Four-Manifolds,

Einstein Metrics, &

Differential Topology

Claude LeBrun Stony Brook University

IMPA, 6/11/13

Let (M^n, g) be a Riemannian *n*-manifold, $p \in M$.

Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

 $\exp: T_pM \to M$

Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

$$\exp: T_pM \to M$$

which is a diffeomorphism on a neighborhood of 0:

Let (M^n, g) be a Riemannian n-manifold, $p \in M$. Metric defines locally shortest curves, called geodesics. Following geodesics from p defines a map

$$\exp: T_pM \to M$$

which is a diffeomorphism on a neighborhood of 0:

Now choosing $T_pM \stackrel{\cong}{\to} \mathbb{R}^n$ via some orthonormal basis gives us special coordinates on M.

$$d\mu_g = d\mu_{\text{Euclidean}},$$

$$d\mu_g = \begin{bmatrix} 1 - \end{bmatrix} d\mu_{\text{Euclidean}}$$

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + \right] d\mu_{\text{Euclidean}},$$

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the Ricci tensor

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The Ricci curvature

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where \mathbf{r} is the $Ricci\ tensor\ \mathbf{r}_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the Ricci tensor $r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$STM = \{v \in TM \mid g(v, v) = 1\}$$

$$d\mu_g = \left[1 - \frac{1}{6} \, r_{jk} \, x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},$$

where r is the $Ricci\ tensor\ r_{jk} = \mathcal{R}^{i}{}_{jik}$.

The *Ricci curvature* is by definition the function on the unit tangent bundle

$$STM = \{v \in TM \mid g(v, v) = 1\}$$

given by

$$v \longmapsto r(v,v).$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

"... the greatest blunder of my life!"

— A. Einstein, to G. Gamow

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

 λ called Einstein constant.

Has same sign as the *scalar curvature*

$$s = r_j^j = \mathcal{R}^{ij}{}_{ij}.$$

$$\frac{\operatorname{vol}_g(B_{\varepsilon}(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

n=2,3: Einstein \iff constant sectional

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

n=2,3: Einstein \iff constant sectional

 $n \geq 4$: Einstein \Leftarrow , \Rightarrow constant sectional

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

$$g_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$r_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

$$g_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$r_{jk}$$
: $\frac{n(n+1)}{2}$ components.

$$\mathcal{R}^{j}_{k\ell m}$$
: $\frac{n^{2}(n^{2}-1)}{12}$ components.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.

$$\Delta x^j = 0 \Longrightarrow r_{jk} = \frac{1}{2} \Delta g_{jk} + \ell ots.$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Proposition. If $n \geq 3$, A Riemannian n-manifold (M^n, g) is Einstein iff the trace-free part of its Ricci tensor vanishes:

$$\dot{\mathbf{r}} := \mathbf{r} - \frac{s}{n}g = 0.$$

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Proposition. If $n \geq 3$, A Riemannian n-manifold (M^n, g) is Einstein iff the trace-free part of its Ricci tensor vanishes:

$$\mathring{r} := r - \frac{s}{n}g = 0.$$

Proof. Bianchi identity $\Longrightarrow \nabla \cdot \mathring{r} = (\frac{1}{2} - \frac{1}{n}) ds$.

Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

What we know:

Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

What we know:

• When n = 2: Yes! (Riemann)

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture.

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When n = 4: No! (Hitchin)

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When n = 4: No! (Hitchin)
- When n = 5: Yes?? (Boyer-Galicki-Kollár)

- When n = 2: Yes! (Riemann)
- When n = 3: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
- When n = 4: No! (Hitchin)
- When n = 5: Yes?? (Boyer-Galicki-Kollár)
- When $n \geq 6$, wide open. Maybe???

Einstein's equations are "locally trivial:"

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

 \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

 \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

 \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \implies Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \implies Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

 \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

 \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \implies Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.

