Four-Manifolds,

Einstein Metrics, &

Differential Topology

Claude LeBrun
Stony Brook University

IMPA, 6/11/13
Let \((M^n, g)\) be a Riemannian \(n\)-manifold, \(p \in M\).
Let \((M^n, g) \) be a Riemannian \(n \)-manifold, \(p \in M \). Metric defines locally shortest curves, called \textit{geodesics}. Following geodesics from \(p \) defines a map

\[
\exp : T_p M \to M
\]
Let \((M^n, g)\) be a Riemannian \(n\)-manifold, \(p \in M\). Metric defines locally shortest curves, called \textit{geodesics}. Following geodesics from \(p\) defines a map

\[
\exp : T_p M \to M
\]

which is a diffeomorphism on a neighborhood of 0:
Let \((M^n, g)\) be a Riemannian \(n\)-manifold, \(p \in M\). Metric defines locally shortest curves, called \textit{geodesics}. Following geodesics from \(p\) defines a map

\[
\exp : T_pM \to M
\]

which is a diffeomorphism on a neighborhood of 0:

Now choosing \(T_pM \cong \mathbb{R}^n\) via some orthonormal basis gives us special coordinates on \(M\).
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = d\mu_{\text{Euclidean}}, \]
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + \ldots \right] d\mu_{\text{Euclidean}}, \]
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \(r \) is the \textit{Ricci tensor}.
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \(r \) is the \textit{Ricci tensor} \(r_{jk} = \mathcal{R}^i_{
olimits jik} \).
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \(r \) is the \textit{Ricci tensor} \(r_{jk} = \mathcal{R}^i_{\ jik} \).

The \textit{Ricci curvature}
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \(r \) is the \textit{Ricci tensor} \(r_{jk} = \mathcal{R}^i_{\ jk} \).

The \textit{Ricci curvature} is by definition the function on the unit tangent bundle
In these “geodesic normal” coordinates the metric volume measure is given by

\[d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3) \right] d\mu_{\text{Euclidean}}, \]

where \(r \) is the Ricci tensor \(r_{jk} = \mathcal{R}_i^{jk}. \)

The Ricci curvature is by definition the function on the unit tangent bundle

\[STM = \{ v \in TM \mid g(v, v) = 1 \} \]
In these “geodesic normal” coordinates the metric volume measure is given by

\[
d\mu_g = \left[1 - \frac{1}{6} r_{jk} x^j x^k + O(|x|^3)\right] d\mu_{\text{Euclidean}},
\]

where \(r \) is the Ricci tensor \(r_{jk} = \mathcal{R}^i_{jik} \).

The Ricci curvature is by definition the function on the unit tangent bundle

\[
STM = \{v \in TM \mid g(v, v) = 1\}
\]

given by

\[
v \mapsto r(v, v).
\]
Definition. A Riemannian metric g is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

“...the greatest blunder of my life!”

— A. Einstein, to G. Gamow
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

As punishment ...
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.

Has same sign as the scalar curvature

$$s = r^j_j = \mathcal{R}^{ij}ij.$$
Definition. A Riemannian metric g is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

λ called Einstein constant.

Has same sign as the **scalar curvature**

$$s = r^j_j = \mathcal{R}^{ij}{}_{ij}.$$

$$\frac{\text{vol}_g(B_\varepsilon(p))}{c_n \varepsilon^n} = 1 - s \frac{\varepsilon^2}{6(n+2)} + O(\varepsilon^4)$$
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.,

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

$n = 2, 3$: Einstein \iff constant sectional
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

$n = 2, 3$: Einstein \iff constant sectional

$n \geq 4$: Einstein \iff, $\not\Rightarrow$ constant sectional
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:
same number of equations as unknowns.
Definition. A Riemannian metric g is said to be **Einstein** if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

g_{jk}: $\frac{n(n+1)}{2}$ components.

r_{jk}: $\frac{n(n+1)}{2}$ components.
Definition. A Riemannian metric g is said to be *Einstein* if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

g_{jk}: $\frac{n(n+1)}{2}$ components.

r_{jk}: $\frac{n(n+1)}{2}$ components.

\mathcal{R}^k_{klm}: $\frac{n^2(n^2-1)}{12}$ components.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$ r = \lambda g $$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:

same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Generalizes constant sectional curvature condition, but weaker.

Determined system:
same number of equations as unknowns.

Elliptic non-linear PDE after gauge fixing.

$$\Delta x^j = 0 \implies r_{jk} = \frac{1}{2} \Delta g_{jk} + \text{lots.}$$
Definition. A Riemannian metric g is said to be *Einstein* if it has constant Ricci curvature — i.e.

$$ r = \lambda g $$

for some constant $\lambda \in \mathbb{R}$.

Proposition. If $n \geq 3$, a Riemannian n-manifold (M^n, g) is Einstein iff the trace-free part of its Ricci tensor vanishes:

$$ \hat{r} := r - \frac{s}{n} g = 0. $$
Definition. A Riemannian metric g is said to be Einstein if it has constant Ricci curvature — i.e.

$$r = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

Proposition. If $n \geq 3$, A Riemannian n-manifold (M^n, g) is Einstein iff the trace-free part of its Ricci tensor vanishes:

$$\hat{r} := r - \frac{s}{n}g = 0.$$

Proof. Bianchi identity $\implies \nabla \cdot \hat{r} = \left(\frac{1}{2} - \frac{1}{n}\right)ds$.

Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?
Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

What we know:
Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

What we know:

- When $n = 2$: Yes! (Riemann)
Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: \iff Poincaré conjecture.
Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: \iff Poincaré conjecture. Hamilton, Perelman, ... Yes!
Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

What we know:

- **When $n = 2$: Yes! (Riemann)**
- **When $n = 3$: \iff Poincaré conjecture. Hamilton, Perelman, . . . Yes!**
- **When $n = 4$: No! (Hitchin)**
Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: \iff Poincaré conjecture. Hamilton, Perelman, . . . Yes!
- When $n = 4$: No! (Hitchin)
- When $n = 5$: Yes?? (Boyer-Galicki-Kollár)
Question (Yamabe). Does every smooth compact simply-connected n-manifold admit an Einstein metric?

What we know:

- When $n = 2$: Yes! (Riemann)
- When $n = 3$: \iff Poincaré conjecture. Hamilton, Perelman, . . . Yes!
- When $n = 4$: No! (Hitchin)
- When $n = 5$: Yes?? (Boyer-Galicki-Kollár)
- When $n \geq 6$, wide open. Maybe???
Dimension ≤ 3:
Dimension ≤ 3:

Einstein’s equations are “locally trivial.”
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum $\#$:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum #:

\[\text{Diagram of connected sum} \]
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\[\Rightarrow \text{If } M^3 \text{ carries Einstein metric, } \pi_2(M) = 0. \]

\[\Rightarrow \text{Existence obstructed for connect sums } M^3 \# N^3. \]

Connected sum $\#$:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum $\#$:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum $\#$:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum $#$:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Connected sum $\#$:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.

First step in geometrization:
Dimension ≤ 3:

Einstein’s equations are “locally trivial:”

Einstein metrics have constant sectional curvature.

\implies If M^3 carries Einstein metric, $\pi_2(M) = 0$.

\implies Existence obstructed for connect sums $M^3 \# N^3$.

Ricci flow pinches off S^2 necks.

First step in geometrization:

Prime Decomposition.
Dimension ≥ 5:
Dimension ≥ 5:

There are many known Einstein metrics on S^n, $n \geq 5$ which do not have constant curvature.
Dimension ≥ 5:

There are many known Einstein metrics on S^n, $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)
Dimension ≥ 5:

There are many known Einstein metrics on S^n, $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.
Dimension ≥ 5:

There are many known Einstein metrics on S^n, $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Connected sums $(S^2 \times S^3)\# \cdots \#(S^2 \times S^3)$ admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected.
Dimension ≥ 5:

There are many known Einstein metrics on S^n, $n \geq 5$ which do not have constant curvature.

The moduli space of Einstein metrics on $S^2 \times S^3$ has infinitely many connected components. Unit-volume Einstein metrics exist for sequence of $\lambda \to 0^+$.

(Böhm, Wang, Ziller, et al.)

Same behavior for certain rational homology spheres.

Connected sums $\#(S^2 \times S^3)$# \cdots $(S^2 \times S^3)$ admit Einstein metrics for arbitrarily many summands. Moduli space never seems to be connected.

Similar results for most simply connected spin 5-manifolds. (Boyer, Galicki, Kollar, et al.)
Dimension 4:
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*
Dimension 4:

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

\implies Moduli space of Einstein metrics is connected.
Dimension 4:

Theorem (Berger). Any Einstein metric on 4-torus T^4 is flat.

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). Any Einstein metric on $K3$ is hyper-Kähler.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Simply connected complex surface with $c_1 = 0$.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Simply connected complex surface with $c_1 = 0$.

Only one deformation type.
\(K3 = \text{Kummer-Kähler-Kodaira manifold.} \)

Simply connected complex surface with \(c_1 = 0 \).

Only one \textit{diffeomorphism} type.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Simply connected complex surface with $c_1 = 0$.

Only one diffeomorphism type.

Spin, $\chi = 24$, $\tau = -16$.
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Diffeomorphic to quartic in \mathbb{CP}_3

$$t^4 + u^4 + v^4 + w^4 = 0$$
$K3 = \text{Kummer-Kähler-Kodaira manifold.}$

Diffeomorphic to quartic in \mathbb{CP}_3

$$t^4 + u^4 + v^4 + w^4 = 0$$
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). *Any Einstein metric on $K3$ is hyper-Kähler.*
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). *Any Einstein metric on $K3$ is hyper-Kähler.*

\implies Moduli space of Einstein metrics is connected.
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). *Any Einstein metric on K3 is hyper-Kähler.*

\implies Moduli space of Einstein metrics is connected.

(Kodaira, Yau, Siu, et al.)
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). *Any Einstein metric on $K3$ is hyper-Kähler.*

\implies Moduli space of Einstein metrics is connected.

(Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). *There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ, up to scale and diffeos.*
Dimension 4:

Theorem (Berger). *Any Einstein metric on 4-torus T^4 is flat.*

\implies Moduli space of Einstein metrics is connected.

Theorem (Hitchin). *Any Einstein metric on $K3$ is hyper-Kähler.*

\implies Moduli space of Einstein metrics is connected.
(Kodaira, Yau, Siu, et al.)

Theorem (Besson-Courtois-Gallot). *There is only one Einstein metric on compact hyperbolic 4-manifold \mathcal{H}^4/Γ, up to scale and diffeos.*

Theorem (L). *There is only one Einstein metric on compact complex-hyperbolic 4-manifold \mathcal{CH}^2/Γ, up to scale and diffeos.*
Four Dimensions is Exceptional
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.
Four Dimensions is Exceptional

When \(n = 4 \), existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.
Four Dimensions is Exceptional

When \(n = 4 \), existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension four to call this a geometrization.
Four Dimensions is Exceptional

When $n = 4$, existence for Einstein depends delicately on smooth structure.

There are topological 4-manifolds which admit an Einstein metric for one smooth structure, but not for others.

But might allow for geometrization of 4-manifolds by decomposition into Einstein and collapsed pieces.

Enough rigidity apparently still holds in dimension four to call this a geometrization.

By contrast, high-dimensional Einstein metrics too common; have little to do with geometrization.
What’s so special about dimension 4?
What’s so special about dimension 4?

