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“Does every smooth compact manifold admit
a best metric!”

— René Thom, c¢. 1960

“What is best?”
— Socrates, ¢. 400 BC

“An optimal metric would seem to mean the
least curved one.”

— Marcel Berger

“Huh?”

— Anonymous
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Need scale-invariant measure of curvature!

Natural choice: Riemannian functional

g — Klg)i= [ IRl dy

Definition (Berger). Let M™ be a smooth com-
pact n-manifold, n > 3. A Riemannian metric
g on M will be called an optimal metric if it s
an absolute minimizer of the functional IC.
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M, set

Notice that

e 7po(M) is a diffeomorphism invariant.

o C(g) > I (M) for every metric g on M.
e K(g) =Inp(M) <= g is optimal.
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In dimension four,

g Ko) = [ Ry
M

cf. Yang-Mills functional; Calabi’s functionals.

Berger’s motivation: Finstein metrics.

Definition. A Riemannian metric 1s said to be
Einstein ¢f ot has constant Ricci curvature — i.e.

= Ag

for some constant A € R.
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Proposition (Berger). Let (M*, g) be a compact
Einstein 4-manifold. Then g is an optimal met-
ric. Moreover, every other optimal metric g on
M s also Einstein.

This statement is false in every other dimension!
Standard S2F*1 §2k+1 « 83 not optimal. . .
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Recall: Fundamental peculiarity of dimension 4.

On oriented (M4, g),
A =AT @A™

Riemann curvature of g splits up as
R=s®r® Wi W_
where

s = scalar curvature
trace-free Ricel curvature

o
|

=
h
||

self-dual Weyl curvature
W _ = anti-selt-dual Weyl curvature
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(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

4-dimensional Hirzebruch signature formula

1
=5 | (W= W) du

for signature 7(M) = by (M) — b_(M).
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= se () + [ P,
M

Berger:  Einstein = optimal.
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Definition. A Riemannian metric g on a smooth
oriented 4-manifold M is called anti-self-dual (ASD)
if 1t satisfies

W_|_ = 0.
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Definition. A Riemannian metric g on a smooth
oriented 4-manifold M is called anti-self-dual (ASD)
if 1t satisfies
W_|_ = (.
If also
s=0
then called scalar-flat anti-self-dual (SFASD).
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Proposition (Lafontaine). If smooth compact ori-
ented M* carries SFASD metric g, then g is op-

timal; and every other optimal metric g on M
is SFASD, too.

Also get topological obstruction:

5° ) I
(2x +37)(M) = — y o7 T2AWa]" = —- | dug

< 0.

Reverse Hitchin-Thorpe!



Proposition. Let M* be simply connected smooth
compact. If M admits a scalar-flat anti-self-dual
metric, then

o \ is homeomorphic to kCPs, k > 5; or
o \ is diffeomorphic to CPy#kCPy, k > 10; or
o VI 1s diffeomorphic to K 3.
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o \ is diffeomorphic to CPy#kCPy, k > 10; or
o VI 1s diffeomorphic to K 3.

Weitzenbock formula =
by (M) = dim{p € T(AT) | Vo = 0}.

Lafontaine:

(2x + 37)(M) < 0.

Enriques, Kodaira, Donaldson, Freedman.
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metric if

o \ is diffeomorphic to kCPs, k > 5; or
o \/ is diffeomorphic to CPy#kCPs, k > 10; or
o VI is diffeomorphic to K3.

Corollary. These M* admit optimal metrics.

For M4 =+ K3, optimal, but not Einstein.
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Theorem A. Simply connected smooth compact
M* actually admits a scalar-flat anti-self-dual
metric if

o VM is diffeomorphic to kCPy, k > 5; or
o \/ is diffeomorphic to CPy#kCPs, k > 10; or
o VI is diffeomorphic to K3.

