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() W™ (m 1)
m(M, g) = = (2m — 1)pm—1 Jr4(2m — 1)x™m /M Sgdilg

where

e s = scalar curvature;

e (/1 = metric volume form;

oc; =c|(M,J)e H*(M) is first Chern class;

o [w] € HX(M) is Kdihler class of (g,J); and

o (. ) is pairing between H2(M) and H*™2(M).

o H2(M) =, H2(M) inverse of natural map.
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g (9500 — 9jk0) Vo = —xdlog (\/ det g) +0(0°7%).
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SO
1

m(M, ) = ——(#(c1), [])

as claimed.



Scalar-flat Kahler surface:



Scalar-flat Kahler surface:

m(M,g) =~ ((c1), o)

But were our assumptions justified?



We assumed:



We assumed:

®Mm = 2;
es =0; and

e Complex structure J standard at infinity.



(General case:



(General case:

e General m > 2:



(General case:

e General m > 2: straightforward. . .



(General case:

e General m > 2: straightforward. . .

e 5 # 0, compensate by adding [ s d. ..



(General case:

e General m > 2: straightforward. . .
e 5 # 0, compensate by adding [ s d. ..
o [f m > 2 J is always standard at infinity.



(General case:

e General m > 2: straightforward. . .

e 5 # 0, compensate by adding [ s d. ..

o [f m > 2 J is always standard at infinity.

o [f m =2 and AL, J is still standard at infinity.



(General case:

e General m > 2: straightforward. . .

e 5 # 0, compensate by adding [ s d. ..

o [f m > 2, J is always standard at infinity.

o [f m =2 and AL, J is still standard at infinity.
o [f m =2 and ALE, J can be non-standard at oo.



(General case:

e General m > 2: straightforward. . .

e 5 # 0, compensate by adding [ s d. ..

o [f m > 2, J is always standard at infinity.

o [f m =2 and AL, J is still standard at infinity.
o [f m =2 and ALE, J can be non-standard at oo.

The last point is serious.



(General case:

e General m > 2: straightforward. . .

e 5 # 0, compensate by adding [ s d. ..

o [f m > 2, J is always standard at infinity.

o [f m =2 and AL, J is still standard at infinity.
o [f m =2 and ALE, J can be non-standard at oo.

Example: Eguchi-Hanson.



(General case:

e General m > 2: straightforward. . .

e 5 # 0, compensate by adding [ s d. ..

o [f m > 2, J is always standard at infinity.

o [f m =2 and AL, J is still standard at infinity.
o [f m =2 and ALE, J can be non-standard at oo.

Example: Eguchi-Hanson.

N
AN



(General case:

e General m > 2: straightforward. . .

e 5 # 0, compensate by adding [ s d. ..

o [f m > 2, J is always standard at infinity.

o [f m =2 and AL, J is still standard at infinity.
o [f m =2 and ALE, J can be non-standard at oo.

Example: Eguchi-Hanson.




(General case:

e General m > 2: straightforward. . .

e 5 # 0, compensate by adding [ s d. ..

o [f m > 2, J is always standard at infinity.

o [f m =2 and AL, J is still standard at infinity.
o [f m =2 and ALE, J can be non-standard at oo.

Example: Eguchi-Hanson.

N
AN



(General case:

e General m > 2: straightforward. . .

e 5 # 0, compensate by adding [ s d. ..

o [f m > 2, J is always standard at infinity.

o [f m =2 and AL, J is still standard at infinity.
o [f m =2 and ALE, J can be non-standard at oo.

Example: Eguchi-Hanson.




To understand J at infinity:



To understand ./ at infinity:

Let j\\i/oo be universal cover of end M .



To understand ./ at infinity:
Let MQ@ be universal cover of end M .

Cap off M o by adding CP,,, 1 at infinity.



To understand ./ at infinity:
Let j\\i/oo be universal cover of end M .
Cap off M o by adding CP,,, 1 at infinity.

If m > 3, this is a complex manifold.



To understand ./ at infinity:

Let j\\i/oo be universal cover of end M .
Cap off M o by adding CP,,, 1 at infinity.
If m > 3, this is a complex manifold.

