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In the mid-1990s, Seiberg-Witten theory revealed
that many of Donaldson’s previous results on
4-dimensional differential topology were intimately
related to the behavior of the scalar curvature.

Much of Donaldson’s work had focused on the study
of complex algebraic surfaces, where he had discov-
cred that certain algebro-geometric invariants were,
unexpectedly, also diffeomorphism invariants.

This talk focuses on the relationship between a complex-
analytic invariant called the Kodaira dimension, and

a diffeomorphism invariant called the Yamabe in-
variant (or sigma constant), which encodes infor-
mation about the scalar curvature.

The new results concern complex surfaces which do
not admit Kahler metrics, and thus are far-removed
from the original context.
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Notation. In this talk, s = scalar curvature

_J iy
S—Tj—RJ,,;j,

where = Riccl tensor.

A Riemannian metric g is called Einstein iff it has
constant Ricecl curvature — 1.e.

r=Ag

for some constant A € R.
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Variational Approach

If M smooth compact n-manifold, n > 3,
Gy = { smooth metrics g on M}

then Einstein metrics = critical points of normal-
ized Finstein-Hilbert action functional

SZQMHR

g — V(Qn)/n/ Sgd,ug
M

where V' = Vol(M, ¢) inserted to make scale-invariant.
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Yamabe:
Consider any conformal class

v=1lg0] = {fgo | u: M — R"},

Then restriction S| is bounded below.
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2
Set p = 5.

Conformal rescaling:

g = uP~2¢ then has dy = uPdy

and 1ts scalar curvature satisfies

suPt=[(p+2)A+ sl u
where A = —V - V. Hence

_ iy (3u2 + (p + 2)’VU‘2) du
[y updy]

Difficulty: L% — LP bounded, but not compact.

S(9)
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3 metric g € v which mimimizes S|.
Has s = constant.

Unique up to scale when s < 0.
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d
Y(M,~) = inf fM °g THy

g€ o2
(s dg)
If ¢ has s of fixed sign, agrees with sign of Y[g].

Aubin:
Y(M,v) <S5, ground)

Schoen:
= only for round sphere.
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(M) =supY(M,~)=sup inf —.

! ! gév(fifdﬂg)77_

H. Yamabe, O. Kobayashi, R. Schoen.
Y (M) >0 <= M admits g with s > 0.

% (M) >0 <= M admits unit-volume ¢
with s > —e, Ve > 0.

Problem. What can we say about % (M) for
specific classes of manifolds?

Problem. Compute actual value of % (M) for
concrete, interesting manaifolds.



A Differential-Topological Invariant:

o Jusg diyg
(M) =supY (M,~)=sup inf —.

! T IS (fM dﬂg)T

Theorem (Petean et. al.). Let M be a compact
simply connected n-manifold, n # 4. Then

% (M) > 0.

Theorem (L. '96). There exist compact simply
connected 4-manifolds M ; with % (M ;) — —oo.

Moreover, can choose M ; such that each % (M ;)
is realized by an Finstein metric g;.
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Theorem (1. '98). Let M be the smooth 4-manifold
underlying any compact complex surface (M S )
of Kahler type. Then

Y (M) >0 <= Kod(M,.J)=—o0,

Y(M)=0 <= Kod(M,J)=0 orl,

Y (M) <0 <= Kod(M,.J)=2.

Kéhler-type <= b1(M) = 0 mod 2
<= deformation of algebraic surface.

Today: what happens when by (M) is odd?
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Kodaira Classification of Complex Surfaces
Most important invariant: Kodaira dimension.

Given (M 1 ) compact complex surface, set

log dimI(M, O (K¢
Kod(M) = limsup og diml(M, OLK ™))
(—+00 log €

where K = A%V is canonical line bundle.

Then Kod(M, J) € {—00,0,1,2} is exactly
max dimg Image(M --+ CPy)
over maps defined by holomorphic sections of /& L
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A complex surface X is called minimal if it is not
the blow-up of another complex surtace.

Any complex surface M can be obtained from a
minimal surface X by blowing up a finite number
of times:

M =~ X#kCP;
One says that X is minimal model of M.

