Optimal Metrics,

Curvature Functionals,

and the

Differential Topology of

Four-Manifolds

Claude LeBrun
SUNY Stony Brook

— René Thom, c. 1960

— René Thom, c. 1960

"What is best?"

— Socrates, c. 400 BC

— René Thom, c. 1960

"What is best?"

— Socrates, c. 400 BC

"An optimal metric would seem to mean the least curved one."

— Marcel Berger

— René Thom, c. 1960

"What is best?"

— Socrates, c. 400 BC

"An optimal metric would seem to mean the least curved one."

— Marcel Berger

"Huh?"

— Anonymous

Given a smooth compact manifold M, is there a Riemannian metric on M which has curvature uniformly close to zero?

Given a smooth compact manifold M, is there a Riemannian metric on M which has curvature uniformly close to zero?

Given a smooth compact manifold M, is there a Riemannian metric on M which has curvature uniformly close to zero?

Given a smooth compact manifold M, is there a Riemannian metric on M which has curvature uniformly close to zero?

Given a smooth compact manifold M, is there a Riemannian metric on M which has curvature uniformly close to zero?

$$g \leadsto cg \implies |\mathcal{R}| \leadsto c^{-1} |\mathcal{R}|$$

Trade-off: small curvature \longleftrightarrow big volume.

Trade-off: small curvature $\longleftrightarrow big\ volume$.

Need scale-invariant measure of curvature!

Trade-off: small curvature \longleftrightarrow big volume.

Need scale-invariant measure of curvature!

Natural choice: Riemannian functional

$$g \longmapsto \mathcal{K}(g) := \int_{M} |\mathcal{R}|_{g}^{n/2} d\mu_{g}.$$

Trade-off: small curvature \longleftrightarrow big volume.

Need scale-invariant measure of curvature!

Natural choice: Riemannian functional

$$g \longmapsto \mathcal{K}(g) := \int_{M} |\mathcal{R}|_{g}^{n/2} d\mu_{g}.$$

Definition (Berger). Let M^n be a smooth compact n-manifold, $n \geq 3$. A Riemannian metric g on M will be called an optimal metric if it is an absolute minimizer of the functional K.

$$\mathcal{I}_{\mathcal{R}}(M) = \inf_{g} \int_{M} |\mathcal{R}|_{g}^{n/2} d\mu_{g}.$$

$$\mathcal{I}_{\mathcal{R}}(M) = \inf_{g} \int_{M} |\mathcal{R}|_{g}^{n/2} d\mu_{g}.$$

Notice that

• $\mathcal{I}_{\mathcal{R}}(M)$ is a diffeomorphism invariant.

$$\mathcal{I}_{\mathcal{R}}(M) = \inf_{g} \int_{M} |\mathcal{R}|_{g}^{n/2} d\mu_{g}.$$

Notice that

- $\mathcal{I}_{\mathcal{R}}(M)$ is a diffeomorphism invariant.
- $\mathcal{K}(g) \geq \mathcal{I}_{\mathcal{R}}(M)$ for every metric g on M.

$$\mathcal{I}_{\mathcal{R}}(M) = \inf_{g} \int_{M} |\mathcal{R}|_{g}^{n/2} d\mu_{g}.$$

Notice that

- $\mathcal{I}_{\mathcal{R}}(M)$ is a diffeomorphism invariant.
- $\mathcal{K}(g) \geq \mathcal{I}_{\mathcal{R}}(M)$ for every metric g on M.
- $\mathcal{K}(g) = \mathcal{I}_{\mathcal{R}}(M) \iff g$ is optimal.

In dimension four,

$$g \longmapsto \mathcal{K}(g) := \int_{M} |\mathcal{R}|_{g}^{2} d\mu_{g},$$

cf. Yang-Mills functional; Calabi's functionals.

In dimension four,

$$g \longmapsto \mathcal{K}(g) := \int_{M} |\mathcal{R}|_{g}^{2} d\mu_{g},$$

cf. Yang-Mills functional; Calabi's functionals.

Berger's motivation: Einstein metrics.

In dimension four,

$$g \longmapsto \mathcal{K}(g) := \int_{M} |\mathcal{R}|_{g}^{2} d\mu_{g},$$

cf. Yang-Mills functional; Calabi's functionals.

Berger's motivation: Einstein metrics.

Definition. A Riemannian metric is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Proposition (Berger). Let (M^4, g) be a compact Einstein 4-manifold. Then g is an optimal metric. Moreover, every other optimal metric \tilde{g} on M is also Einstein.

Proposition (Berger). Let (M^4, g) be a compact Einstein 4-manifold. Then g is an optimal metric. Moreover, every other optimal metric \tilde{g} on M is also Einstein.

This statement is false in every other dimension! Standard S^{2k+1} , $S^{2k+1} \times S^3$ not optimal...