The Lie group $SO(4)$ is not simple
What’s so special about dimension 4?

The Lie group $SO(4)$ is not simple:

$$so(4) \cong so(3) \oplus so(3).$$
What’s so special about dimension 4?

The Lie group $SO(4)$ is *not simple*:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g),
What’s so special about dimension 4?

The Lie group $SO(4)$ is not simple:

$$so(4) \cong so(3) \oplus so(3).$$

On oriented (M^4, g), \Rightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$
What’s so special about dimension 4?

The Lie group $SO(4)$ is not simple:

$$\mathfrak{so}(4) \cong \mathfrak{so}(3) \oplus \mathfrak{so}(3).$$

On oriented (M^4, g), \Rightarrow

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-$$

where Λ^\pm are (± 1)-eigenspaces of

$$\star : \Lambda^2 \rightarrow \Lambda^2,$$
What’s so special about dimension 4?

The Lie group \(SO(4) \) is \textit{not simple}:

\[
so(4) \cong so(3) \oplus so(3) .
\]

On oriented \((M^4, g)\), \(\Rightarrow\)

\[
\Lambda^2 = \Lambda^+ \oplus \Lambda^-
\]

where \(\Lambda^\pm\) are \((\pm1)\)-eigenspaces of

\[
\star : \Lambda^2 \to \Lambda^2, \\
\star^2 = 1.
\]

\(\Lambda^+\) self-dual 2-forms.

\(\Lambda^-\) anti-self-dual 2-forms.
Riemann curvature of g

$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$
Riemann curvature of g

$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$

splits into 4 irreducible pieces:
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \to \Lambda^2$$

splits into 4 irreducible pieces:

\[
\begin{array}{|c|c|}
\hline
\Lambda^+ & W_+ + \frac{s}{12} \\
\hline
\Lambda^- & \dot{\rho} \\
\hline
\Lambda^{**} & \dot{\rho} \\
\hline
\Lambda^{-*} & W_- + \frac{s}{12} \\
\hline
\end{array}
\]
Riemann curvature of g

$$\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2$$

splits into 4 irreducible pieces:

$$\begin{array}{cc}
\Lambda^+ & \Lambda^{*+} \\
W_+ + \frac{s}{12} & \hat{r} \\
\Lambda^- & \hat{r} \\
& W_- + \frac{s}{12}
\end{array}$$

where

$$s = \text{scalar curvature}$$

$$\hat{r} = \text{trace-free Ricci curvature}$$

$$W_+ = \text{self-dual Weyl curvature}$$

$$W_- = \text{anti-self-dual Weyl curvature}$$
Riemann curvature of g

\[\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2 \]

splits into 4 irreducible pieces:

<table>
<thead>
<tr>
<th>Λ^+</th>
<th>$W_+ + \frac{s}{12}$</th>
<th>\hat{r}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ^*</td>
<td>\hat{r}</td>
<td>$W_- + \frac{s}{12}$</td>
</tr>
</tbody>
</table>

where

\[s = \text{scalar curvature} \]

\[\hat{r} = \text{trace-free Ricci curvature} \]

\[W_+ = \text{self-dual Weyl curvature} \quad (\text{conformally invariant}) \]

\[W_- = \text{anti-self-dual Weyl curvature} \]
Thus \((M^4, g)\) Einstein \iff \(\mathcal{R} : \Lambda^2 \rightarrow \Lambda^2\) commutes with
\[\star : \Lambda^2 \rightarrow \Lambda^2 : \]
\[
\mathcal{R} = \begin{pmatrix}
W_+ + \frac{s}{12} & \hat{r} \\
\hat{r} & W_- + \frac{s}{12}
\end{pmatrix}.
\]
Thus \((M^4, g)\) Einstein \(\iff\)

\[
\mathcal{R} : \Lambda^2 \to \Lambda^2
\]

commutes with

\[
\star : \Lambda^2 \to \Lambda^2 :
\]

\[
\mathcal{R} = \begin{pmatrix}
W_+ + \frac{s}{12} & 0 \\
0 & W_- + \frac{s}{12}
\end{pmatrix}.
\]
Thus \((M^4, g)\) Einstein \iff \(R : \Lambda^2 \rightarrow \Lambda^2\) commutes with

\[\star : \Lambda^2 \rightarrow \Lambda^2 :\]

\[
R = \begin{pmatrix}
W_+ + \frac{s}{12} & \hat{r} \\
\hat{r} & W_- + \frac{s}{12}
\end{pmatrix}.
\]
Thus \((M^4, g)\) Einstein \iff
\[
\mathcal{R} : \Lambda^2 \to \Lambda^2
\]
commutes with
\[
\star : \Lambda^2 \to \Lambda^2
\]

\[
\mathcal{R} = \begin{pmatrix}
W_+ + \frac{s}{12} & 0 \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
& W_- + \frac{s}{12} \\
& 0
\end{pmatrix}
\]
Corollary. A Riemannian 4-manifold \((M, g)\) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.
Corollary. A Riemannian 4-manifold \((M, g)\) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.
Corollary. A Riemannian 4-manifold \((M, g)\) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.
Corollary. A Riemannian 4-manifold (M, g) is Einstein \iff sectional curvatures are equal for any pair of perpendicular 2-planes.
(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + \right) d\mu$$
\((M, g)\) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

\[
\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 \right) d\mu
\]
(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 \right) d\mu$$
(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

$$\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\mathring{r}|^2}{2} \right) d\mu$$
\((M, g)\) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

\[
\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W_+|^2 + |W_-|^2 - \frac{|\hat{\rho}|^2}{2} \right) d\mu
\]

for Euler-characteristic \(\chi(M) = \sum_j (-1)^j b_j(M)\).
4-dimensional Hirzebruch signature formula

\[\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 \right) d\mu \]
4-dimensional Hirzebruch signature formula

$$\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu$$
4-dimensional Hirzebruch signature formula

\[\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu \]

for signature \(\tau(M) = b_+(M) - b_-(M) \).
4-dimensional Hirzebruch signature formula

\[\tau(M) = \frac{1}{12\pi^2} \int_M \left(|W_+|^2 - |W_-|^2 \right) d\mu \]

for signature \(\tau(M) = b_+(M) - b_-(M) \).

