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Deform retracts to k = £ — 1 copies of 52,
each with self-intersection —2,
meeting transversely, & forming connected set:

ISEN

Configuration dual to Dynkin diagram Aj.:

Diffeotype:

Plumb together & copies of 7% S?
according to diagram.
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Gibbons-Hawking gravitational instantons:

g = V(da® + dy* + dz*) + V162

df) = xdV

Kahler with respect to three complex structures
Hence holonomy C Sp(1) = SU(2).

Hence Ricci-flat!

Calabi later called such metrics “hyper-Kahler.”

Gibbons and Hawking were unaware of all this!
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“Asymptotically locally Euclidean”

—4
gik = 01 + O(|z] )
In particular, volume of large ball is

?
T2
Vol(B,)~ L2

Notice that £ = 1 case is just flat R?!

cf. Bishop-Gromov inequality!



Gibbons-Hawking gravitational instantons:

These spaces have just one end, ~(R* — {0})/Z,
But when s # 0, they are instead ALF"



Gibbons-Hawking gravitational instantons:

g = V(da® + dy* + dz*) + V162



Gibbons-Hawking gravitational instantons:

These spaces have just one end, ~(R* — {0})/Z,
But when s # 0, they are instead ALF"



Gibbons-Hawking gravitational instantons:

These spaces have just one end, ~(R* — {0})/Z,
But when s # 0, they are instead ALF"

“Asymptotically locally flat”



Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”

Curvature still falls off at infinity,



Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”

Curvature still falls off at infinity,

R| ~ const - p°



Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”

Curvature still falls off at infinity,



Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”
Curvature still falls off at infinity,

but volume growth is only cubic:

Vol(B)) ~ const - p’



Gibbons-Hawking gravitational instantons:
These spaces have just one end, ~(R* — {0})/Z,
But when « # 0, they are instead ALF:

“Asymptotically locally flat”
Curvature still falls off at infinity,

but volume growth is only cubic:
Vol(B)) ~ const - p’

This last property distinguishes the ALE spaces
from other classes of gravitational instantons:

ALG, ALH, ALG* ALH* ...
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Hawking: set ¢ = 4mf and 0 = 2m + g .
This makes ¢ into a Ricci-flat metric on R? x S2.

g =dr® + r°do’ + 4m2952 + O(frz)
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Hawking: set t = 4m0 and ¢ = 2m + ¢ .
This makes ¢ into a Ricci-flat metric on R? x S2.
Makes h into extremal Kahler metric on C x CIPy.
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Definition. A gravitational instanton is a
complete, non-compact, non-flat, Ricci-flat
Riemannian 4-manifold.

Many excellent mathematical papers cleverly
narrow the definition for technical convenience,
by assuming at the outset that the metric is
hyper-Kahler.

But now my French collaborators Biquard and
Gauduchon have fortunately done us all the
favor of reminding us that the hyper-Kahler
oravitons are only one small part of the story!
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> equipped with vector field T and 1-form 7
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T /T equipped with curvature +1 metric .
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%A% — A2,
* = 1.

AT self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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If g = f?h satisfies
SWT =0

then h instead satisfies

S(fIWT) =0

which in turn implies the Weitzenbock formula

0= V*V(fWT) + ng+ 6 Wt oWt £ 2f WA

for fIVF € End(AT).
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Application to Wu’s criterion:

Let aw > 3 > ~ be eigenvalues of W™

8
Wt = 5
y

a+pf+v=0

a>0 <0, HW"#£0
det(W ™) = aBy

det(W') >0 = o has multiplicity 1.

So v = Qg M — R™ a smooth function. Set

f= Oég_l/ga h = f_29 — 0492/39-
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FEinstein 4-manifold that satisfies

det(W ™) > 0

everywhere. Let h be the conformally rescaled
metric defined by

h=ay,
and let w € AT be defined (up to sign) by
W) =apw, |l = V2
Then

1
3d|w N *dw] > *(§]Vw|2 + 3 \dw|2).
at every point of M, with respect to the confor-
mally rescaled metric h. Moreover,

WVO|W T+ |sp] = |w A *dw)?
everywhere on (M, h).
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connected Ricci-flat 4-manaifold that satisfies

det(W ) > 0

everywhere. Let h be the conformally rescaled
metric defined by

h=a4"g.

Suppose that M 1s expressed as a nested union
M =U;U; of compact domains
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Then (M, h) is an extremal Kahler manifold with
non-constant, positive scalar curvature.
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Theorem A (BGL 24). Let (M, gg) be any of
the ALF toric Hermitian gravitational instan-
tons appearing in the Biquard-Gauduchon clas-
sification. Then any other Ricci-flat Rieman-
nian metric g on M which 1s sufficiently 013—
close to g 1s conformal to some strictly extremal
Kahler metric h, and so 1s, in particular, Her-
matian. Moreover, every such g carries at least

one Killing field.
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on the periodic case then yields a definitive result.
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