On oriented
$$(M^4, g)$$
,
$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

On oriented
$$(M^4, g)$$
,
$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

Riemann curvature of g splits up as

$$\mathcal{R} = \mathbf{s} \oplus \mathring{\mathbf{r}} \oplus W_+ \oplus W_-$$

On oriented
$$(M^4, g)$$
,
$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

Riemann curvature of g splits up as

$$\mathcal{R} = s \oplus \mathring{r} \oplus W_+ \oplus W_-$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

(M,g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

(M,g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

4-dimensional Hirzebruch signature formula

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

for signature $\tau(M) = b_{+}(M) - b_{-}(M)$.

$$\mathcal{K}(g) = \int_{M} |\mathcal{R}|_{g}^{2} d\mu_{g}$$

$$\mathcal{K}(g) = \int_{M} |\mathcal{R}|_{g}^{2} d\mu_{g}$$
$$= 8\pi^{2} \chi(M) + \int_{M} |\mathring{r}|^{2} d\mu_{g}$$

$$\mathcal{K}(g) = \int_{M} |\mathcal{R}|_{g}^{2} d\mu_{g}$$
$$= 8\pi^{2} \chi(M) + \int_{M} |\mathring{r}|^{2} d\mu_{g}$$

Berger: Einstein \Longrightarrow optimal.

$$\mathcal{K}(g) = \int_{M} |\mathcal{R}|_{g}^{2} d\mu_{g}$$

$$= 8\pi^{2} \chi(M) + \int_{M} |\mathring{r}|^{2} d\mu_{g}$$

$$= -8\pi^{2} (\chi + 3\tau)(M) + 2 \int_{M} \left(\frac{s^{2}}{24} + 2|W_{+}|^{2}\right) d\mu_{g}.$$

$$\mathcal{K}(g) = \int_{M} |\mathcal{R}|_{g}^{2} d\mu_{g}$$

$$= 8\pi^{2} \chi(M) + \int_{M} |\mathring{r}|^{2} d\mu_{g}$$

$$= -8\pi^{2} (\chi + 3\tau)(M) + 2 \int_{M} \left(\frac{s^{2}}{24} + 2|W_{+}|^{2}\right) d\mu_{g}.$$

Definition. A Riemannian metric g on a smooth oriented 4-manifold M is called anti-self-dual (ASD) if it satisfies

$$W_{+} \equiv 0.$$

$$\mathcal{K}(g) = \int_{M} |\mathcal{R}|_{g}^{2} d\mu_{g}$$

$$= 8\pi^{2} \chi(M) + \int_{M} |\mathring{r}|^{2} d\mu_{g}$$

$$= -8\pi^{2} (\chi + 3\tau)(M) + 2 \int_{M} \left(\frac{s^{2}}{24} + 2|W_{+}|^{2}\right) d\mu_{g}.$$

Definition. A Riemannian metric g on a smooth oriented 4-manifold M is called anti-self-dual (ASD) if it satisfies

$$W_{+} \equiv 0.$$

If also

$$s \equiv 0$$

then called scalar-flat anti-self-dual (SFASD).

Proposition (Lafontaine). If smooth compact oriented M^4 carries SFASD metric g, then g is optimal

Proposition (Lafontaine). If smooth compact oriented M^4 carries SFASD metric g, then g is optimal; and every other optimal metric \tilde{g} on M is SFASD, too.

Proposition (Lafontaine). If smooth compact oriented M^4 carries SFASD metric g, then g is optimal; and every other optimal metric \tilde{g} on M is SFASD, too.

Also get topological obstruction:

$$(2\chi + 3\tau)(\mathbf{M}) = \frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu_g \le 0.$$

Reverse Hitchin-Thorpe!

- M is homeomorphic to $k\overline{\mathbb{CP}}_2$, $k \geq 5$; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum:

 $K3 = \text{Kummer-K\"{a}hler-Kodaira manifold.}$

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Connected sum:

$K3 = \text{Kummer-K\"{a}hler-Kodaira manifold.}$

- M is homeomorphic to $k\overline{\mathbb{CP}}_2$, $k \geq 5$; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

- M is homeomorphic to $k\overline{\mathbb{CP}}_2$, $k \geq 5$; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Weitzenböck formula for $\varphi \in \Gamma(\Lambda^+)$:

$$(d+d^*)^2\varphi = \nabla^*\nabla\varphi - 2W_+(\varphi,\cdot) + \frac{s}{3}\varphi$$

- M is homeomorphic to $k\overline{\mathbb{CP}}_2$, $k \geq 5$; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Weitzenböck formula ⇒

$$b_{+}(\mathbf{M}) = \dim\{\varphi \in \Gamma(\Lambda^{+}) \mid \nabla \varphi = 0\}.$$

- M is homeomorphic to $k\overline{\mathbb{CP}}_2$, $k \geq 5$; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Weitzenböck formula ⇒

$$b_{+}(\mathbf{M}) = \dim\{\varphi \in \Gamma(\Lambda^{+}) \mid \nabla \varphi = 0\}.$$

Kähler case: $\varphi \in \Gamma(K^{\ell}) \Longrightarrow$

$$2(\bar{\partial} + \bar{\partial}^*)^2 \varphi = \nabla^* \nabla \varphi + \frac{\ell s}{2} \varphi$$

- M is homeomorphic to $k\overline{\mathbb{CP}}_2$, $k \geq 5$; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Weitzenböck formula ⇒

$$b_{+}(M) = \dim\{\varphi \in \Gamma(\Lambda^{+}) \mid \nabla \varphi = 0\}.$$

Kähler case: $h^0(\mathcal{O}(K^{\ell})) = 0$ or K^{ℓ} trivial.

