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Let (M", g) be a Riemannian n-manifold, p € M.
Metric defines locally shortest curves, called geodesics.
Following geodesics from p defines a map

exp : IpM — M

which is a diffeomorphism on a neighborhood of 0:

Now choosing TpM — R™ via some orthonormal
basis gives us special coordinates on M.
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In these “geodesic normal” coordinates the metric
volume measure is given by

d,ug = |1 — % T]k ijxk + O(‘x‘g) d,uEuclidean)

where 7 1s the [ticci tensor 1. = Rijik.

The Ricct curvature is by definition the function
on the unit tangent bundle

STM ={veTM| gv,v)=1}

given by
v — (v, V).
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but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.
Azl =0 —= ik = %AgjknL (ots.
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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
l.€.

r=Ag

for some constant A € R.

Proposition. Ifn > 3, A Riemannian n-manifold
(M™, g) is Einstein iff the trace-free part of its
Ricct tensor vanishes:

ro=r——g=0.
n

Proof. Bianchi identity = V. = (% — %)ds
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Question  (Yamabe). Does every  smooth
compact simply-connected n-manifold admat
an Einstein metric?

What we know:
e When n = 2: Yes! (Riemann)

e When n = 3: <= Poincaré¢ conjecture.
Hamilton, Perelman, ... Yes!

e When n = 4: No! (Hitchin)
e When n = 5: Yes?? (Boyer-Galicki-Kollar)
e When n > 6, wide open. Maybe???
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Dimension < 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
— If M3 carries Einstein metric, mo(M) = 0.

— Existence obstructed for connect sums M54 N3,

™S

DS

C X >

Ricci flow pinches off SZ necks.
First step in geometrization:

Prime Decomposition.
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There are many known Einstein metrics on S, n >
5 which do not have constant curvature.

The moduli space of Einstein metrics on S? x 53
has infinitely many connected components. Unit-
volume Einstein metrics exist for sequence of A—07".

(Bohm, Wang, Ziller, et al.)
Same behavior for certain rational homology spheres.

Connected sums (S? x S3)# - - - #(S5% x §3) admit
Einstein metrics for arbitrarily many summands.
Moduli space never seems to be connected.

Similar results for most simply connected spin 5-
manifolds. (Boyer, Galicki, Kollar, et al.)
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Simply connected complex surface with ¢; = 0.
Only one diffeomorphism type.

Spin, y = 24, T = —16.



K3 = Kummer-Kahler-Kodaira manifold.

Diffeomorphic to quartic in CIPg

t4+u4+v4+w4:()



K3 = Kummer-Kahler-Kodaira manifold.

Diffeomorphic to quartic in CIPg

rrut ettt =0




Dimension 4:

Theorem (Berger). Any Einstein metric on
A-torus T* is flat.

—> Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3
18 hyper-Kahler.



Dimension 4:

Theorem (Berger). Any Einstein metric on
A-torus T* is flat.

—> Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3
18 hyper-Kahler.

—> Moduli space of Einstein metrics is connected.



Dimension 4:

Theorem (Berger). Any Einstein metric on
A-torus T* is flat.

—> Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3
18 hyper-Kahler.

—> Moduli space of Einstein metrics is connected.

(Kodaira, Yau, Siu, et al.)



Dimension 4:

Theorem (Berger). Any Einstein metric on
A-torus T* is flat.

—> Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3
18 hyper-Kahler.

—> Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). There is only

one Einstein metric on compact hyperbolic
4-manafold 7—[4/F, up to scale and diffeos.



Dimension 4:

Theorem (Berger). Any Einstein metric on
A-torus T* is flat.

—> Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3
18 hyper-Kahler.

—> Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). There is only

one Einstein metric on compact hyperbolic
4-manafold 7—[4/F, up to scale and diffeos.

Theorem (L). There is only one Einstein met-
ric on compact complex-hyperbolic 4-manifold CHo /1,
up to scale and diffeos.
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Four Dimensions is Exceptional

When n = 4, existence for Einstein depends deli-
cately on smooth structure.

There are topological 4-manifolds which admit an
Einstein metric for one smooth structure, but not
for others.

But might allow for geometrization of 4-manifolds
by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension
four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too
common; have little to do with geometrization.
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What'’s so special about dimension 47

The Lie group SO(4) is not simple:

s50(4) = s0(3) @ s0(3).
On oriented (M4, g), —
A=At @A~
where AF are (£1)-eigenspaces of
x 1 A% = A2
x> = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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Corollary. A Riemannian 4-manifold (M, g) is
FEinstein <= sectional curvatures are equal for
any pair of perpendicular 2-planes.

K(P) = K(PY)
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(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

-] (2wt 18).
X =gz [l T e SR

for Euler-characteristic x (M) = Z(—l)j bi(M).
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4-dimensional Hirzebruch signature formula

1
(M) = — [ (W4 = W) du
™ JM

for signature 7(M) = by (M) — b_(M).

Here b4 (M) = maxdim subspaces C H?(M,R)
on which intersection pairing

H*(M,R) x H*(M,R) — R
(4. 1) = [ on

is positive (resp. negative) definite.
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e they have the same signature T; and
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No diffeomorphism classification currently known!

Typically, one homeotype +— oo many diffeotypes.
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orientedly homeomorphic if and only if
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Corollary. Any smooth compact simply connected
non-spin 4-manifold M 1s homeomorphic to a
connect sum

JCPy#kCPy = CPy# - - - #CPy # CPo# - - - #CPy
7 &
where j = by (M) and k =b_(M).