Pieces of proof:

Yau (1978)
Kim-LeBrun-Pontecorvo (1993)
Singer-Rollin (2004)

LeBrun (2004)
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When b4 (M) # 0, Weitzenbock formula

S

(d+d*)p = V*Vip —2W o (p,-) + =¥

shows A ASD metrics with s > 0.

But when b4 (M) = 0, key is to find
family g¢ of ASD metrics s.t. s changes sign.



Proposition. For any integer k > 6, the con-
nected sum

kCPy = CPo# - - - #CPy
)s

admats 1-parameter family of ASD conformal met-
rics |g¢], t € [—1,1], such that

e dg_1 € |g_1] with s < 0; and
e 19y € |g1] with s > 0.
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Twistor picture of anti-self-duality condition:

Oriented (M?, g) e~ (Z,.J).
7 =S\, J:TZ -TZ, J*=—1.

Theorem (Atiyah-Hitchin-Singer). (Z, J) is a com-
plex 3-manafold iff W = 0.
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Theorem (Penrose). Let Z be a complex 3-manifold,
and suppose that

g/l — J

anti-holomorphic with o = id7, no fized points.
Let

( C = CPy,
M = < holomorphic C C Z | o(C) = C,
\ ve = O1) @ O1)

Then M s a 4-manifold, and carries a canonical
ASD conformal metric [g|.

Here v =T 7 /TC is the normal bundle of C.

Warning: M could be empty; or disconnected!
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Scalar-flat Kahler case:

3 complex surface > C Z such that

Hyper-Kahler case:

Pencil of such surfaces gives projection

Z — CPy

These auxiliary structures detect s = 0 metric.
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Most ASD conformal classes on compact M will
not contain metric with s = 0. Yamabe constant!

Conformal Green’s function:

(A +5/6)Gy = 0y

Lemma. Let (M*, g) s.t. ker(A+s/6) = 0. Then
conformal class |g] contains metric |g] with

o5 >0 <= Gy(r)#0Vr e M — {y}.
05 <0 = Gylr)=0dr e M —{y}.
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Proposition (Ativah). Let (M, g) be a compact
anti-self-dual 4-manaifold with twistor space Z,
and assume that (M, g) has

ker(A +s/6) = 0.

Let C' C Z be tunstor line of y € M. Then C 1s
zero locus of

¢ €I'(Z2,0(L))
for ! rank-2 holomorphic bundle £ — Z with
2~ 7 —1/2
NE=K,"",
and Gy 15 Penrose transform of extension class

e HY (Z — C,0(KY2)) for
0— O(Kl/Q) — O(E™) i>I(j — 0

E = Serre-Horrocks bundle of C C Z.



Corollary. Let (M, qg) be a compact anti-self-
dual 4-manifold with twistor space Z for which

HY(Z,0(KY?%) =0.



Corollary. Let (M, qg) be a compact anti-self-
dual 4-manifold with twistor space Z for which

HY(Z,0(KY?%) =0.

Let B — 7 with N2E = K;l/Q be Serre-Horrocks

bundle of a tuistor line C C Z.



Corollary. Let (M, qg) be a compact anti-self-
dual 4-manifold with twistor space Z for which

HY(Z,0(KY?%) =0.

Let B — 7 with N2E = K;l/Q be Serre-Horrocks

bundle of a tuistor line C C Z. Then conformal
class |g| contains metric [g| with



Corollary. Let (M, qg) be a compact anti-self-
dual 4-manifold with twistor space Z for which

HY(Z,0(KY?%) =0.

Let B — 7 with N2E = K;l/Q be Serre-Horrocks

bundle of a tuistor line C C Z. Then conformal
class |g| contains metric [g| with

¢s5>0<= E|l»=01)®0O(1) Viw'r lines C';



Corollary. Let (M, qg) be a compact anti-self-
dual 4-manifold with twistor space Z for which

HY(Z,0(KY?%) =0.