- M is homeomorphic to $k\overline{\mathbb{CP}}_2$, $k \geq 5$; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Weitzenböck formula ⇒

$$b_{+}(M) = \dim\{\varphi \in \Gamma(\Lambda^{+}) \mid \nabla \varphi = 0\}.$$

Lafontaine:

$$(2\chi + 3\tau)(M) \le 0.$$

- M is homeomorphic to $k\overline{\mathbb{CP}}_2$, $k \geq 5$; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Weitzenböck formula ⇒

$$b_{+}(\mathbf{M}) = \dim\{\varphi \in \Gamma(\Lambda^{+}) \mid \nabla \varphi = 0\}.$$

Lafontaine:

$$(2\chi + 3\tau)(M) \le 0.$$

Enriques, Kodaira

- M is homeomorphic to $k\overline{\mathbb{CP}}_2$, $k \geq 5$; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Weitzenböck formula ⇒

$$b_{+}(\mathbf{M}) = \dim\{\varphi \in \Gamma(\Lambda^{+}) \mid \nabla \varphi = 0\}.$$

Lafontaine:

$$(2\chi + 3\tau)(M) \le 0.$$

Enriques, Kodaira, Donaldson, Freedman.

- M is homeomorphic to $k\overline{\mathbb{CP}}_2$, $k \geq 5$; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

- M is diffeomorphic to $k\overline{\mathbb{CP}}_2$, k > 5; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

- M is homeomorphic to $k\overline{\mathbb{CP}}_2$, $k \geq 5$; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

- M is diffeomorphic to $k\overline{\mathbb{CP}}_2$, k > 5; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

- M is diffeomorphic to $k\overline{\mathbb{CP}}_2$, k > 5; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Corollary. These M^4 admit optimal metrics.

- M is diffeomorphic to $k\overline{\mathbb{CP}}_2$, k > 5; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Corollary. These M^4 admit optimal metrics.

For $M^4 \neq K3$, optimal, but not Einstein.

- M is diffeomorphic to $k\overline{\mathbb{CP}}_2$, k > 5; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

- M is diffeomorphic to $k\overline{\mathbb{CP}}_2$, k > 5; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Pieces of proof:

- M is diffeomorphic to $k\overline{\mathbb{CP}}_2$, k > 5; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Pieces of proof:

Yau (1978)

- M is diffeomorphic to $k\overline{\mathbb{CP}}_2$, k > 5; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Pieces of proof:

Yau (1978)

Kim-LeBrun-Pontecorvo (1993)

- M is diffeomorphic to $k\overline{\mathbb{CP}}_2$, k > 5; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Pieces of proof:

Yau (1978)

Kim-LeBrun-Pontecorvo (1993)

Singer-Rollin (2004)

- M is diffeomorphic to $k\overline{\mathbb{CP}}_2$, k > 5; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Pieces of proof:

Yau (1978)

Kim-LeBrun-Pontecorvo (1993)

Singer-Rollin (2004)

LeBrun (2004)

When $b_{+}(M) \neq 0$, Weitzenböck formula

$$(d+d^*)^2\varphi = \nabla^*\nabla\varphi - 2W_+(\varphi,\cdot) + \frac{s}{3}\varphi$$

shows $\not\equiv$ ASD metrics with s > 0.

When $b_{+}(M) \neq 0$, Weitzenböck formula

$$(d+d^*)^2\varphi = \nabla^*\nabla\varphi - 2W_+(\varphi,\cdot) + \frac{s}{3}\varphi$$

shows $\not\equiv$ ASD metrics with s > 0.

But when $b_{+}(M) = 0$, key is to find family g_t of ASD metrics s.t. s changes sign.

Proposition. For any integer $k \geq 6$, the connected sum

$$k\overline{\mathbb{CP}}_2 = \underline{\overline{\mathbb{CP}}_2 \# \cdots \# \overline{\mathbb{CP}}_2}_{k}$$

admits 1-parameter family of ASD conformal metrics $[g_t]$, $t \in [-1, 1]$, such that

- $\exists g_{-1} \in [g_{-1}] \text{ with } s < 0; \text{ and }$
- $\bullet \exists g_1 \in [g_1] \text{ with } s > 0.$

Twistor picture of anti-self-duality condition:

Twistor picture of anti-self-duality condition:

Oriented $(M^4, g) \iff (Z, J)$.