Convention:

CP5 = reverse oriented CPs.
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Conjecture (11/8 Conjecture). Any smooth com-
pact simply connected spin 4-manifold M is (un-
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Corollary. Any smooth compact simply connected
non-spin 4-manifold M 1s homeomorphic to a

connect sum jCPy#kCP5.

Conjecture (11/8 Conjecture). Any smooth com-
pact simply connected spin 4-manifold M is (un-

orientedly) homeomorphic to either S* or a con-
nected sum jI34#k(S% x S?).

Equivalent to asserting that such manitfolds satisty

11
bo > —|7].
9 > 8\T|

Certainly true of all examples in this lecture!
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Theorem. A compact complex surface (M?,.])
admits an Einstein metric g which is Hermitian
with respect to J <= c¢{(M*,.J) “has a sign.”

More precisely, 3 such g with Einstein constant
A <= there i1s a Kahler form w such that

el (M*,J) = Aw.

Moreover, this metric 1s unique, up to isometry,

if A =£ 0.
Aubin, Yau, Siu, Tian ... Kahler case.

Chen-L-Weber ('08), L ('12, "13): non-Kahler case.

Only two metrics arise in non-Kahler case!
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Corollary. The non-spin 4-manifolds
CPy#kCPy, 0< k<S8,

all admait A > 0 Einstein metrics.

So does the spin 4-manifold
5?2 x §2.

Blowing up:

If N is a complex surface, may replace p € N
with CIPy to obtain blow-up

M ~ N#CP,

in which new CIP; has self-intersection —1.
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structure J. Then M also admits an (unrelated)
Einstein metric g with A > 0

(CP#kCPy, 0< k<8
diff
— M = < or

S% % 5°

—: Hitchin-Thorpe inequality, easy Seiberg-Witten.
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Theorem. Suppose that M 1s a smooth compact
oriented 4-manifold which admaits an integrable
complex structure J. Then M also admits an
Einstein metric g with A > 0 if and only if

(CPy#kCP,, 0< k<S8,

S2 % 2.
K3,
di
M g{ K3/Zs,
T4

T %y, T Z3, T | Ly, T" | Zs,
T (Zy ® L), T (23 & Z3), or T/ (Zy & Ly).

Del Pezzo surfaces,
K3 surtace, Enriques surface,
Abelian surface, Hyper-elliptic surfaces.

Similarly when M symplectic instead of complex.
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Hitchin-Thorpe Inequality:

2x + 37)(M) = — 52+2\W 2 Y
7' g R - -
X 172 |\ 24 T [
Einstein = 1 82+2\W 2] g
1nSsteln = —= —
A2 Jas \ 24 i Hg

Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) > 0,

with equality only if (M, qg) finitely covered by
flat T* or Calabi-Yau K3.
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But 0 + 9* does generalize:

spin® Dirac operator, preferred connection on L.
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Let J be any almost complex structure on M.
Let L = A2 be its anti-canonical line bundle.

Vg on M, the bundles

V_|_ _ AO’O @/\072
V. = AO,l

can formally be written as
Ve =S4+ ® LY/ 2,
where S are left & right-handed spinor bundles.

Every unitary connection A on L induces
spin® Dirac operator

DA ) F(V+> — F(V_)
generalizing 9 + 0*.
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Seiberg-Witten equations:

Ds® =0
1
+ _

Unknowns:
both ® and A.
Here F' jéi = self-dual part of curvature of A.

Non-linear, but elliptic once ‘gauge-fixing’
d*(A— Ay =0

imposed to eliminate automorphisms of L — M.
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Weitzenbock formula:

0 = 2A|D|? + 4|V 4D + s|D)* + |

—> moduli space compact.

Seiberg-Witten invariant:

# solutions (mod gauge, with multiplicities).
When invariant is non-zero, solutions guaranteed.

—> Ag with s > 0.

If. in addition, ¢;2 > 0,
—> Ag with s > 0.
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Existence in Hermitian case:

Kéhler-Einstein with A < 0 <= ¢{(M,.J) < 0.

Such (M*?, J) are necessarily minimal complex sur-
faces of general type.

If complex surface M admits any Einstein metric,
either

eon A\ > 0 list; or else

e of general type.

Minimality is harder!
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A complex surface X is called minimal if it is not
the blow-up of another complex surtace.

Any complex surface M can be obtained from a
minimal surface X by blowing up a finite number

of times: -
M ~ X#kCPy
One says that X is minimal model of M.

A complex surface M is of general type <=
its minimal model X satisfies

012(X) > o
1w <
[

for some Kahler class |w].
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Theorem (Curvature Estimates). For any Rie-
mannian metric g on a compact compler sur-
face M of general type, the following curvature
bounds are satisfied:

/ 32d,ug > 327%¢12(X)
M 2
/ (3 — \/6\W+\) dig > 7211 %(X)
M

where X s the minimal model of M.

Moreover, equality holds in either case iff M =
X, and g 1s Kahler-Einstein with A < 0.
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Theorem (L 01). Let X be a minimal surface
of general type, and let

M = X#kCP,.
Then M cannot admit an Einstein metric if
k> c’(X)/3.

(Better than Hitchin-Thorpe by a factor of 3.)

S0 being “very’ non-minimal is an obstruction.
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Theorem (L 01). Let X be a minimal surface
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Theorem (L 01). Let X be a minimal surface
of general type, and let

M = X#kCP,.
Then M cannot admit an Einstein metric if
k> c’(X)/3.

In example:

A(X) =3
k=1



X is triple cover CIP9 ramified at sextic

T~ C<

B~ CP,

M = X#CP».

So Theorem = no Einstein metric on M .
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