Let B — 7 with N2E = K;l/Q be Serre-Horrocks

bundle of a tuistor line C C Z. Then conformal
class |g| contains metric [g| with

¢s5>0<= E|l»=01)®0O(1) Viw'r lines C';
¢5 <0< Flon=0&0O2) Jtwistor line C".
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Proposition. For any integer k > 6, the con-
nected sum

kCPy = CPo# - - - #CPy
)s

admats 1-parameter family of ASD conformal met-
rics |g¢], t € [—1,1], such that

e dg_1 € |g_1] with s < 0; and
e 19y € |g1] with s > 0.

Strategy:

e Find such metrics on related orbifold.

e Then smooth singularities.
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X =[(S" x SH)#(S! x §7)]/2Z4

Lemma. 3CY family g¢, t € [—1,1], on X s.t.
o Vt, g; conformally flat orbifold metric,

o Vi, sq, has same sign as t, everywhere; and
oVt £ 0, ker(A + s/6) = 0.
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Lemma (Schoen-Yau, Nayatani). Let (M, |g]) be
compact, conformally flat n-manifold, n > 3, which
can be uniformized as

M = QJT,

where I' € SO(n+1,1), Q Cc S™. Let g € |[g]
be metric on M s.t. s has fized sign. Assume
limit set A of I infinite, and let dim(\) denotes

its Hausdorff dimension. Then

s>0<:>dim(/\)<g—1

5:O<:>dim(/\):g—1

s<0<:>dim(/\)>g—1.
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Identify boundary 3-spheres.
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s >0
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dim(A) > 1



4

(Bishop-Jones)



CHC



==

X =[(8" x S)#(S" x 8%))/Z

Lemma. There is a real-analytic 1-parameter fam-
ily g¢, t € |—1,1], of conformally flat orbifold
metrics on X such that

e for each t, the scalar curvature s of g+ has
same sign as t; and

o ker(A +5/6) =0 Vt # 0.



Twistor space of (S' x S9)#(ST x 57):
7 = ( domain of discontinuity C CP3)/(Z % Z)



Twistor space of (S' x S9)#(ST x 57):
7 = ( domain of discontinuity C CP3)/(Z % Z)

Lemma (Fastwood-Singer). Twistor space Z any
conformally flat g on

k(ST x §%) = (S! x SH)#---#(S" x 57)
k&

satisfies
H(Z,0(TZ)) = 0.



Twistor space of
X =[(8" x S7)#(s" x 5°))/Z

is an orbifold.



Twistor space of
X =[(8" x S7)#(s" x 5°))/Z

is an orbifold.

But blowing up twistor lines

Cpl > Q — CPl X CPl

of six fixed points gives complex manifold Z .
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Other building blocks:

Eguchi-Hanson metric on 7% 5%:

sz
1 —e€p

9FEH,c = _4+92 (8% T 9% + [1 — eg_ﬂ 9%)

Burns metric on CPy — {oo}:

dQ2
9B, = 1 _

5 1 0° (9% + 9% + {1 — GQ_Q} 9%)
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Twistor spaces (Hitchin):

Eguchi-Hanson metric on 7% 5%:

{(2,9,2) € (10@)% - CP\) | ay+ 2" = %7}



Twistor spaces (Hitchin):

Eguchi-Hanson metric on 7% 5%:

{(2,9,2) € (10@)% - CP\) | ay+ 2" = %7}

Fubini-Study metric on CPs:

{([Z], w]) € CPy x CPy | zyw; + 20wy + 23w3 = 0}



Complex space with normal-crossing singularities:

ZO:ZXUGZEHUZZFS

Zpg=ZppUQ
Z g = blow up of Zpg at twistor line.



7 Zpg 2y
Donaldson-Friedman, LeBrun-Singer:

Obtain twistor spaces of ASD metrics on

M = (6 + £)CP,

as smoothing Z,, of normal crossings.
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Carry out uniformly in additional parameter ¢.

Understand Green's functions:
Atiyah’s construction, uniform in u.

Upshot: Family of ASD metrics
s.t. Yamabe constant changes sign.