Twistor picture of anti-self-duality condition:

Oriented $(M^4, g) \iff (Z, J)$.

$$Z = S(\Lambda^+), J: TZ \to TZ, J^2 = -1$$
:

Twistor picture of anti-self-duality condition:

Oriented $(M^4, g) \iff (Z, J)$.

$$Z = S(\Lambda^+), J: TZ \to TZ, J^2 = -1$$
:

Twistor picture of anti-self-duality condition:

Oriented $(M^4, g) \iff (Z, J)$.

$$Z = S(\Lambda^+), J: TZ \to TZ, J^2 = -1$$
:

Theorem (Atiyah-Hitchin-Singer). (Z, J) is a complex 3-manifold iff $W_{+} = 0$.

$$\sigma:Z\to Z$$

anti-holomorphic with $\sigma^2 = id_Z$, no fixed points.

$$\sigma:Z\to Z$$

anti-holomorphic with $\sigma^2 = id_{\mathbb{Z}}$, no fixed points. Let

$$\mathbf{M} = \left\{ \begin{array}{ll} holomorphic \ C \subset Z \end{array} \middle| \begin{array}{ll} C \cong \mathbb{CP}_1, \\ \mathbf{\sigma}(C) = C, \\ \nu_C \cong \mathcal{O}(1) \oplus \mathcal{O}(1) \end{array} \right\}$$

$$\sigma:Z\to Z$$

anti-holomorphic with $\sigma^2 = id_{\mathbb{Z}}$, no fixed points. Let

$$egin{aligned} m{M} = \left\{ egin{aligned} holomorphic & C \subset Z \ | & C \cong \mathbb{CP}_1, \\ m{\sigma}(C) = C, \\ m{
u}_C \cong \mathcal{O}(1) \oplus \mathcal{O}(1) \ \end{aligned}
ight\} \end{aligned}$$

Then M is a 4-manifold, and carries a canonical ASD conformal metric [g].

$$\sigma:Z\to Z$$

anti-holomorphic with $\sigma^2 = id_{\mathbb{Z}}$, no fixed points. Let

$$egin{aligned} m{M} = \left\{ egin{aligned} holomorphic & C \subset Z \ | & C \cong \mathbb{CP}_1, \\ m{\sigma}(C) = C, \\ m{
u}_C \cong \mathcal{O}(1) \oplus \mathcal{O}(1) \ \end{aligned}
ight\} \end{aligned}$$

Then M is a 4-manifold, and carries a canonical ASD conformal metric [g].

Here $\nu_C = TZ/TC$ is the normal bundle of C.

$$\sigma:Z\to Z$$

anti-holomorphic with $\sigma^2 = id_{\mathbb{Z}}$, no fixed points. Let

$$egin{aligned} m{M} = \left\{ egin{aligned} holomorphic & C \subset Z \ | & C \cong \mathbb{CP}_1, \\ m{\sigma}(C) = C, \\ m{
u}_C \cong \mathcal{O}(1) \oplus \mathcal{O}(1) \ \end{aligned}
ight\} \end{aligned}$$

Then M is a 4-manifold, and carries a canonical ASD conformal metric [g].

Here $\nu_C = TZ/TC$ is the normal bundle of C.

Warning: M could be empty; or disconnected!

Scalar-flat Kähler case:

 \exists complex surface $\Sigma \subset Z$ such that

$$\Sigma \cap \sigma(\Sigma) = \emptyset$$

$$\Sigma \cup \sigma(\Sigma) \in |K^{-1/2}|$$

Scalar-flat Kähler case:

 \exists complex surface $\Sigma \subset Z$ such that

$$\Sigma \cap \sigma(\Sigma) = \emptyset$$

$$\Sigma \cup \sigma(\Sigma) \in |K^{-1/2}|$$

Hyper-Kähler case:

Pencil of such surfaces gives projection

$$Z \longrightarrow \mathbb{CP}_1$$

Scalar-flat Kähler case:

 \exists complex surface $\Sigma \subset Z$ such that

$$\Sigma \cap \sigma(\Sigma) = \emptyset$$

$$\Sigma \cup \sigma(\Sigma) \in |K^{-1/2}|$$

Hyper-Kähler case:

Pencil of such surfaces gives projection

$$Z \longrightarrow \mathbb{CP}_1$$

These auxiliary structures detect $s \equiv 0$ metric.

$$(\Delta + s/6)$$

Conformal Green's function:

$$(\Delta + s/6)G_y = \delta_y.$$

Conformal Green's function:

$$(\Delta + s/6)G_y = \delta_y.$$

Lemma. Let (M^4, g) s.t. $\ker(\Delta + s/6) = 0$. Then conformal class [g] contains metric $[\tilde{g}]$ with

