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Let (M", g) be a Riemannian n-manifold, p € M.
Metric defines locally shortest curves, called geodesics.
Following geodesics from p defines a map

exp : IpM — M

which is a diffeomorphism on a neighborhood of 0:

Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM| gv,v)=1}

given by
v — (v, V).



Definition. A Riemannian metric g s said to
be Einstein if it has constant Ricci curvature



Definition. A Riemannian metric g s said to
be Einstein if ¢t has constant Ricci curvature —
l.€.

r=Ag

for some constant A € R.



Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

'77

*...the greatest blunder of my life
— A. Einstein, to G. Gamow



Definition. A Riemannian metric g s said to
be Einstein if ¢t has constant Ricci curvature —

1.€.
r=Ag
for some constant A € R.
k. |

-n ‘ i
Ky

*

.
g ks ¢
a.

(.2




Definition. A Riemannian metric g s said to
be Einstein if ¢t has constant Ricci curvature —
l.€.

r=Ag

for some constant A € R.

As punishment . ..



Definition. A Riemannian metric g s said to
be Einstein if ¢t has constant Ricci curvature —
l.€.

r=Ag

for some constant A € R.

Mathematicians call A the Einstein constant.



Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Mathematicians call A the Einstein constant.

Has same sign as the scalar curvature

_ I _ pij
5—7“].—72 i



Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Mathematicians call A the Einstein constant.

Has same sign as the scalar curvature

_ I _ pij
S—T]-—R i

volg(Be(p)) 22

Cpe™ =1l-s 6(n+2)

+0(eh



Definition. A Riemannian metric g s said to
be Einstein if ¢t has constant Ricci curvature —
l.€.

r=Ag

for some constant A € R.




Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.



Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker — unless dim M = 2 or 3.



Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.



Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.

Determined system:
same number of equations as unknowns.



Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

= Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.

Determined system:
same number of equations as unknowns.

n(n+1)

Jjk: —9— components.

. n(n+1) ;
I'jk —g— components.




Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

= Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.

Determined system:
same number of equations as unknowns.

. n(n+1)
Jjk: —9— components.

. n(n+1) ;
I'jk —g— components.

. 202
RI g — <q2 L components.




Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Generalizes constant sectional curvature condition,
but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.



Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.
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but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.
Azl =0 —= ik = %AgjknL (ots.
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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

"= Ag
for some constant A € R.

For the purposes of this talk. ..

Definition. An FEinstein manifold (M, qg) is a

smooth compact manifold M (without boundary),
equipped with a smooth Einstein metric g.
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“Can Finstein metrics with [Finstein| constants
of opposite signs exist on the same manifold?”

— A.L. Besse, Einstein Manafolds, p. 19

Became a folk-conjecture that the answer is No.

But it turns out that the answer is actually Yes!
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Theorem (Catanese-1, 1997). For each k > 2, there

15 a closed simply-connected 4k-manifold M that
admaits both A > 0 and A < 0 Einstein metrics.

Specific examples:

M:l/x...x}i
i

“Key triviality:”
Cartesian product

(M1, g1) x (Mo, g2) = (M1 x Ma, g1 @ g2)

of two Einstein manifolds is Einstein
<= they have the same Einstein constant .
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Theorem (Catanese-1, 1997). For each k > 2, there
15 a closed simply-connected 4k-manifold M that
admaits both A > 0 and A < 0 Einstein metrics.

Ingredients:

e ccography of complex surfaces;

e complex deformation theory:

e theory of Kahler-Einstein metrics;
e h-cobordisms of 4-manifolds; and

e Smale’s h-cobordism theorem.
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If 1y =0, then X is h-cobordant to Y.

But Smale doesn’t apply when n = 4!
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Lemma. If X* and Y* are simply connected,
non-spin, with x(X) = x(Y), 7(X) =7(Y), then

XX oo x XageY x - x Y Vk > 2.
diff P

s 4
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U(m) .= 0(2m) N GL(m,C)
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¥V x---xY gt ®---®g") Einstein with A > 0.
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XX X XY X - XY by h-cobordism thim.
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We have seen that 3 smooth closed M™ that admit
Finstein metrics for both A > 0 and A < 0.

But the known examples remain rare and peculiar.
[Known examples have n = 0 mod 4.

What about odd dimensions?

What about n = 2 mod 47

What about coexistence of A =0 and A # 07
What about coexistence of A =0 and A > 07

The latter seems to be especially delicate!
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Alas, no!

Theorem. No smooth compact M " can admit
both a Sasaki-Einstein metric g1 and a metric
go with holonomy C Go.

Key:

Proposition. If smooth compact M carries a
Sasaki-Einstein metric gy, then p (M) € H*(M,Z)
s a torston class.

To make this plausible, will first illustrate assertion
for prototypical examples due to 5. Kobayashi "063.
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Prototypical examples:

St — M7
\Lw
X6
Gysin sequence:

e HI(M) = HY(X) S HYX) D HY (M) — - -
Hence

o HY(X,R) — HY(M,R)
vanishes!

But p1(M) = w*p1(X), because
TM=2R®o'TX.

So p1(M) € H*M,Z) is a torsion element.
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To prove general case, replace H*(X,R) with the
basic cohomology Hp(M,§) of M relative to the
Reeb foliation §.

Replace Hard Lefschetz on H*(X,R) with trans-
verse version on H (M, §) due to El Kacimi-Alaoui.
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Proposition. If smooth compact M carries a
Sasaki-Einstein metric gy, then p (M) € H*(M,Z)
s a torston class.

By contrast, if (M7, go) has holonomy G, then
p1(M) € H4(M, 7)) can’t be a torsion class:

UL D) = =5 [ [RiPdug, <0

where R is Riemann curvature tensor and ¢ is the
parallel 3-form determining ¢o.

Theorem. No smooth compact M " can admit
both a Sasaki-Einstein metric g1 and a metric
go with holonomy C Go.
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If n = 0 mod 4, then M spin, with A(M) # 0:

(2, if Hol = SU(2m) and n = 2m,
A(M) =< k+1, if Hol=Sp(k) and n = 4k,
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Can Ricci-flat metrics of special holonomy ever co-
exist with A > 0 Einstein?

If Ricci-flat metric is holonomy irreducible, impos-
sible in most allowed dimensions!

This leaves us with Calabi-Yau manifolds of real
dimension &8¢ + 6.

Gromov-Lawson, Stolz: Always have s > 0 metrics
on simply-connected manifolds of these dimensions!

For example, every Calabi-Yau 3-fold admits s > 0
metrics. What about A > 0 Einstein”
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Coexistence Problem in Dimension 6:

Is there a smooth closed M° that admits both a
Kahler-Einstein metric g1 with A > 0 and a Calabi-
Yau metric gg?

Completely open!

Only four candidates for (M, J1):

e sextic hypersurface in CIP(1,1, 1,2, 3);

e double cover of CIP5 branched over quartic;

e cubic hypersurtace in CPy;

e transverse intersection of two quadrics in CPs.

These all admit K-E metrics with A > 0.

But no one has found Calabi-Yau parters for these
Fano manifolds!
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