The minimal model X of M is unique if
Kod(M) > 0.
Moreover, always have
Kod(X') = Kod (M),

and Kod mmvariant under deformations.
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Example. Let M C CP3 a smooth hypersurface
of degree n. For example

"yt + 2N+ w" =0

n M Kod(M )| minimal?
1 CIPoy Yes

2 CPl X C]P)l — 00 Yes

3 | CPy#6CPs No

4 K3 0 Yes
> 5| “general type” 2 Yes
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For by odd:
Kod(X) X (X))
— 00 “Type VII” 0, —
0 covered by T2 bundles over T2 0
1 certain elliptic fibrations over curves| 0

“Fibration” allows singular fibers, so not fiber-bundle.
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plex surface of Kod = 2, and let (X,.J') be its
mainimal model. Then

V(M) =& (X) = —4m\[20:2(X, J') < 0.

Thus, blowing up doesn’t change ¢/ in this setting!

Seiberg-Witten theory: upper bound.
(Geometric construction: this is sharp.

[n fact, if X admits K-E metric, achieves %/(X).
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Theorem B. Let (M, J) be a compact complex
surface with Kod # —oo, and let (X,.J') be its
minimal model. Then

Y (M) =¥ (X).

When Kod # —oo, parity of by is unimportant.

We'll see that this isn’t so when Kod = —oc!



[, 98 covers most pieces of Theorems A and B.
Covers the cases of Kod =0 or 2.

Proves /(M) > 0 when Kod = 1.

Missing piece:

Prove %' (M) < 0 when Kod = 1, b1 odd.
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Lemma C. Let >. denote a compact Riemann
surface of genus > 2, and let N — X be a prin-
cipal U(1)-bundle of non-zero Fuler class. Set
X = N x St and let M = X#EkCP, for some
integer k> 0. Then M does not admit any Rie-
mannian metric g of positive scalar curvature.

Proposition. Lemma C = Theorems A & B.

Hidden in plain sight: Every complex surface with
Kod =1 and b; odd has an (unbranched) covering
of this form!
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We give two very different proots of Lemma C:
e Via stable-minimal hypersurfaces.

— Adequate, simple form just uses Schoen-Yau.

— Improvement invokes Perelman on 3-manifolds.

e Via an exotic form of Seiberg-Witten theory.

— No Seiberg-Witten basic classes available.
— But we do have mock-monopole classes.

— Elucidates misunderstood result of Kronheimer.
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Theorem. Let N° be compact oriented connected
3-manifold, and let X* be a smooth compact ori-
ented 4-manifold that admaits a smooth submer-
ston ¢ X — St with fiber N. Let P be any
smooth compact oriented 4-manifold, and let M =

X#P. Then ' (N) < 0= % (M) <0.
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Proposition. If ¢ : Z — N 1is a map of non-
zero degree between compact oriented connected

3-manifolds, then % (Z) >0 = % (N) > 0.

Proposition. Let N be a compact oriented
3-manifold that admits a map v : N — V of

non-zero degree to an aspherical manifold V.
Then % (N) < 0.
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Spin© structures:

wo(TM?Y) € H* (M, Zs)
in image of
H?(M,Z) — H*(M,Zs)
—> d Hermitian line bundles
L — M

with
c1(L) = wo(TM) mod 2.

Given g on M, — drank-2 Hermitian vector bun-
dles V4 — M which formally satisfy

Ve =S4+ ® Ll/Q,

where S+ are the (locally defined) left- and right-
handed spinor bundles of (M, g).
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Every unitary connection 6 on L induces
spin® Dirac operator

DQ ) F<V+> — F(V_>
Weitzenbock formula: VO € I'(Vy),

1 2 2 S| 19
(D, Dg"Dyd) = §A\¢| + | Vg®| +1|@\
+2(—iFg ", (D))

where g = self-dual part curvature of 6, and
oc:Vy—=ATisa natural real-quadratic map,

()] = —=|5[2

2/2
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subject to Seiberg- Witten equations
Dgd =0
FJ =io(®).

Weitzenbock formula becomes
0 = 2A|D|? 4 4|V0 | + 5|02 + |o*

This leads to non-trivial scalar curvature estimates.
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consider both ¢ and 6 as unknowns,

subject to Seiberg- Witten equations
Dgd =0
FJ =io(®).