Conformal Green's function:

$$(\Delta + s/6)G_y = \delta_y.$$

Lemma. Let (M^4, g) s.t. $\ker(\Delta + s/6) = 0$. Then conformal class [g] contains metric $[\tilde{g}]$ with

•
$$s > 0 \iff G_y(x) \neq 0 \ \forall x \in M - \{y\}.$$

Conformal Green's function:

$$(\Delta + s/6)G_y = \delta_y.$$

Lemma. Let (M^4, g) s.t. $\ker(\Delta + s/6) = 0$. Then conformal class [g] contains metric $[\tilde{g}]$ with

•
$$s > 0 \iff G_y(x) \neq 0 \ \forall x \in M - \{y\}.$$

•
$$s < 0 \iff G_y(x) = 0 \exists x \in M - \{y\}.$$

Proposition (Atiyah). Let (M, g) be a compact anti-self-dual 4-manifold with twistor space Z,

$$\ker(\Delta + s/6) = 0.$$

$$\ker(\Delta + s/6) = 0.$$

Let $C \subset Z$ be twistor line of $y \in M$.

$$\ker(\Delta + s/6) = 0.$$

Let $C \subset Z$ be twistor line of $y \in M$. Then C is zero locus of

$$\zeta \in \Gamma(Z, \mathcal{O}(E))$$

for! rank-2 holomorphic bundle $E \rightarrow Z$

$$\ker(\Delta + s/6) = 0.$$

Let $C \subset Z$ be twistor line of $y \in M$. Then C is zero locus of

$$\zeta \in \Gamma(Z, \mathcal{O}(E))$$

for! rank-2 holomorphic bundle $E \rightarrow Z$ with

$$\wedge^2 E \cong K_Z^{-1/2}$$

$$\ker(\Delta + s/6) = 0.$$

Let $C \subset Z$ be twistor line of $y \in M$. Then C is zero locus of

$$\zeta \in \Gamma(Z, \mathcal{O}(E))$$

for! rank-2 holomorphic bundle $E \rightarrow Z$ with

$$\wedge^2 E \cong K_Z^{-1/2},$$

and G_y is Penrose transform of extension class $\in H^1(Z-C, \mathcal{O}(K^{1/2}))$

$$\ker(\Delta + s/6) = 0.$$

Let $C \subset Z$ be twistor line of $y \in M$. Then C is zero locus of

$$\zeta \in \Gamma(Z, \mathcal{O}(E))$$

for! rank-2 holomorphic bundle $E \rightarrow Z$ with

$$\wedge^2 E \cong K_Z^{-1/2},$$

and G_y is Penrose transform of extension class $\in H^1(\mathbb{Z} - \mathbb{C}, \mathcal{O}(K^{1/2}))$ for

$$0 \to \mathcal{O}(K^{1/2}) \to \mathcal{O}(E^*) \xrightarrow{\zeta} \mathcal{I}_C \to 0$$

$$\ker(\Delta + s/6) = 0.$$

Let $C \subset Z$ be twistor line of $y \in M$. Then C is zero locus of

$$\zeta \in \Gamma(Z, \mathcal{O}(E))$$

for! rank-2 holomorphic bundle $E \rightarrow Z$ with

$$\wedge^2 E \cong K_Z^{-1/2},$$

and G_y is Penrose transform of extension class $\in H^1(Z-C, \mathcal{O}(K^{1/2}))$ for

$$0 \to \mathcal{O}(K^{1/2}) \to \mathcal{O}(E^*) \xrightarrow{\zeta} \mathcal{I}_C \to 0$$

 $E = \text{Serre-Horrocks bundle of } C \subset Z.$

Corollary. Let (M, g) be a compact anti-self-dual 4-manifold with twistor space Z for which $H^1(Z, \mathcal{O}(K^{1/2})) = 0.$

$$H^1(Z, \mathcal{O}(K^{1/2})) = 0.$$

Let $E \to Z$ with $\wedge^2 E \cong K_Z^{-1/2}$ be Serre-Horrocks bundle of a twistor line $C \subset Z$.

$$H^1(Z, \mathcal{O}(K^{1/2})) = 0.$$

Let $E \to Z$ with $\wedge^2 E \cong K_Z^{-1/2}$ be Serre-Horrocks bundle of a twistor line $C \subset Z$. Then conformal class [g] contains metric $[\tilde{g}]$ with

$$H^1(Z, \mathcal{O}(K^{1/2})) = 0.$$

Let $E \to Z$ with $\wedge^2 E \cong K_Z^{-1/2}$ be Serre-Horrocks bundle of a twistor line $C \subset Z$. Then conformal class [g] contains metric $[\tilde{g}]$ with

• $s > 0 \iff E|_{C'} \cong \mathcal{O}(1) \oplus \mathcal{O}(1) \ \forall tw'r \ lines \ C';$

$$H^1(Z, \mathcal{O}(K^{1/2})) = 0.$$

Let $E \to Z$ with $\wedge^2 E \cong K_Z^{-1/2}$ be Serre-Horrocks bundle of a twistor line $C \subset Z$. Then conformal class [g] contains metric $[\tilde{g}]$ with