First step in geometrization:

Einstein's equations are "locally trivial:"

Einstein metrics have constant sectional curvature.

- \implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.
- \Longrightarrow Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.

First step in geometrization:

Prime Decomposition.

There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature.

There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Dimension > 5:

There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Connected sums $(S^2 \times S^3) \# \cdots \# (S^2 \times S^3)$ admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected.

There are many known Einstein metrics on S^n , $n \ge 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Connected sums $(S^2 \times S^3) \# \cdots \# (S^2 \times S^3)$ admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected.

Similar results for most simply connected spin 5-manifolds. (Boyer, Galicki, Kollar, et al.)

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is hyper-Kähler.

Simply connected complex surface with $c_1 = 0$.

Simply connected complex surface with $c_1 = 0$.

Only one deformation type.

Simply connected complex surface with $c_1 = 0$.

Only one diffeomorphism type.

Simply connected complex surface with $c_1 = 0$.

Only one diffeomorphism type.

Spin, $\chi = 24$, $\tau = -16$.

 $K3 = \text{Kummer-K\"{a}hler-Kodaira manifold}.$

Diffeomorphic to quartic in \mathbb{CP}_3

$$t^4 + u^4 + v^4 + w^4 = 0$$

$K3 = \text{Kummer-K\"{a}hler-Kodaira manifold}.$

Diffeomorphic to quartic in \mathbb{CP}_3

$$t^4 + u^4 + v^4 + w^4 = 0$$

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is hyper-Kähler.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is hyper-Kähler.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is hyper-Kähler.

⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.)

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is hyper-Kähler.

⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ , up to scale and diffeos.

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

⇒ Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on K3 is hyper-Kähler.

⇒ Moduli space of Einstein metrics is connected. (Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ , up to scale and diffeos.

Theorem (L). There is only one Einstein metric on compact complex-hyperbolic 4-manifold $\mathbb{C}\mathcal{H}_2/\Gamma$, up to scale and diffeos.

When n=4, existence for Einstein depends delicately on smooth structure.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension four to call this a geometrization.

When n = 4, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too common; have little to do with geometrization.

The Lie group SO(4) is not simple

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented (M^4, g) ,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4)\cong\mathfrak{so}(3)\oplus\mathfrak{so}(3).$$
 On oriented $(M^4,g),\Longrightarrow$
$$\Lambda^2=\Lambda^+\oplus\Lambda^-$$

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of $\star : \Lambda^2 \to \Lambda^2$,

The Lie group SO(4) is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented
$$(M^4, g)$$
, \Longrightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^{\pm} are (± 1) -eigenspaces of

$$\star : \Lambda^2 \to \Lambda^2,$$
$$\star^2 = 1.$$

 Λ^+ self-dual 2-forms.

 Λ^- anti-self-dual 2-forms.

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

$$\mathcal{R}:\Lambda^2\to\Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature}$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

$$\Lambda^{+*} \qquad \Lambda^{-*}$$

$$\Lambda^{+} \qquad W_{+} + \frac{s}{12} \qquad \mathring{r}$$

$$\Lambda^{-} \qquad \mathring{r} \qquad W_{-} + \frac{s}{12}$$

where

s = scalar curvature

 \mathring{r} = trace-free Ricci curvature

 $W_{+} = \text{self-dual Weyl curvature } (conformally invariant)$

 W_{-} = anti-self-dual Weyl curvature

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & \mathring{r} \\ & & \\ \mathring{r} & W_{-} + \frac{s}{12} \end{pmatrix}.$$

$$\mathcal{R}: \Lambda^2 \to \Lambda^2$$

$$\star: \Lambda^2 \to \Lambda^2:$$

$$\mathcal{R} = \begin{pmatrix} W_{+} + \frac{s}{12} & 0 \\ 0 & W_{-} + \frac{s}{12} \end{pmatrix}.$$

Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes. Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.

 T_xM

Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.

