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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Mathematicians call A the Einstein constant.

Has same sign as the scalar curvature
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Kahler geometry provides us with a particularly rich
source of examples of compact Einstein manifolds.

Basic question: What do these special examples
tell us about general Einstein metrics?

In high dimensions:

Apparently, very little!

In real dimension four:

Surprisingly much!
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Dimension Four is Exceptional

Any Kahler form on M?2™ is a symplectic form:
do =0 _w:TM > T*M.

When n = 4, this affects the differential topology,
by yielding non-zero Seiberg-Witten invariants.

This in turn constrains the scalar curvature etc. of
arbitrary Riemannian metrics on the 4-manifold.

There is no higher-dimensional version of this story!
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Special character of dimension 4:

On oriented (M4, g),
A= AT @A™
where A* are (£1)-eigenspaces of
%A% — A2,
* = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.

Reversing orientation interchanges A1 ews A7



Riemann curvature of ¢

R A% 5 A?



Riemann curvature of ¢
R: A% — A?

splits into 4 irreducible pieces:

[

W_|_—|-1—52




Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—52 r




Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—52 r

where

s = scalar curvature
trace-free Riccl curvature

o
|

=
:
|

= self-dual Weyl curvature
W _ = anti-selt-dual Weyl curvature



Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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H*(M,R)={p e D(A%) | dp =0, d*yp =0}

Since * is involution of RHS, —
H*(M,R) =H} dH,,

where

Hy ={p € T(A\") | dp = 0}

self-dual & anti-self-dual harmonic forms.

The numbers
by (M) = dimH

are independent of ¢, and so are invariants of M.
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Best understood in terms of intersection pairing

(1o, [0]) H/MsOMD

Diagonalize:

+1

—1

T(M) = by (M) — b_(M)
“Signature” of M.
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Hodge theory:

H*(M,R)={p e D(A%) | dp =0, d*yp =0}
Since * is involution of RHS, —

H*(M,R) =H} dH,,

where

Hy ={p € T(\") | dp = 0}

self-dual & anti-self-dual harmonic forms.

Example. On any Kihler (M4, ¢, J), Kéhler form
W = g(J7 )

1s a harmonic self-dual 2-form:

+
wE?—[g
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Hodge theory:

H*(M,R)={p e D(A%) | dp =0, d*yp =0}
Since * is involution of RHS, —

H*(M,R) =H} dH,,

where

Hy ={p € T(\") | dp = 0}

self-dual & anti-self-dual harmonic forms.

Example. For any symplectic (M*, w),
3 “adapted” Riemannian ¢ such that w € HE;.
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[fby (M) > 2, there is a well-defined Seiberg-Witten
invariant for any spin® structure on M.

If M admits a symplectic form w, this invariant is
non-zero for the spin® structure determined by w.

= V metric g, 3 a solution of the Seiberg-Witten
equations

Ds® =0
Fi = io(D).

for this spin® structure.
Weitzenbock argument = A metric g with s > 0!
Moreover, any g on M satisfies e.g.

/ s2dp > 32w (2x + 37) (M)
with equality iff ¢ is Kahler-Einstein.
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I[f bo(M) = 1, there are instead two Seiberg-
Witten invariants for each spin® structure, because
different perturbations of the SW equations yield
different signed counts of the number of solutions.

In practice, this means that psc metrics are only

obstructed on most, but not quite all, symplectic
M* with by = 1.

This is one key ingredient in the proot of the follow-
ing result about Einstein 4-manifold with A > 0.
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structure do exist on most of these manifolds!



Theorem (CLW '08). Suppose that M is a smooth
compact oriented 4-manifold which carries some
symplectic form w. Then M admits an (unre-
lated) Finstein metric g with A > 0

(CP,#kCPy, 0< k<S8,
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Allowed diffeotypes: exactly the Del Pezzo surfaces.



Del Pezzo surfaces:



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points,
in general position,



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position,



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIP; x CPy.



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIP; x CPy.

CP,



Blowing up:



Blowing up:

If V is a complex surface,



Blowing up:

If NV is a complex surface, may replace p € NV



Blowing up:

If NV is a complex surface, may replace p € NV
with CIPy

[ \M
|
[ \N



Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,

[ \M
|
[ \N



Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,
in which added CP; has normal bundle O(—1).






Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,
in which added CP; has normal bundle O(—1).






Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,
in which added CP; has normal bundle O(—1).






Blowing up:

If NV is a complex surface, may replace p € NV
with CIP; to obtain blow-up

M ~ N#CP,
in which added CP; has normal bundle O(—1).



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIP; x CPy.

CP,



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

CP,

No 3 on a line,



Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

CP,

No 3 on a line, no 6 on conic,
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(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.7

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

CP,

No 3 on a line, no 6 on conic, no 8 on nodal cubic.
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Odaka-Spotti-Sun, Chen-L-Weber.
2008
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Uniqueness: Bando-Mabuchi 87, L. "12.
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Known to be connected for certain 4-manifolds:
M = T K3,  HYD, CHyT.

Berger, Hitchin, Besson-Courtois-Gallot, L.
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One fundamental open problem:
Understand all Einstein metrics on del Pezzos.