- $s > 0 \iff E|_{C'} \cong \mathcal{O}(1) \oplus \mathcal{O}(1) \ \forall tw'r \ lines \ C';$
- $s < 0 \iff E|_{C'} \cong \mathcal{O} \oplus \mathcal{O}(2) \exists twistor \ line \ C'.$

Proposition. For any integer $k \geq 6$, the connected sum

$$k\overline{\mathbb{CP}}_2 = \underline{\overline{\mathbb{CP}}_2 \# \cdots \# \overline{\mathbb{CP}}_2}_{k}$$

admits 1-parameter family of ASD conformal metrics $[g_t]$, $t \in [-1, 1]$, such that

- $\exists g_{-1} \in [g_{-1}] \text{ with } s < 0; \text{ and }$
- $\bullet \exists g_1 \in [g_1] \text{ with } s > 0.$

Proposition. For any integer $k \geq 6$, the connected sum

$$k\overline{\mathbb{CP}}_2 = \underline{\overline{\mathbb{CP}}_2 \# \cdots \# \overline{\mathbb{CP}}_2}_{k}$$

admits 1-parameter family of ASD conformal metrics $[g_t]$, $t \in [-1, 1]$, such that

- $\exists g_{-1} \in [g_{-1}] \text{ with } s < 0; \text{ and }$
- $\bullet \exists g_1 \in [g_1] \text{ with } s > 0.$

Strategy:

- Find such metrics on related orbifold.
- Then smooth singularities.

$$X = [(S^1 \times S^3) \# (S^1 \times S^3)] / \mathbb{Z}_2$$

$$X = [(S^1 \times S^3) \# (S^1 \times S^3)] / \mathbb{Z}_2$$

$$X = [(S^1 \times S^3) \# (S^1 \times S^3)] / \mathbb{Z}_2$$

• $\forall t, g_t \ conformally \ flat \ orbifold \ metric;$

$$X = [(S^1 \times S^3) \# (S^1 \times S^3)] / \mathbb{Z}_2$$

- $\forall t, g_t \ conformally \ flat \ orbifold \ metric;$
- $\bullet \forall t, s_{g_t} \text{ has same sign as } t, \text{ everywhere; and}$

$$X = [(S^1 \times S^3) \# (S^1 \times S^3)] / \mathbb{Z}_2$$

- $\forall t, g_t \ conformally \ flat \ orbifold \ metric;$
- $\bullet \forall t, s_{g_t} \text{ has same sign as } t, \text{ everywhere; and}$
- $\forall t \neq 0$, $\ker(\Delta + s/6) = 0$.

$$M = \Omega/\Gamma$$
,

where $\Gamma \subset SO(n+1,1)$, $\Omega \subset S^n$.

$$M = \Omega/\Gamma,$$

where $\Gamma \subset SO(n+1,1)$, $\Omega \subset S^n$. Let $g \in [g]$ be metric on M s.t. s has fixed sign.

$$M = \Omega/\Gamma$$
,

where $\Gamma \subset SO(n+1,1)$, $\Omega \subset S^n$. Let $g \in [g]$ be metric on M s.t. s has fixed sign. Assume limit set Λ of Γ infinite, and let $\dim(\Lambda)$ denotes its Hausdorff dimension.

$$M = \Omega/\Gamma$$
,

where $\Gamma \subset SO(n+1,1)$, $\Omega \subset S^n$. Let $g \in [g]$ be metric on M s.t. s has fixed sign. Assume limit set Λ of Γ infinite, and let $\dim(\Lambda)$ denotes its Hausdorff dimension. Then

$$s > 0 \iff \dim(\Lambda) < \frac{n}{2} - 1$$

$$M = \Omega/\Gamma$$
,

where $\Gamma \subset SO(n+1,1)$, $\Omega \subset S^n$. Let $g \in [g]$ be metric on M s.t. s has fixed sign. Assume limit set Λ of Γ infinite, and let $\dim(\Lambda)$ denotes its Hausdorff dimension. Then

$$s > 0 \iff \dim(\Lambda) < \frac{n}{2} - 1$$

 $s = 0 \iff \dim(\Lambda) = \frac{n}{2} - 1$

$$M = \Omega/\Gamma,$$

where $\Gamma \subset SO(n+1,1)$, $\Omega \subset S^n$. Let $g \in [g]$ be metric on M s.t. s has fixed sign. Assume limit set Λ of Γ infinite, and let $\dim(\Lambda)$ denotes its Hausdorff dimension. Then

$$s > 0 \iff \dim(\Lambda) < \frac{n}{2} - 1$$

$$s = 0 \iff \dim(\Lambda) = \frac{n}{2} - 1$$

$$s < 0 \iff \dim(\Lambda) > \frac{n}{2} - 1.$$

 $S^4 - 4$ balls

Identify boundary 3-spheres.