 T_xM

Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.

$$K(P) = K(P^{\perp})$$

(M,g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + \right) d\mu$$

(M,g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 \right) d\mu$$

(M,g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 \right) d\mu$$

(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

(M,g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$\chi(\mathbf{M}) = \frac{1}{8\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu$$

for Euler-characteristic
$$\chi(\mathbf{M}) = \sum_{j} (-1)^{j} b_{j}(\mathbf{M}).$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 \right) d\mu$$

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$

$$\tau(M) = \frac{1}{12\pi^2} \int_{M} \left(|W_{+}|^2 - |W_{-}|^2 \right) d\mu$$
 for signature $\tau(M) = b_{+}(M) - b_{-}(M)$.

$$\tau(\mathbf{M}) = \frac{1}{12\pi^2} \int_{\mathbf{M}} \left(|W_+|^2 - |W_-|^2 \right) d\mu$$
 for signature $\tau(\mathbf{M}) = b_+(\mathbf{M}) - b_-(\mathbf{M})$.

Here $b_{\pm}(M) = \max \dim \text{ subspaces } \subset H^2(M, \mathbb{R})$ on which intersection pairing

$$H^{2}(M,\mathbb{R}) \times H^{2}(M,\mathbb{R}) \longrightarrow \mathbb{R}$$

$$([\varphi], [\psi]) \mapsto \int_{M} \varphi \wedge \psi$$

is positive (resp. negative) definite.

• they have the same Euler characteristic χ ;

- they have the same Euler characteristic χ ;
- they have the same signature τ ;

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 \qquad \qquad w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

No diffeomorphism classification currently known!

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

$$w_2 = 0 w_2 \neq 0$$

Warning: "Exotic differentiable structures!"

No diffeomorphism classification currently known!

Typically, one homeotype $\longleftrightarrow \infty$ many diffeotypes.

- they have the same Euler characteristic χ ;
- they have the same signature τ ; and
- both are spin, or both are non-spin.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2 = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\overline{\mathbb{CP}}_2\#\cdots\#\overline{\mathbb{CP}}_2}_{k}$$

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}_2\#k\overline{\mathbb{CP}_2} = \underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{j}\#\underbrace{\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2}_{k}$$
where $j = b_+(M)$ and $k = b_-(M)$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}_{2}\#k\overline{\mathbb{CP}_{2}} = \underbrace{\mathbb{CP}_{2}\#\cdots\#\mathbb{CP}_{2}}_{j}\#\underbrace{\mathbb{CP}_{2}\#\cdots\#\mathbb{CP}_{2}}_{k}$$

$$where \ j = b_{+}(M) \ and \ k = b_{-}(M).$$

Convention:

 $\overline{\mathbb{CP}}_2$ = reverse oriented \mathbb{CP}_2 .

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}}_2$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Equivalent to asserting that such manifolds satisfy

$$b_2 \ge \frac{11}{8} |\tau|.$$

Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}_2\# k\overline{\mathbb{CP}_2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (unorientedly) homeomorphic to either S^4 or a connected sum $jK3\#k(S^2\times S^2)$.

Equivalent to asserting that such manifolds satisfy

$$b_2 \ge \frac{11}{8} |\tau|.$$

Certainly true of all examples in this lecture!

Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry provides rich source of examples.

Question. Which smooth compact 4-manifolds

M⁴ admit Einstein metrics?

Complex geometry provides rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry provides rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Today's Main Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J)?

Even Narrower Question. When does a compact complex surface (M^4, J) admit an Einstein metric g which is Hermitian,

Even Narrower Question. When does a compact complex surface (M^4, J) admit an Einstein metric g which is Hermitian, in the sense that

$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
?

Even Narrower Question. When does a compact complex surface (M^4, J) admit an Einstein metric g which is Hermitian, in the sense that

$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
?

Kähler if the 2-form

$$\omega = g(J \cdot, \cdot)$$

is closed:

$$d\omega = 0.$$

But we do not assume this!