Here \(b_{\pm}(M) = \text{max dim subspaces} \subset H^2(M, \mathbb{R}) \) on which intersection pairing

\[H^2(M, \mathbb{R}) \times H^2(M, \mathbb{R}) \to \mathbb{R} \]

\[([\varphi], [\psi]) \mapsto \int_M \varphi \wedge \psi \]

is positive (resp. negative) definite.
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ;
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.

\[w_2 = 0 \quad \text{or} \quad w_2 \neq 0 \]
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.

$$w_2 = 0 \quad w_2 \neq 0$$

Warning: “Exotic differentiable structures!”
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if
• they have the same Euler characteristic χ;
• they have the same signature τ; and
• both are spin, or both are non-spin.

$$w_2 = 0 \quad w_2 \neq 0$$

Warning: “Exotic differentiable structures!”
No diffeomorphism classification currently known!
Theorem (Freedman/Donaldson). Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.

$$w_2 = 0 \quad w_2 \neq 0$$

Warning: “Exotic differentiable structures!”

No diffeomorphism classification currently known!

Typically, one homeotype $\leftrightarrow \infty$ many diffeotypes.
Theorem (Freedman/Donaldson). *Two smooth compact simply connected oriented 4-manifolds are orientedly homeomorphic if and only if*

- they have the same Euler characteristic χ;
- they have the same signature τ; and
- both are spin, or both are non-spin.
Corollary. *Any smooth compact simply connected non-spin 4-manifold* M *is homeomorphic to*
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2} = \underbrace{\mathbb{CP}^2 \# \cdots \# \mathbb{CP}^2}_j \# \underbrace{\overline{\mathbb{CP}^2} \# \cdots \# \overline{\mathbb{CP}^2}}_k$$
Corollary. Any smooth compact simply connected non-spin 4-manifold \(M \) is homeomorphic to a connect sum

\[
j\mathbb{CP}_2 \# k\overline{\mathbb{CP}_2} = \mathbb{CP}_2 \# \cdots \# \mathbb{CP}_2 \# \overline{\mathbb{CP}_2} \# \cdots \# \overline{\mathbb{CP}_2}
\]

where \(j = b_+(M) \) and \(k = b_-(M) \).
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum

$$j\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2} = \underbrace{\mathbb{CP}^2 \# \cdots \# \mathbb{CP}^2}_{j} \# \underbrace{\overline{\mathbb{CP}^2} \# \cdots \# \overline{\mathbb{CP}^2}}_{k}$$

where $j = b_+(M)$ and $k = b_-(M)$.

Convention:

$\overline{\mathbb{CP}^2} = \text{reverse oriented } \mathbb{CP}^2$.
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$.
Corollary. Any smooth compact simply connected non-spin 4-manifold \(M \) is homeomorphic to a connect sum \(j\mathbb{CP}_2 \# k\overline{\mathbb{CP}}_2 \).

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold \(M \) is (un-orientedly) homeomorphic to either \(S^4 \) or a connected sum \(jK3 \# k(S^2 \times S^2) \).
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (un-orientedly) homeomorphic to either S^4 or a connected sum $jK3 \# k(S^2 \times S^2)$.

Equivalent to asserting that such manifolds satisfy

$$b_2 \geq \frac{11}{8} |\tau|.$$
Corollary. Any smooth compact simply connected non-spin 4-manifold M is homeomorphic to a connect sum $j\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$.

Conjecture (11/8 Conjecture). Any smooth compact simply connected spin 4-manifold M is (un-orientedly) homeomorphic to either S^4 or a connected sum $jK3 \# k(S^2 \times S^2)$.

Equivalent to asserting that such manifolds satisfy

$$b_2 \geq \frac{11}{8}|\tau|.$$

Certainly true of all examples in this lecture!
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry provides rich source of examples.
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry provides rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.
Question. Which smooth compact 4-manifolds M^4 admit Einstein metrics?

Complex geometry provides rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory allows one to mimic Kähler geometry when treating non-Kähler metrics.

Today’s Main Question. If (M^4, J) is a compact complex surface, when does M^4 admit an Einstein metric g (unrelated to J)?
Even Narrower Question. When does a compact complex surface \((M^4, J)\) admit an Einstein metric \(g\) which is Hermitian,
Even Narrower Question. When does a compact complex surface \((M^4, J)\) admit an Einstein metric \(g\) which is Hermitian, in the sense that

\[g(\cdot, \cdot) = g(J\cdot, J\cdot) \]
Even Narrower Question. When does a compact complex surface \((M^4, J)\) admit an Einstein metric \(g\) which is Hermitian, in the sense that

\[g(\cdot, \cdot) = g(J\cdot, J\cdot)? \]

Kähler if the 2-form

\[\omega = g(J\cdot, \cdot) \]

is closed:

\[d\omega = 0. \]

But we do not assume this!
Even Narrower Question. When does a compact complex surface \((M^4, J)\) admit an Einstein metric \(g\) which is Hermitian, in the sense that

\[g(\cdot, \cdot) = g(J\cdot, J\cdot)? \]
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(g\) which is Hermitian with respect to \(J\) \(\iff\) \(c_1(M^4, J)\) “has a sign.”
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(g\) which is Hermitian with respect to \(J\) \(\iff c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(g\) with Einstein constant \(\lambda\) \(\iff\) there is a Kähler form \(\omega\) such that

\[
c_1(M^4, J) = \lambda[\omega].
\]
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(g\) which is Hermitian with respect to \(J \iff c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(g\) with Einstein constant \(\lambda \iff\) there is a Kähler form \(\omega\) such that

\[
c_1(M^4, J) = \lambda[\omega].
\]

Moreover, this metric is unique, up to isometry, if \(\lambda \neq 0\).
Theorem. A compact complex surface (M^4, J) admits an Einstein metric g which is Hermitian with respect to $J \iff c_1(M^4, J)$ “has a sign.”