$$\dim(\Lambda) = ?$$

$$\dim(\Lambda) > 1 = \frac{4}{2} - 1$$

$$\dim(\Lambda) > 1 = \frac{4}{2} - 1$$

$$\dim(\Lambda) > 1 = \frac{4}{2} - 1$$
(Bishop-Jones)

$$X = [(S^1 \times S^3) \# (S^1 \times S^3)] / \mathbb{Z}_2$$

Lemma. There is a real-analytic 1-parameter family g_t , $t \in [-1,1]$, of conformally flat orbifold metrics on X such that

- for each t, the scalar curvature s of g_t has same sign as t; and
- $\ker(\Delta + s/6) = 0 \ \forall t \neq 0.$

Twistor space of $(S^1 \times S^3) \# (S^1 \times S^3)$: $Z = (\text{domain of discontinuity } \subset \mathbb{CP}_3)/(\mathbb{Z} * \mathbb{Z})$ Twistor space of $(S^1 \times S^3) \# (S^1 \times S^3)$: $Z = (\text{domain of discontinuity } \subset \mathbb{CP}_3)/(\mathbb{Z} * \mathbb{Z})$

Lemma (Eastwood-Singer). Twistor space Z any conformally flat g on

$$k(S^1 \times S^3) = \underbrace{(S^1 \times S^3) \# \cdots \# (S^1 \times S^3)}_{k}$$

satisfies

$$H^2(\mathbf{Z}, \mathcal{O}(T\mathbf{Z})) = 0.$$

Twistor space of

$$X = [(S^1 \times S^3) \# (S^1 \times S^3)] / \mathbb{Z}_2$$

is an orbifold.

Twistor space of

$$X = [(S^1 \times S^3) \# (S^1 \times S^3)] / \mathbb{Z}_2$$

is an orbifold.

But blowing up twistor lines

$$\mathbb{CP}_1 \rightsquigarrow Q = \mathbb{CP}_1 \times \mathbb{CP}_1$$

of six fixed points gives complex manifold \tilde{Z}_X .

Other building blocks:

Other building blocks:

Eguchi-Hanson metric on T^*S^2 :

$$g_{EH,\epsilon} = \frac{d\varrho^2}{1 - \epsilon\varrho^{-4}} + \varrho^2 \left(\theta_1^2 + \theta_2^2 + \left[1 - \epsilon\varrho^{-4}\right]\theta_3^2\right)$$

Other building blocks:

Eguchi-Hanson metric on T^*S^2 :

$$g_{EH,\epsilon} = \frac{d\varrho^2}{1 - \epsilon\varrho^{-4}} + \varrho^2 \left(\theta_1^2 + \theta_2^2 + \left[1 - \epsilon\varrho^{-4}\right]\theta_3^2\right)$$

Burns metric on $\overline{\mathbb{CP}}_2 - \{\infty\}$:

$$g_{B,\epsilon} = \frac{d\varrho^2}{1 - \epsilon\varrho^{-2}} + \varrho^2 \left(\theta_1^2 + \theta_2^2 + \left[1 - \epsilon\varrho^{-2}\right]\theta_3^2\right)$$

Twistor spaces (Hitchin):

Twistor spaces (Hitchin):

Eguchi-Hanson metric on T^*S^2 :

$$\left\{ (x, y, z) \in \left([\mathcal{O}(2)]^{\oplus 3} \to \mathbb{CP}_1 \right) \mid xy + z^2 = \zeta_1^2 \zeta_2^2 \right\}^{\sim}$$

Twistor spaces (Hitchin):

Eguchi-Hanson metric on T^*S^2 :

$$\left\{ (x, y, z) \in \left([\mathcal{O}(2)]^{\oplus 3} \to \mathbb{CP}_1 \right) \mid xy + z^2 = \zeta_1^2 \zeta_2^2 \right\}^{\sim}$$

Fubini-Study metric on $\overline{\mathbb{CP}}_2$:

$$\left\{ ([\vec{z}], [\vec{w}]) \in \mathbb{CP}_2 \times \mathbb{CP}_2 \mid z_1 w_1 + z_2 w_2 + z_3 w_3 = 0 \right\}$$

Complex space with normal-crossing singularities:

$$Z_0 = \tilde{Z}_X \cup 6\tilde{Z}_{EH} \cup \ell\tilde{Z}_{FS}$$

$$\tilde{Z}_{EH} = Z_{EH} \cup Q$$

 $\tilde{Z}_{FS} = \text{blow up of } Z_{FS} \text{ at twistor line.}$

Donaldson-Friedman, LeBrun-Singer:

Obtain twistor spaces of ASD metrics on

$$M = (6 + \ell)\overline{\mathbb{CP}}_2$$

as smoothing $Z_{\mathfrak{u}}$ of normal crossings.

Understand Green's functions: Atiyah's construction, uniform in \mathfrak{u} .

Understand Green's functions: Atiyah's construction, uniform in \mathfrak{u} .

