.t.

- g_0 is Kähler-Einstein, and such that
- $g_{t_j} \to g$ in the Gromov-Hausdorff sense for some $t_j \uparrow 1$.
Theorem 4. Let Ω be any Kähler class on $\mathbb{CP}_2 \# 2\overline{\mathbb{CP}_2}$ for which

$$\mathcal{T}(\Omega) < 8.75 = c_1^2 + 1.75.$$

Then there is an extremal Kähler metric g in Ω, and a 1-parameter family

$$[0, 1) \ni t \mapsto g_t$$

of extremal Kähler metrics on $\mathbb{CP}_2 \# 3\overline{\mathbb{CP}_2}$ s.t.

• g_0 is Kähler-Einstein, and such that

• $g_{t_j} \rightarrow g$ in the Gromov-Hausdorff sense for some $t_j \uparrow 1$.

Theorem B follows.
Ingredients:
Ingredients:

- Continuity method
Ingredients:

- Continuity method

\[\Omega_t = (1 - t)c_1 + t\Omega \]
Ingredients:

- Continuity method

\[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]
- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow \) openness.
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]
- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow\) openness.
- Chen-Weber
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow \) openness.

- Chen-Weber
 - Gromov-Hausdorff convergence...
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem ⇒ openness.

- Chen-Weber
 - Gromov-Hausdorff convergence...

- Sobolev Control
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow\) openness.

- Chen-Weber
 - Gromov-Hausdorff convergence . . .

- Sobolev Control
 - Yamabe trick + Gauss-Bonnet . . .
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow \) openness.

- Chen-Weber
 - Gromov-Hausdorff convergence . . .

- Sobolev Control
 - Yamabe trick + Gauss-Bonnet . . .

- Control bubbling
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow\) openness.

- Chen-Weber
 - Gromov-Hausdorff convergence . . .

- Sobolev Control
 - Yamabe trick + Gauss-Bonnet . . .

- Control bubbling
 - Toric geometry
Ingredients:

- Continuity method
 \[\Omega_t = (1 - t)c_1 + t\Omega \]

- LeBrun-Simanca
 - Inverse function theorem \(\Rightarrow\) openness.

- Chen-Weber
 - Gromov-Hausdorff convergence…

- Sobolev Control
 - Yamabe trick + Gauss-Bonnet…

- Control bubbling
 - Toric geometry
 - Symplectic 2-spheres \(\rightsquigarrow\) Lagrangian 2-spheres