Even Narrower Question. When does a compact complex surface (M^4, J) admit an Einstein metric g which is Hermitian, in the sense that

$$g(\cdot, \cdot) = g(J \cdot, J \cdot)$$
?

More precisely, \exists such g with Einstein constant $\lambda \iff$ there is a Kähler form ω such that $c_1(M^4, J) = \lambda[\omega].$

More precisely, \exists such g with Einstein constant $\lambda \iff$ there is a Kähler form ω such that

$$c_1(M^4, J) = \lambda[\omega].$$

Moreover, this metric is unique, up to isometry, if $\lambda \neq 0$.

More precisely, \exists such g with Einstein constant $\lambda \iff$ there is a Kähler form ω such that

$$c_1(M^4, J) = \lambda[\omega].$$

Moreover, this metric is unique, up to isometry, if $\lambda \neq 0$.

Aubin, Yau, Siu, Tian ... Kähler case.

More precisely, \exists such g with Einstein constant $\lambda \iff$ there is a Kähler form ω such that

$$c_1(M^4, J) = \lambda[\omega].$$

Moreover, this metric is unique, up to isometry, if $\lambda \neq 0$.

Aubin, Yau, Siu, Tian ... Kähler case.

Chen-L-Weber ('08), L ('12, '13): non-Kähler case.

Theorem. A compact complex surface (M^4, J) admits an Einstein metric g which is Hermitian with respect to $J \iff c_1(M^4, J)$ "has a sign."

More precisely, \exists such g with Einstein constant $\lambda \iff$ there is a Kähler form ω such that

$$c_1(M^4, J) = \lambda[\omega].$$

Moreover, this metric is unique, up to isometry, if $\lambda \neq 0$.

Aubin, Yau, Siu, Tian ... Kähler case.

Chen-L-Weber ('08), L ('12, '13): non-Kähler case.

Only two metrics arise in non-Kähler case!

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \qquad 0 \le k \le 8,$$

all admit $\lambda > 0$ Einstein metrics.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \le k \le 8,$$

all admit $\lambda > 0$ Einstein metrics.

So does the spin 4-manifold

$$S^2 \times S^2$$
.

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \le k \le 8,$$

all admit $\lambda > 0$ Einstein metrics.

So does the spin 4-manifold

$$S^2 \times S^2$$
.

Blowing up:

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$

all admit $\lambda > 0$ Einstein metrics.

So does the spin 4-manifold

$$S^2 \times S^2$$
.

Blowing up:

If N is a complex surface,

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$

all admit $\lambda > 0$ Einstein metrics.

So does the spin 4-manifold

$$S^2 \times S^2$$
.

Blowing up:

If N is a complex surface, may replace $p \in N$

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \le k \le 8,$$

all admit $\lambda > 0$ Einstein metrics.

So does the spin 4-manifold

$$S^2 \times S^2$$
.

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$

all admit $\lambda > 0$ Einstein metrics.

So does the spin 4-manifold

$$S^2 \times S^2$$
.

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

$$\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8,$$

all admit $\lambda > 0$ Einstein metrics.

So does the spin 4-manifold

$$S^2 \times S^2$$
.

Blowing up:

If N is a complex surface, may replace $p \in N$ with \mathbb{CP}_1 to obtain blow-up

$$M \approx N \# \overline{\mathbb{CP}}_2$$

in which new \mathbb{CP}_1 has self-intersection -1.

Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J.

$$\iff M \stackrel{diff}{pprox} \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ \end{array} \right.$$

$$\iff M \stackrel{\text{diff}}{\approx} \left\{ \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \le k \le 8, \right.$$

$$\iff M \stackrel{\text{diff}}{\approx} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

$$\iff M \stackrel{\text{diff}}{\approx} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \le k \le 8, \\ or \\ S^2 \times S^2 \end{cases}$$

⇒: Hitchin-Thorpe inequality, easy Seiberg-Witten.

```
M \stackrel{diff}{pprox} \left\{ egin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \\ M \stackrel{diff}{pprox} \end{array} 
ight.
```

```
M \stackrel{diff}{\approx} \left\{ \begin{array}{c} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \end{array} \right.
```

```
M \stackrel{diff}{\approx} \begin{cases} S^2 \times S^2, \\ M \stackrel{diff}{\approx} \end{cases}
```

```
 \begin{array}{c} \text{with } \alpha \\ \text{of } J. \quad Then \ N. \\ \text{with } \lambda \geq 0 \text{ if } \alpha \\ \\ \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ M \stackrel{diff}{\approx} \end{array}
```

Theorem. Suppose that
$$M$$
 is a smooth oriented 4-manifold which admits an complex structure J . Then M also Einstein metric g with $\lambda \geq 0$ if and of $\mathbb{CP}_2\#k\overline{\mathbb{CP}}_2$, $0 \leq k \leq 8$, $S^2 \times S^2$, $K3$, $K3/\mathbb{Z}_2$,

Theorem. Suppose that
$$M$$
 is a smooth oriented 4-manifold which admits an complex structure J . Then M also Einstein metric g with $\lambda \geq 0$ if and of $\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2$, $0 \leq k \leq 8$, $S^2 \times S^2$, $K3$, $K3/\mathbb{Z}_2$, T^4 ,

$$\begin{array}{c} \text{CP}_2\#k\overline{\mathbb{CP}}_2, \quad 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \end{array}$$

```
Instein metric g where X \subseteq \mathbb{Z}_{3}

\begin{pmatrix}
\mathbb{CP}_{2} \# k \overline{\mathbb{CP}}_{2}, & 0 \leq k \leq 8, \\
S^{2} \times S^{2}, & K3, \\
K3, & K3/\mathbb{Z}_{2}, \\
T^{4}, & T^{4}/\mathbb{Z}_{2}, T^{4}/\mathbb{Z}_{3}, T^{4}/\mathbb{Z}_{4}, T^{4}/\mathbb{Z}_{6}, \\
T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}), T^{4}/(\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}), \text{ or } T^{4}/(\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}).
\end{pmatrix}
```

Einstein metric
$$g$$
 with $\lambda \geq 0$ if and only if
$$\begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$

Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces.

Einstein metric
$$g$$
 with $\lambda \geq 0$ if and only if
$$\begin{pmatrix}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), or T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{pmatrix}$$

Del Pezzo surfaces, K3 surface, Enriques surface, Abelian surface, Hyper-elliptic surfaces.

Similarly when M symplectic instead of complex.

Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(\mathbf{M}) = \frac{1}{4\pi^2} \int_{\mathbf{M}} \left(\frac{\mathbf{s}^2}{24} + 2|W_+|^2 - \frac{|\mathring{\mathbf{r}}|^2}{2} \right) d\mu_g$$

Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2}\right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2\right) d\mu_g$

Hitchin-Thorpe Inequality:

$$(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu_g$$

Einstein $\Rightarrow = \frac{1}{4\pi^2} \int_{M} \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g$

Theorem (Hitchin-Thorpe Inequality). If smooth compact oriented M^4 admits Einstein g, then

$$(2\chi + 3\tau)(M) \ge 0,$$

with equality only if (M, g) finitely covered by flat T^4 or Calabi-Yau K3.

generalized Kähler geometry of non-Kähler 4-manifolds.

generalized Kähler geometry of non-Kähler 4-manifolds.

Can't hope to generalize $\bar{\partial}$ operator to this setting.

generalized Kähler geometry of non-Kähler 4-manifolds.

Can't hope to generalize $\bar{\partial}$ operator to this setting.

But $\bar{\partial} + \bar{\partial}^*$ does generalize:

generalized Kähler geometry of non-Kähler 4-manifolds.