Is Einstein moduli space connected?

Progress to date:
Nice characterizations of known Einstein metrics.

Exactly one connected component of moduli space!
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Theorem A (L '15). On any del Pezzo M?*, the
conformally Kahler, Einstein metrics are exactly
characterized by the property that

W (w,w) >0

everywhere on M, for w an arbitrary non-trivial
global self-dual harmonic 2-form.

Corollary. These known Einstein metrics on any
del Pezzo M* sweep out exactly one connected
component of the Einstein moduli space & (M ).
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But W™ (w,w) > 0 is not purely local condition!

Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Kahler = AT = Rw @ ReA2V

S
¥ 3
det(W™) = det 5 | =2 >0
(W) = de 12 364

@) Vo

for these metrics & conformal rescalings:
g~ h=u?g = det(WT) ~ u Odet(WWH).
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Reasonably satistying result.
But W™ (w,w) > 0 is not purely local condition!

Involves global harmonic 2-form w.

Peng Wu proposed an alternate characterization
using only a purely local condition on W ™.

Wu's criterion:

det(W ) > 0.
Wu (2021): terse, opaque proof that <.
I (2021a): completely different proof.

L. (2021b): related classification result.
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compact oriented Einstein 4-manifold, and sup-
pose that its self-dual Weyl curvature

WT AT = AT
satisfies
det(W™") > 0
at every point of M. Then g is conformal to an

orientation-compatible extremal Kahler metric h
with scalar curvature s > 0 on M.

Simply connected hypothesis <= by (M) # 0.

Excludes 5 types with my = Zg and b4 (M) = 0.

Similar results govern moduli spaces in these cases.
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In particular, if (M, g) is a simply-connected Ein-
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Key to all this:

Weighted conformal invariance of W™ = 0.
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If g = f?h satisfies
SWT =0

then h instead satisfies

S(fIWT) =0

which in turn implies the Weitzenbock formula

0= V*V(fWT) + ng+ 6 Wt oWt £ 2f WA

for fIVF € End(AT).




We'll choose selt-dual 2-form w adapted to problem,



We'll choose selt-dual 2-form w adapted to problem,

take L? inner product of the Weitzenbock formula



We'll choose selt-dual 2-form w adapted to problem,

take L? inner product of the Weitzenbock formula

0= V*V(fIWH) + ng+ BT o W 4 2f[W AT




We'll choose selt-dual 2-form w adapted to problem,

take L? inner product of the Weitzenbock formula

0= V*V(fIWH) + ng+ BT o W 4 2f[W AT

with w ® w,



We'll choose selt-dual 2-form w adapted to problem,

take L? inner product of the Weitzenbock formula

0= V*V(fIWH) + ng+ BT o W 4 2f[W AT

with w ® w,

_ . Y @ w4 -
o_/M[wwfw )w @ w) + -] dp




We'll choose selt-dual 2-form w adapted to problem,

take L? inner product of the Weitzenbock formula

0= V*V(fIWH) + gfvw BT o W 4 2f[W AT

with w ® w, and integrate by parts.

_ . Y @ w4 -
0_/M[<VV(fW )w @ w) + -] dp

7




We'll choose selt-dual 2-form w adapted to problem,

take L? inner product of the Weitzenbock formula

0= V*V(fIWH) + ng+ BT o W 4 2f[W AT

with w ® w, and integrate by parts.

_ Y @ w)) - -
O_/M[<fW VYV wew) + ] du




We'll choose selt-dual 2-form w adapted to problem,

take L? inner product of the Weitzenbock formula

0= V*V(fIWH) + ng+ BT o W 4 2f[W AT

with w ® w, and integrate by parts.

_ + VR (0 @ w)) 4 -
0= [ (W V@) +] S da




We'll choose selt-dual 2-form w adapted to problem,

take L? inner product of the Weitzenbock formula

0= V*V(fIWH) + gfvw BT o W 4 2f[W AT

with w ® w, and integrate by parts. This yields:
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0 = / [<W+,v*v<w®w)>+fw+(w,w)—6yw+(w)\2+2\wﬂ2\w|2} f dyu
v 2

holds whenever g = f2h satisfies 6T = 0.
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Application to Wu’s criterion:

Let aw > 3 > ~ be eigenvalues of W™

8
Wt = 5
y

a+pf+v=0

a>0 <0, HW"#£0
det(W ™) = aBy

det(W') >0 = o has multiplicity 1.

So v = Qg M — R™ a smooth function. Set

f= Oég_l/ga h = f_29 — 0492/39-
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Eigenvalues of W™ carry a conformal weight:

For h = f~2g,

o) f2a

So our choice of f = o~ 1/3 implies

o= al/s = 1

— af =1
Now choose w € AT so that
Wi =aw, |wly=v2

after at worst passing to double cover M — M.
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oz/ [%|Vw\2+%<w, (d+ d¥)? w>} dp
M

Because

(d+d*)? = V*V — oW +§

on AT,



1
02—/ \Vw\Qd,u+3/ ldwl|? dp
2Jm M



1
oz—/ \vdeMS/ ldwl|? dp
2JMm M

So Vw = 0, and h is Kahler!
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