Weitzenbock formula implies

ON|D|? + 4|V D] + s|Df + |D[*
2A|D)? + s|D|* + |D[*
2D + (s_)|D]? + |

AVARAVARS|

s_ = min(s,0)



consider both ¢ and 6 as unknowns,

subject to Seiberg- Witten equations
Dgd =0
FJ =io(®).

Weitzenbock formula implies

[ csoiePdu, > [ (ol
M M



consider both ¢ and 6 as unknowns,

subject to Seiberg- Witten equations
Dgd =0
Fl = io(D).

Weitzenbock formula implies

( /M<s—>2dug) " ( /M \@\%g) . > /M D] *dpg



consider both ¢ and 6 as unknowns,

subject to Seiberg- Witten equations
Dgd =0
Fl = io(D).

Weitzenbock formula implies

(] (5%, ) s (] 1olta,) "



consider both ¢ and 6 as unknowns,

subject to Seiberg- Witten equations
Dgd =0
FJ =io(®).

Weitzenbock formula implies

[ g = [ ot
M M



consider both ¢ and 6 as unknowns,
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consider both ¢ and 6 as unknowns,

subject to Seiberg- Witten equations
Dgd =0
FJ =io(®).

Weitzenbock formula implies

/ (5 Vdpy > 32521 (D))
M

where czl(L);r = self-dual part of harmonic rep.
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Definition. Let M be a smooth compact ori-
ented 4-manifold with by > 2. An element a €
H?(M,7Z)/torsion, is called a monopole class of
M iff there is some spin® structure ¢ on M with

first Chern class

ci(L) =a mod torsion

for which the Seiberg-Witten equations have a
solution for every Riemannian metric g on M.

o \Witten's SW invariant (“Basic classes”)
e Baucr-Furuta mvariant

e Ozsvath-Szabo construction. . .
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Definition. Let M be a smooth compact ori-
ented 4-manifold with bx > 2. A characteristic
integral cohomology class a € H*(M,7Z) /torsion
will be called a mock-monopole class of M if every
Riemannian metric g on M satisfies the inequal-
1ty

RS N R

M

where s (x) = min(sy(x),0), and where
at =al e H*(M,R)

s the orthogonal projection of a, with respect to
the intersection form e, to the by (M )-dimensional
subspace 7—[:; C H?*(M,R) represented by self-
dual harmonaic 2-forms with respect to g.
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Proposition. Let M be a smooth compact ori-
ented 4-manifold with by > 2. If M carries a
non-zero mock-monopole class, then % (M) < 0.

Key point: Metrics with a; #+ () are dense.
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Corollary. Let X be a smooth compact oriented
4-manifold with by > 2, and let M = X#kCPs
for some k > 1. If M admits a mock-monopole
class, then neither M nor X can admit metrics
of positive scalar curvature.



Proposition. Let N be a compact oriented con-
nected prime 3-manifold with bi(N) > 2 that
carries a taut foliation. Set X = N x S', and

equip M = X#kCPy. Then M carries a mock-
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Proposition. Let N be a compact oriented con-
nected prime 3-manifold with bi(N) > 2 that
carries a taut foliation. Set X = N x S', and

equip M = X#kCPy. Then M carries a mock-
monopole class.

Idea of the proof is hidden Kronheimer 99, with-

out defining the concept or quite proving the esti-
mate we need. His objective is instead to estimate

/ s*dpiy > / (s ) dpy.
M M
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with % (M) > 0, and manifolds with % (M) = 0.

Global Spherical Space-Form Conjecture
would imply that all possible diffeotypes are already
known. This would mean %/ (M) > 0 for any class-
VIl surface.
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However, this Conjecture is very difficult, and
has only been proved with bo(M) < 3.
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Why exclude Kod = —o0?

Again, class VIl is pathological!
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Theorem B. Let (M, J) be a compact complex
surface with Kod # —oo, and let (X,.J') be its
minimal model. Then

Y (M) = (X).

Theorem (Gursky-1, '98). Blowing up a primary
Hopf surface changes its Yamabe invariant:
Y (5% x SV = w(SY) = 8V6r
Y (157 x SH#CP,) = & (CPy) = 12v2n



Vielen Dank an die Organisatoren und
an das MFO fur diese Einladung zur
Teilnahme!