Can't hope to generalize $\bar{\partial}$ operator to this setting.

But $\bar{\partial} + \bar{\partial}^*$ does generalize:

 $spin^c$ Dirac operator, preferred connection on L.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$

$$V_{-} = \Lambda^{0,1}$$

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$
$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$
$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

where S_{\pm} are left & right-handed spinor bundles.

Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

 $\forall g \text{ on } M$, the bundles

$$V_{+} = \Lambda^{0,0} \oplus \Lambda^{0,2}$$

$$V_{-} = \Lambda^{0,1}$$

can formally be written as

$$\mathbb{V}_{\pm} = \mathbb{S}_{\pm} \otimes L^{1/2},$$

where \mathbb{S}_{\pm} are left & right-handed spinor bundles.

Every unitary connection A on L induces $spin^c$ Dirac operator

$$D_A:\Gamma(\mathbb{V}_+)\to\Gamma(\mathbb{V}_-)$$

generalizing $\bar{\partial} + \bar{\partial}^*$.

$$D_A \Phi = 0$$

$$F_A^+ = -\frac{1}{2} \Phi \odot \overline{\Phi}$$

$$D_A \Phi = 0$$

$$F_A^+ = -\frac{1}{2} \Phi \odot \overline{\Phi}$$

Unknowns:

both Φ and A.

$$D_A \Phi = 0$$

$$F_A^+ = -\frac{1}{2} \Phi \odot \overline{\Phi}$$

Unknowns:

both Φ and A.

Here F_A^+ = self-dual part of curvature of A.

$$D_A \Phi = 0$$

$$F_A^+ = -\frac{1}{2} \Phi \odot \overline{\Phi}$$

Unknowns:

both Φ and A.

Here F_A^+ = self-dual part of curvature of A.

Non-linear, but elliptic

$$D_A \Phi = 0$$

$$F_A^+ = -\frac{1}{2} \Phi \odot \overline{\Phi}$$

Unknowns:

both Φ and A.

Here F_A^+ = self-dual part of curvature of A.

Non-linear, but elliptic once 'gauge-fixing'

$$d^*(A - A_0) = 0$$

imposed to eliminate automorphisms of $L \to M$.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

$$\implies \text{moduli space compact.}$$

Seiberg-Witten invariant:

solutions

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact.

Seiberg-Witten invariant:

solutions (mod gauge, with multiplicities).

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

 \Longrightarrow moduli space compact.

Seiberg-Witten invariant:

solutions (mod gauge, with multiplicities).

When invariant is non-zero, solutions guaranteed.

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

⇒ moduli space compact.

Seiberg-Witten invariant:

solutions (mod gauge, with multiplicities).

When invariant is non-zero, solutions guaranteed.

$$\Longrightarrow \exists g \text{ with } s > 0.$$

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

 \Longrightarrow moduli space compact.

Seiberg-Witten invariant:

solutions (mod gauge, with multiplicities).

When invariant is non-zero, solutions guaranteed.

$$\Longrightarrow \exists g \text{ with } s > 0.$$

If, in addition, $c_1^2 > 0$, $\Longrightarrow \exists g \text{ with } s \ge 0$.

Existence in Hermitian case:

Existence in Hermitian case:

Kähler-Einstein with $\lambda < 0 \iff c_1(M, J) < 0$.

Existence in Hermitian case:

Kähler-Einstein with $\lambda < 0 \iff c_1(M, J) < 0$.

Such (M^4, J) are necessarily minimal complex surfaces of general type.

Existence in Hermitian case:

Kähler-Einstein with $\lambda < 0 \iff c_1(M, J) < 0$.

Such (M^4, J) are necessarily minimal complex surfaces of general type.

If complex surface M admits any Einstein metric, either

- on $\lambda \geq 0$ list; or else
- of general type.

Existence in Hermitian case:

Kähler-Einstein with $\lambda < 0 \iff c_1(M, J) < 0$.