More precisely, \exists such g with Einstein constant $\lambda \iff$ there is a Kähler form ω such that

$$c_1(M^4, J) = \lambda[\omega].$$

Moreover, this metric is unique, up to isometry, if $\lambda \neq 0$.

Aubin, Yau, Siu, Tian . . . Kähler case.
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(g\) which is Hermitian with respect to \(J\) \iff \(c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(g\) with Einstein constant \(\lambda\) \iff there is a Kähler form \(\omega\) such that

\[
c_1(M^4, J) = \lambda[\omega].
\]

Moreover, this metric is unique, up to isometry, if \(\lambda \neq 0\).

Aubin, Yau, Siu, Tian ... Kähler case.

Chen-L-Weber (’08), L (’12, ’13): non-Kähler case.
Theorem. A compact complex surface \((M^4, J)\) admits an Einstein metric \(g\) which is Hermitian with respect to \(J \iff c_1(M^4, J)\) “has a sign.”

More precisely, \(\exists\) such \(g\) with Einstein constant \(\lambda \iff\) there is a Kähler form \(\omega\) such that

\[
c_1(M^4, J) = \lambda [\omega].
\]

Moreover, this metric is unique, up to isometry, if \(\lambda \neq 0\).

Aubin, Yau, Siu, Tian . . . Kähler case.

Chen-L-Weber (’08), L (’12, ’13): non-Kähler case.

Only two metrics arise in non-Kähler case!
Corollary. The non-spin 4-manifolds
\[\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8, \]
all admit \(\lambda > 0 \) Einstein metrics.
Corollary. The non-spin 4-manifolds
\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
all admit \(\lambda > 0 \) Einstein metrics.

So does the spin 4-manifold
\[S^2 \times S^2. \]
Corollary. The non-spin 4-manifolds
\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
all admit \(\lambda > 0 \) Einstein metrics.

So does the spin 4-manifold
\[S^2 \times S^2. \]

Blowing up:
Corollary. The non-spin 4-manifolds
\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
all admit \(\lambda > 0 \) Einstein metrics.

So does the spin 4-manifold
\[S^2 \times S^2. \]

Blowing up:

If \(N \) is a complex surface,
Corollary. The non-spin 4-manifolds
\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}}_2, \quad 0 \leq k \leq 8, \]
all admit \(\lambda > 0 \) Einstein metrics.

So does the spin 4-manifold
\[S^2 \times S^2. \]

Blowing up:

If \(N \) is a complex surface, may replace \(p \in N \)
Corollary. The non-spin 4-manifolds
\[\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \quad 0 \leq k \leq 8, \]
all admit \(\lambda > 0 \) Einstein metrics.

So does the spin 4-manifold
\[S^2 \times S^2. \]

Blowing up:

If \(N \) is a complex surface, may replace \(p \in N \) with \(\mathbb{CP}_1 \)
Corollary. The non-spin 4-manifolds
\[\mathbb{CP}^2 \# k \overline{\mathbb{CP}}^2, \quad 0 \leq k \leq 8, \]
all admit \(\lambda > 0 \) Einstein metrics.

So does the spin 4-manifold
\[S^2 \times S^2. \]

Blowing up:

If \(N \) is a complex surface, may replace \(p \in N \) with \(\mathbb{CP}^1 \) to obtain blow-up
\[M \approx N \# \overline{\mathbb{CP}}^2 \]
Corollary. The non-spin 4-manifolds

\[\mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, \quad 0 \leq k \leq 8, \]

all admit \(\lambda > 0 \) Einstein metrics.

So does the spin 4-manifold

\[S^2 \times S^2. \]

Blowing up:

If \(N \) is a complex surface, may replace \(p \in N \) with \(\mathbb{CP}^1 \) to obtain blow-up

\[M \approx N \# \overline{\mathbb{CP}^2} \]

in which new \(\mathbb{CP}^1 \) has self-intersection \(-1\).
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J.
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits an (unrelated) Einstein metric g with $\lambda > 0$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits an (unrelated) Einstein metric g with $\lambda > 0$

$$\iff M \overset{\text{diff}}{\approx} \left\{ \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, \right\}$$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits an (unrelated) Einstein metric g with $\lambda > 0$

$$\iff M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \end{cases}$$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits an (unrelated) Einstein metric g with $\lambda > 0$

\[\iff M \cong \begin{cases} \mathbb{C}P_2 \# k \overline{\mathbb{C}P_2}, & 0 \leq k \leq 8, \\
\text{or} \\
S^2 \times S^2 \end{cases} \]
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits a complex structure J. Then M also admits an (unrelated) Einstein metric g with $\lambda > 0$

\[\iff M \cong \begin{cases} \mathbb{CP}^2 \# k \overline{\mathbb{CP}}^2, & 0 \leq k \leq 8, \\ or \\ S^2 \times S^2 \end{cases} \]