Hence

M = (6 + £)CPs

admits metrics with W, =0, s = 0.



Theorem A. Simply connected smooth compact
M* actually admits a scalar-flat anti-self-dual
metric if

o \ is diffeomorphic to kCPs, k > 5; or
o \/ is diffeomorphic to CPy#kCPs, k > 10; or
o VI is diffeomorphic to K3.



Theorem A also tells us that
CPy#kCP,
admits optimal metrics it £ > 10.



Theorem A also tells us that
CPy#kCP,
admits optimal metrics it £ > 10.

However. . .



Existence depends on diffeotype!



Existence depends on diffeotype!

Theorem B. For each k > 9, the topological
manifold CPo#kCPy admits infinitely many dis-
tinct exotic smooth structures for which no com-
patible optimal metric exists.



Existence depends on diffeotype!

Theorem B. For each k > 9, the topological
manifold CPo#kCPy admits infinitely many dis-
tinct exotic smooth structures for which no com-
patible optimal metric exists.

Similar conclusion also holds for A 3.



Definition. An anorexic sequence s a sequence
of metrics g; on smooth compact oriented M4

for which [ s*di — 0 and [|W +|?du — 0.



Definition. An anorexic sequence s a sequence
of metrics g; on smooth compact oriented M4

for which [ s*di — 0 and [|W +|?du — 0.

Typical example:

I
X X X X
Y x F
E |
CP

2




Lemma. If M* admits an anorexic sequence,
then
TR(M) = —87*(x + 37)(M),

and any optimal metric on M 1s SFASD.



Lemma. If M* admits an anorexic sequence,
then

TR(M) = =87°(x + 37)(M),
and any optimal metric on M 1s SFASD.

2

K(g) = —87'(2<X—|—37')(M)—|—2 /M (% + 2|W+2> dtg



Proposition. The underlying 4-manifold of any
elliptic complex surface admits an anorexic se-
quence of Riemannian metrics.



Proposition. The underlying 4-manifold of any
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quence of Riemannian metrics.

Y X FE

0
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Proposition. The underlying 4-manifold of any
elliptic complex surface admits an anorexic se-
quence of Riemannian metrics.

3 infinitely many elliptic surfaces homeomorphic,
but not diffeomorphic to

CPy#kCPy, k > 0.

Log transforms of rational elliptic surface.
Then blow up.

Seiberg-Witten invariants non-trivial.

Donaldson, Friedman-Morgan, et al.



Other homeotypes:

Theorem C.Ifj > 2 and k = 97, the smooth
simply connected 4-manaifold jCPo#HECIPy does
not admit optimal metrics.



Other homeotypes:

Theorem C.Ifj > 2 and k = 97, the smooth
simply connected 4-manaifold jCPo#HECIPy does
not admit optimal metrics.

Moreover, if 7 > 5 and 5 # 0 mod 8, the under-
lying topological manifold of this space admits
infinitely many distinct differentiable structures
for which no optimal metric exists.



Proposition. Suppose that Y1, ..., Y. are the
underlying 4-manifolds of elliptic complex sur-
faces. Then the connected sum

Yi#Yo# - - - #Y},

admits an anorexic sequence of Riemannian met-
T'1CS.



Proposition. Suppose that Y1, ..., Y. are the
underlying 4-manifolds of elliptic complex sur-
faces. Then the connected sum

Yi#Yo# - - - #Y},

admits an anorexic sequence of Riemannian met-
T'1CS.

It k<4 and Y's have ¢ = 0, py odd,

Bauver-Furuta invariant distinguishes diffeotypes.
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Moral:

4-manifolds need not carry optimal metrics.

Geometrization of 3-manifolds:
Wrong question!

Can 4-manifolds be decomposed into, say;,

e Finstein and

e collapsed pieces?
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for helping to make the mathematical
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Thank you, Nigel,

for helping to make the mathematical

world a better place.

Happy Birthday!