Such (M^4, J) are necessarily minimal complex surfaces of general type.

If complex surface M admits any Einstein metric, either

- on $\lambda \geq 0$ list; or else
- of general type.

Minimality is harder!

A complex surface X is called minimal if it is not the blow-up of another complex surface.

A complex surface X is called minimal if it is not the blow-up of another complex surface.

Any complex surface M can be obtained from a minimal surface X by blowing up a finite number of times:

$$M \approx X \# k \overline{\mathbb{CP}}_2$$

One says that X is minimal model of M.

A complex surface X is called minimal if it is not the blow-up of another complex surface.

Any complex surface M can be obtained from a minimal surface X by blowing up a finite number of times:

$$M \approx X \# k \overline{\mathbb{CP}}_2$$

One says that X is minimal model of M.

A complex surface M is of general type \iff its minimal model X satisfies

$$c_1^2(X) > 0$$

$$c_1 \cdot [\omega] < 0$$

for some Kähler class $[\omega]$.

Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

$$\int_{M} s^{2} d\mu_{g} \ge 32\pi^{2} c_{1}^{2}(X)$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \ge 72\pi^{2} c_{1}^{2}(X)$$

where X is the minimal model of M.

Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

$$\int_{M} s^{2} d\mu_{g} \geq 32\pi^{2} c_{1}^{2}(X)$$

$$\int_{M} \left(s - \sqrt{6}|W_{+}|\right)^{2} d\mu_{g} \geq 72\pi^{2} c_{1}^{2}(X)$$

where X is the minimal model of M.

Moreover, equality holds in either case iff M = X, and g is Kähler-Einstein with $\lambda < 0$.

Theorem (L '01). Let X be a minimal surface of general type, and let

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \ge c_1^2(X)/3$.

Theorem (L '01). Let X be a minimal surface of general type, and let

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \ge c_1^2(X)/3$.

(Better than Hitchin-Thorpe by a factor of 3.)

So being "very" non-minimal is an obstruction.

Example.

Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:

Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:

$$c_1 < 0 \implies$$

Example. Let N be double branched cover \mathbb{CP}_2 , ramified at a smooth octic:

 $c_1 < 0 \implies N$ carries an Einstein metric.

Now let X be a triple cyclic cover \mathbb{CP}_2 , ramified at a smooth sextic

Now let X be a triple cyclic cover \mathbb{CP}_2 , ramified at a smooth sextic

and set

$$M = X \# \overline{\mathbb{CP}}_2.$$

Now let X be a triple cyclic cover \mathbb{CP}_2 , ramified at a smooth sextic

and set

$$M = X \# \overline{\mathbb{CP}}_2.$$

Then

$$c_1^2(X) = 3$$
$$k = 1$$

Theorem (L '01). Let X be a minimal surface of general type, and let

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if $k \ge c_1^2(X)/3$.

Theorem (L '01). Let X be a minimal surface of general type, and let

$$M = X \# k \overline{\mathbb{CP}}_2.$$

Then M cannot admit an Einstein metric if

$$k \ge c_1^2(X)/3.$$

In example:

$$c_1^2(X) = 3$$
$$k = 1$$

X is triple cover \mathbb{CP}_2 ramified at sextic

$$M = X \# \overline{\mathbb{CP}}_2.$$

So Theorem $\Longrightarrow no$ Einstein metric on M.

But M and N are both simply connected & non-spin,

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$,

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$

$$\tau = -30$$

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$

$$\tau = -30$$

Hence Freedman $\Longrightarrow M$ homeomorphic to N!

But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$

$$\tau = -30$$

Hence Freedman $\Longrightarrow M$ homeomorphic to N!

$$M = X \# \overline{\mathbb{CP}}_2$$

$$M = X \# \overline{\mathbb{CP}}_2$$

$$M = X \# \overline{\mathbb{CP}}_2$$

$$M = X \# \overline{\mathbb{CP}}_2$$