\implies: Hitchin-Thorpe inequality, easy Seiberg-Witten.
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

\[
M \overset{\text{diff}}{\approx} \begin{cases}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, \\
S^2 \times S^2, \\
K^3, \\
K^3 / \mathbb{Z}_2, \\
T^4, \\
T^4 / \mathbb{Z}_2, \\
T^4 / \mathbb{Z}_3, \\
T^4 / \mathbb{Z}_4, \\
T^4 / (\mathbb{Z}_2 \oplus \mathbb{Z}_2), \\
T^4 / (\mathbb{Z}_3 \oplus \mathbb{Z}_3), \\
T^4 / (\mathbb{Z}_2 \oplus \mathbb{Z}_4) & \text{if} \ k \leq 8.
\end{cases}
\]
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \end{cases}$$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \simeq \begin{cases} \mathbb{CP}_2 \# k\overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\ S^2 \times S^2, & \end{cases}$$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ T^4, \\ T^4 / \mathbb{Z}_2, \\ T^4 / \mathbb{Z}_3, \\ T^4 / \mathbb{Z}_4, \\ T^4 / (\mathbb{Z}_2 \oplus \mathbb{Z}_2), \\ T^4 / (\mathbb{Z}_3 \oplus \mathbb{Z}_3), \\ T^4 / (\mathbb{Z}_2 \oplus \mathbb{Z}_4) \end{cases}$$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \cong \begin{cases}
\mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, \\
T^4/\mathbb{Z}_3, \\
T^4/\mathbb{Z}_4, \\
T^4/\left(\mathbb{Z}_2 \oplus \mathbb{Z}_2\right), \\
T^4/\left(\mathbb{Z}_3 \oplus \mathbb{Z}_3\right), \\
T^4/\left(\mathbb{Z}_2 \oplus \mathbb{Z}_4\right).
\end{cases}$$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if M is diffeomorphic to

\[M \cong \begin{cases}
\mathbb{CP}_2 \# k\overline{\mathbb{CP}}_2, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, \\
T^4/\mathbb{Z}_3, \\
T^4/\mathbb{Z}_4, \\
T^4/\left(\mathbb{Z}_2 \oplus \mathbb{Z}_2\right), \\
T^4/\left(\mathbb{Z}_3 \oplus \mathbb{Z}_3\right), \\
T^4/\left(\mathbb{Z}_2 \oplus \mathbb{Z}_4\right).
\end{cases} \]
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \approx \begin{cases} \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \end{cases}$$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \approx \begin{cases} \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M \overset{\text{diff}}{\approx} \begin{cases} \mathbb{CP}_2 \# k\overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\ S^2 \times S^2, \\ K3, \\ K3/\mathbb{Z}_2, \\ T^4, \\ T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\ T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4). \end{cases}$$

Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surface, Hyper-elliptic surfaces.
Theorem. Suppose that M is a smooth compact oriented 4-manifold which admits an integrable complex structure J. Then M also admits an Einstein metric g with $\lambda \geq 0$ if and only if

$$M^{\text{diff}} \approx \begin{cases}
\mathbb{CP}_2 \# k \overline{\mathbb{CP}_2}, & 0 \leq k \leq 8, \\
S^2 \times S^2, \\
S^2, \\
K3, \\
K3/\mathbb{Z}_2, \\
T^4, \\
T^4/\mathbb{Z}_2, T^4/\mathbb{Z}_3, T^4/\mathbb{Z}_4, T^4/\mathbb{Z}_6, \\
T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_2), T^4/(\mathbb{Z}_3 \oplus \mathbb{Z}_3), \text{ or } T^4/(\mathbb{Z}_2 \oplus \mathbb{Z}_4).
\end{cases}$$

Del Pezzo surfaces,
K3 surface, Enriques surface,
Abelian surface, Hyper-elliptic surfaces.

Similarly when M symplectic instead of complex.
Hitchin-Thorpe Inequality:

\[(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W + |^2 - \frac{|\hat{\mathfrak{r}}|^2}{2} \right) d\mu_g \]
Hitchin-Thorpe Inequality:

\[
(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W| + \frac{1}{2} \right) d\mu_g
\]

Einstein \Rightarrow \quad = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W| + \frac{1}{2} \right) d\mu_g
Hitchin-Thorpe Inequality:

\[(2\chi + 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 - \frac{|\tilde{r}|^2}{2} \right) d\mu_g \]

Einstein \implies \quad = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu_g

Theorem (Hitchin-Thorpe Inequality). *If smooth compact oriented* \(M^4\) *admits Einstein* \(g\), *then*

\[(2\chi + 3\tau)(M) \geq 0,\]

with equality only if \((M, g)\) *finitely covered by flat* \(T^4\) *or Calabi-Yau* \(K3\).
Seiberg-Witten theory:

generalized Kähler geometry of non-Kähler 4-manifolds.
Seiberg-Witten theory:

generalized Kähler geometry of non-Kähler 4-manifolds.

Can’t hope to generalize $\bar{\partial}$ operator to this setting.
Seiberg-Witten theory:

generalized Kähler geometry of non-Kähler 4-manifolds.

Can’t hope to generalize $\bar{\partial}$ operator to this setting.

But $\bar{\partial} + \bar{\partial}^*$ does generalize:
Seiberg-Witten theory:

generalized Kähler geometry of non-Kähler 4-manifolds.

Can’t hope to generalize $\bar{\partial}$ operator to this setting.

But $\bar{\partial} + \bar{\partial}^*$ does generalize:

spinc Dirac operator, preferred connection on L.
Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.
Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

$\forall g$ on M, the bundles
\[
\begin{align*}
\mathcal{V}_+ &= \Lambda^{0,0} \oplus \Lambda^{0,2} \\
\mathcal{V}_- &= \Lambda^{0,1}
\end{align*}
\]
Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

$\forall g$ on M, the bundles

$$V_+ = \Lambda^{0,0} \oplus \Lambda^{0,2}$$

$$V_- = \Lambda^{0,1}$$

can formally be written as

$$V_{\pm} = S_{\pm} \otimes L^{1/2},$$
Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

\(\forall g \text{ on } M\), the bundles

\[\mathbb{V}_+ = \Lambda^{0,0} \oplus \Lambda^{0,2}\]
\[\mathbb{V}_- = \Lambda^{0,1}\]

can formally be written as

\[\mathbb{V}_\pm = S_\pm \otimes L^{1/2},\]

where S_\pm are left & right-handed spinor bundles.
Let J be any almost complex structure on M.