Upshot: Family of ASD metrics s.t. Yamabe constant changes sign.

Understand Green's functions: Atiyah's construction, uniform in \mathfrak{u} .

Upshot: Family of ASD metrics s.t. Yamabe constant changes sign.

Hence

$$M = (6 + \ell)\overline{\mathbb{CP}}_2$$

admits metrics with $W_{+} \equiv 0$, s = 0.

Theorem A. Simply connected smooth compact M^4 actually admits a scalar-flat anti-self-dual metric if

- M is diffeomorphic to $k\overline{\mathbb{CP}}_2$, k > 5; or
- M is diffeomorphic to $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $k \geq 10$; or
- M is diffeomorphic to K3.

Theorem A also tells us that

 $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$

admits optimal metrics if $k \geq 10$.

Theorem A also tells us that $\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}$

admits optimal metrics if $k \geq 10$.

However...

Existence depends on diffeotype!

Existence depends on diffeotype!

Theorem B. For each $k \geq 9$, the topological manifold $\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}$ admits infinitely many distinct exotic smooth structures for which no compatible optimal metric exists.

Existence depends on diffeotype!

Theorem B. For each $k \geq 9$, the topological manifold $\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}$ admits infinitely many distinct exotic smooth structures for which no compatible optimal metric exists.

Similar conclusion also holds for K3.

Definition. An anorexic sequence is a sequence of metrics g_j on smooth compact oriented M^4 for which $\int s^2 d\mu \to 0$ and $\int |W_+|^2 d\mu \to 0$.

Definition. An anorexic sequence is a sequence of metrics g_j on smooth compact oriented M^4 for which $\int s^2 d\mu \to 0$ and $\int |W_+|^2 d\mu \to 0$.

Typical example:

Lemma. If M^4 admits an anorexic sequence, then

$$\mathcal{I}_{\mathcal{R}}(M) = -8\pi^2(\chi + 3\tau)(M),$$

and any optimal metric on M is SFASD.

Lemma. If M^4 admits an anorexic sequence, then

$$\mathcal{I}_{\mathcal{R}}(M) = -8\pi^2(\chi + 3\tau)(M),$$

and any optimal metric on M is SFASD.

$$\mathcal{K}(g) = -8\pi^2(\chi + 3\tau)(M) + 2\int_{M} \left(\frac{s^2}{24} + 2|W_+|^2\right) d\mu_g$$

∃ infinitely many elliptic surfaces homeomorphic, but not diffeomorphic to

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad k \ge 9.$$

∃ infinitely many elliptic surfaces homeomorphic, but not diffeomorphic to

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad k \geq 9.$$

Log transforms of rational elliptic surface. Then blow up.

∃ infinitely many elliptic surfaces homeomorphic, but not diffeomorphic to

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad k \geq 9.$$

Log transforms of rational elliptic surface. Then blow up.

Seiberg-Witten invariants non-trivial.

∃ infinitely many elliptic surfaces homeomorphic, but not diffeomorphic to

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad k \geq 9.$$

Log transforms of rational elliptic surface. Then blow up.

Seiberg-Witten invariants non-trivial.

Donaldson, Friedman-Morgan, et al.

Other homeotypes:

Theorem C. If $j \geq 2$ and $k \geq 9j$, the smooth simply connected 4-manifold $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$ does not admit optimal metrics.

Other homeotypes:

Theorem C. If $j \geq 2$ and $k \geq 9j$, the smooth simply connected 4-manifold $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$ does not admit optimal metrics.

Moreover, if $j \geq 5$ and $j \not\equiv 0 \mod 8$, the underlying topological manifold of this space admits infinitely many distinct differentiable structures for which no optimal metric exists.

Proposition. Suppose that Y_1, \ldots, Y_k are the underlying 4-manifolds of elliptic complex surfaces. Then the connected sum

$$Y_1 \# Y_2 \# \cdots \# Y_k$$

admits an anorexic sequence of Riemannian metrics.

Proposition. Suppose that Y_1, \ldots, Y_k are the underlying 4-manifolds of elliptic complex surfaces. Then the connected sum

$$Y_1 \# Y_2 \# \cdots \# Y_k$$

admits an anorexic sequence of Riemannian metrics.

If $k \leq 4$, and Y's have q = 0, p_q odd,

Bauer-Furuta invariant distinguishes diffeotypes.

Moral:

4-manifolds need not carry optimal metrics.

Moral:

4-manifolds need not carry optimal metrics.

Geometrization of 3-manifolds: Wrong question!

Moral:

4-manifolds need not carry optimal metrics.

Geometrization of 3-manifolds: Wrong question!

Can 4-manifolds be decomposed into, say,

- Einstein and
- collapsed pieces?

Thank you, Nigel,

Thank you, Nigel,

for helping to make the mathematical world a better place.

Thank you, Nigel,

for helping to make the mathematical world a better place.

Happy Birthday!