Let $L = \Lambda^{0,2}$ be its anti-canonical line bundle.

\[\forall g \text{ on } M, \text{ the bundles} \]
\[\mathbb{V}_+ = \Lambda^{0,0} \oplus \Lambda^{0,2} \]
\[\mathbb{V}_- = \Lambda^{0,1} \]

\[\text{can formally be written as} \]
\[\mathbb{V}_\pm = \mathbb{S}_\pm \otimes L^{1/2}, \]

where \mathbb{S}_\pm are left & right-handed spinor bundles.

Every unitary connection A on L induces

spinc Dirac operator

\[D_A : \Gamma(\mathbb{V}_+) \rightarrow \Gamma(\mathbb{V}_-) \]

generalizing $\bar{\partial} + \bar{\partial}^*$.
Seiberg-Witten equations:

\[D_A \Phi = 0 \]
\[F_A^+ = -\frac{1}{2} \Phi \odot \bar{\Phi} \]
Seiberg-Witten equations:

\[D_A \Phi = 0 \]
\[F_A^+ = -\frac{1}{2} \Phi \odot \Phi \]

Unknowns:

both \(\Phi \) and \(A \).
Seiberg-Witten equations:

\[D_A \Phi = 0 \]
\[F_A^+ = -\frac{1}{2} \Phi \odot \bar{\Phi} \]

Unknowns:

both \(\Phi \) and \(A \).

Here \(F_A^+ \) = self-dual part of curvature of \(A \).
Seiberg-Witten equations:

\[D_A \Phi = 0 \]
\[F_A^+ = -\frac{1}{2} \Phi \odot \overline{\Phi} \]

Unknowns:
both \(\Phi \) and \(A \).

Here \(F_A^+ \) = self-dual part of curvature of \(A \).

Non-linear, but elliptic
Seiberg-Witten equations:

\[D_A \Phi = 0 \]

\[F_A^+ = -\frac{1}{2} \Phi \circ \Phi \]

Unknowns:
both \(\Phi \) and \(A \).

Here \(F_A^+ \) = self-dual part of curvature of \(A \).

Non-linear, but elliptic once ‘gauge-fixing’
\[d^*(A - A_0) = 0 \]
imposed to eliminate automorphisms of \(L \rightarrow M \).
Weitzenböck formula:

\[0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4 \]
Weitzenböck formula:

\[0 = 2\Delta |\Phi|^2 + 4 |\nabla_A \Phi|^2 + s |\Phi|^2 + |\Phi|^4 \]

\[\implies \text{moduli space compact.} \]
Weitzenböck formula:

\[0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4 \]

\[\implies \text{moduli space compact.} \]

Seiberg-Witten invariant:

\[\# \text{ solutions} \]
Weitzenböck formula:

\[0 = 2\Delta |\Phi|^2 + 4 |\nabla_A \Phi|^2 + s |\Phi|^2 + |\Phi|^4 \]

\[\implies \text{moduli space compact.} \]

Seiberg-Witten invariant:

\# solutions \(\text{(mod gauge, with multiplicities)} \).
Weitzenböck formula:

\[0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4 \]

\[\implies \text{moduli space compact.} \]

Seiberg-Witten invariant:

\# solutions (mod gauge, with multiplicities).

When invariant is non-zero, solutions guaranteed.
Weitzenböck formula:

\[0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4 \]

\[\implies \text{moduli space compact.} \]

Seiberg-Witten invariant:

\# solutions (mod gauge, with multiplicities).

When invariant is non-zero, solutions guaranteed.

\[\implies \exists g \text{ with } s > 0. \]
Weitzenböck formula:

\[0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4 \]

\[\implies \text{moduli space compact.} \]

Seiberg-Witten invariant:

\# solutions (mod gauge, with multiplicities).

When invariant is non-zero, solutions guaranteed.

\[\implies \exists g \text{ with } s > 0. \]

If, in addition, \(c_1^2 > 0, \)

\[\implies \exists g \text{ with } s \geq 0. \]
What about $\lambda < 0$?
What about $\lambda < 0$?

Existence in Hermitian case:
What about $\lambda < 0$?

Existence in Hermitian case:

Kähler-Einstein with $\lambda < 0 \iff c_1(M, J) < 0$.
What about $\lambda < 0$?

Existence in Hermitian case:

Kähler-Einstein with $\lambda < 0 \iff c_1(M, J) < 0$.

Such (M^4, J) are necessarily minimal complex surfaces of general type.
What about $\lambda < 0$?

Existence in Hermitian case:

Kähler-Einstein with $\lambda < 0 \iff c_1(M, J) < 0$.

Such (M^4, J) are necessarily minimal complex surfaces of general type.

If complex surface M admits any Einstein metric, either

- on $\lambda \geq 0$ list; or else
- of general type.
What about $\lambda < 0$?

Existence in Hermitian case:

Kähler-Einstein with $\lambda < 0 \iff c_1(M, J) < 0$.

Such (M^4, J) are necessarily minimal complex surfaces of general type.

If complex surface M admits any Einstein metric, either

- on $\lambda \geq 0$ list; or else
- of general type.

Minimality is harder!
A complex surface X is called **minimal** if it is not the blow-up of another complex surface.
A complex surface X is called minimal if it is not the blow-up of another complex surface.

Any complex surface M can be obtained from a minimal surface X by blowing up a finite number of times:

$$M \approx X \# k\mathbb{CP}^2$$

One says that X is minimal model of M.
A complex surface X is called minimal if it is not the blow-up of another complex surface.

Any complex surface M can be obtained from a minimal surface X by blowing up a finite number of times:

$$ M \cong X \# k \mathbb{CP}^2 $$

One says that X is minimal model of M.

A complex surface M is of general type \iff its minimal model X satisfies

$$ c_1^2(X) > 0 $$

$$ c_1 \cdot [\omega] < 0 $$

for some Kähler class $[\omega]$.
Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:
Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

$$
\int_M s^2 d\mu_g \geq 32\pi^2 c_1^2(X)
$$

$$
\int_M \left(s - \sqrt{6}|W_+|\right)^2 d\mu_g \geq 72\pi^2 c_1^2(X)
$$

where X is the minimal model of M.
Theorem (Curvature Estimates). For any Riemannian metric g on a compact complex surface M of general type, the following curvature bounds are satisfied:

$$\int_M s^2 d\mu_g \geq 32\pi^2 c_1^2(X)$$

$$\int_M \left(s - \sqrt{6}|W_+| \right)^2 d\mu_g \geq 72\pi^2 c_1^2(X)$$

where X is the minimal model of M.

Moreover, equality holds in either case iff $M = X$, and g is Kähler-Einstein with $\lambda < 0$.
Theorem (L ’01). Let X be a minimal surface of general type, and let

$$M = X \# k\overline{\mathbb{CP}^2}.$$

Then M cannot admit an Einstein metric if

$$k \geq c_1^2(X)/3.$$
Theorem (L ’01). Let X be a minimal surface of general type, and let

$$M = X \# k \overline{\mathbb{CP}^2}. $$

Then M cannot admit an Einstein metric if

$$k \geq c_1^2(X)/3. $$

(Better than Hitchin-Thorpe by a factor of 3.)

So being “very” non-minimal is an obstruction.
Example.
Example. Let N be double branched cover \mathbb{CP}_2, ramified at a smooth octic:
Example. Let N be double branched cover \mathbb{CP}^2, ramified at a smooth octic:

\[
\begin{array}{c}
N \\
\ \ \ B' \\
\end{array}
\rightarrow
\begin{array}{c}
\mathbb{CP}^2 \\
\ \ \ B' \\
\end{array}
\]

$c_1 < 0 \implies$
Example. Let N be double branched cover \mathbb{CP}^2, ramified at a smooth octic:

![Diagram of the branched cover]

$c_1 < 0 \implies N$ carries an Einstein metric.
Now let X be a triple cyclic cover \mathbb{CP}^2, ramified at a smooth sextic.
Now let X be a triple cyclic cover \mathbb{CP}_2, ramified at a smooth sextic

\[X \to \mathbb{CP}_2 \]

and set

\[M = X \# \overline{\mathbb{CP}_2}. \]
Now let X be a triple cyclic cover \mathbb{CP}_2, ramified at a smooth sextic

and set

$$M = X \# \overline{\mathbb{CP}_2}.$$

Then

$$c_1^2(X) = 3$$
$$k = 1$$
Theorem (L ’01). Let X be a minimal surface of general type, and let

$$M = X \# k\overline{\mathbb{CP}^2}.$$

Then M cannot admit an Einstein metric if

$$k \geq c_1^2(X)/3.$$
Theorem (L ’01). Let X be a minimal surface of general type, and let

$$M = X \# k \overline{\mathbb{CP}^2}.$$

Then M cannot admit an Einstein metric if

$$k \geq c_1^2(X)/3.$$

In example:

$$c_1^2(X) = 3 \quad k = 1$$
X is triple cover \mathbb{CP}_2 ramified at sextic

$M = X \# \overline{\mathbb{CP}_2}$.

So Theorem \implies no Einstein metric on M.
But M and N are both simply connected & non-spin,
But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$,
But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$
$$\tau = -30$$
But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h^{2,0} = 3$, so

$$\chi = 46$$

$$\tau = -30$$

Hence Freedman $\implies M$ homeomorphic to N!
But M and N are both simply connected & non-spin, and both have $c_1^2 = 2$, $h_{2,0}^2 = 3$, so

\begin{align*}
\chi &= 46 \\
\tau &= -30
\end{align*}

Hence Freedman $\implies M$ homeomorphic to N!

Moral: Existence depends on diffeotype!
Existence depends on diffeotype!
Existence depends on diffeotype!

\[M = X \# \mathbb{CP}_2 \]
But M and N are both simply connected & non-spin, and both have $c_2 = 2, h^2, 0 = 3$, so $\chi = 46, \tau = -30$. Hence Freedman \Rightarrow M homeomorphic to N.

Moral: Existence depends on diffeotype!
Existence depends on diffeotype!

\[M = X \# \overline{\mathbb{CP}_2} \]
M and N are both simply connected and non-spin, and both have $c_2 = 2$, h_2, $0 = 3$, so $\chi = 46$ $\tau = -30$.

Hence Freedman \Rightarrow M homeomorphic to N.

Moral: Existence depends on diffeotype!
Existence depends on diffeotype!
Existence depends on diffeotype!

\[M = X \# \overline{\mathbb{CP}_2} \]
M and N are both simply connected & non-spin, and both have $c_2 = 2$, $h_2, 0 = 3$, so $\chi = 46$, $\tau = -30$. Hence Freedman \Rightarrow M homeomorphic to N.

Moral: Existence depends on diffeotype!
Existence depends on diffeotype!

\[M = X \# \overline{\mathbb{CP}_2} \]
but M and N are both simply connected & non-spin, and both have $c_2 = 2, h_2, 0 = 3$, so $\chi = 46, \tau = -30$.

Hence Freedman $\Rightarrow M$ homeomorphic to N.

Moral: Existence depends on diffeotype!