(Hill-Taylor version of Newlander-Nirenberg,. )



To understand ./ at infinity:

Let j\\i/oo be universal cover of end M .
Cap off M o by adding CP,,, 1 at infinity.
If m > 3, this is a complex manifold.
(Hill-Taylor version of Newlander-Nirenberg,. )

When m = 2 still works when € > 1/2.



To understand ./ at infinity:

Let j\\]oo be universal cover of end M .
Cap off M o by adding CP,,, 1 at infinity.
If m > 3, this is a complex manifold.
(Hill-Taylor version of Newlander-Nirenberg,. )

When m = 2 still works when € > 1/2.

1—n_
gk = 06+ Oz ~779)
gipe=O0(z[7279), sel



To understand ./ at infinity:

Let j\\i/oo be universal cover of end M .
Cap off M o by adding CP,,, 1 at infinity.
If m > 3, this is a complex manifold.
(Hill-Taylor version of Newlander-Nirenberg,. )

When m = 2 still works when € > 1/2.



To understand ./ at infinity:

Let j\\i/oo be universal cover of end M .

Cap off M o by adding CP,,, 1 at infinity.

If m > 3, this is a complex manifold.
(Hill-Taylor version of Newlander-Nirenberg,. )
When m = 2 still works when € > 1/2.

But d symplectic work-around for arbitrary .



To understand ./ at infinity:
Let MQ@ be universal cover of end M .

Cap off M o by adding CP,,, 1 at infinity.



To understand ./ at infinity:
Let j\\i/oo be universal cover of end M .
Cap off M o by adding CP,,, 1 at infinity.

Added hypersurface CIP,,,_1 has normal bundle O(1).



To understand ./ at infinity:

Let j\\i/oo be universal cover of end M .

Cap off M o by adding CP,,, 1 at infinity.

Added hypersurface CIP,,,_1 has normal bundle O(1).

Belongs to m-dimensional family of hypersurtaces.



To understand ./ at infinity:

Let j\\i/oo be universal cover of end M .
Cap off M o by adding CP,,, 1 at infinity.
Added hypersurface CIP,,,_1 has normal bundle O(1).
Belongs to m-dimensional family of hypersurtaces.

Moduli space carries O projective structure



To understand ./ at infinity:

Let j\\i/oo be universal cover of end M .
Cap off M o by adding CP,,, 1 at infinity.
Added hypersurface CIP,,,_1 has normal bundle O(1).
Belongs to m-dimensional family of hypersurtaces.
Moduli space carries O projective structure

with many totally geodesic hypersurfaces.



To understand ./ at infinity:

Let MQ@ be universal cover of end M .
Cap off M o by adding CP,,, 1 at infinity.
Added hypersurface CIP,,,_1 has normal bundle O(1).
Belongs to m-dimensional family of hypersurtaces.
Moduli space carries O projective structure

with many totally geodesic hypersurfaces.

So flat if m > 3.



To understand ./ at infinity:

Let MQ@ be universal cover of end M .
Cap off M o by adding CP,,, 1 at infinity.
Added hypersurface CIP,,,_1 has normal bundle O(1).
Belongs to m-dimensional family of hypersurfaces.
Moduli space carries O projective structure

with many totally geodesic hypersurtaces.

So flat if m > 3.

In this case, capped-off end =y, CP, — B?m.



To understand ./ at infinity:
Let j\\i/oo be universal cover of end M .
Cap off M o by adding CP,,, 1 at infinity.

Added hypersurface CIP,,,_1 has normal bundle O(1).



To understand ./ at infinity:
Let M/OO’Z- be universal cover of each end M ;.
Cap oft /]\\4/0072- by adding CPP,,,_1 at infinity.

Added hypersurface CIP,,,_1 has normal bundle O(1).



To understand ./ at infinity:

Let M/OO’Z- be universal cover of each end M ;.
Cap oft /]\\4/0072- by adding CPP,,,_1 at infinity.
Added hypersurface CIP,,,_1 has normal bundle O(1).

[';-equivariant: caps oft M as complex orbitfold M.



To understand ./ at infinity:
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When m > 3, can construct Kahler metric on M.



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.




—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

b




—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

<P
-




—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

<P
_//

Intersection form




—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

<P
-

Intersection form

H2(M) x H* (M) — R




—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

<P
_//

Intersection form
H2(M) x H* (M) — R
10D — [onvnutn?
M




—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

<P
_//

Intersection form
H2(M) x H* (M) — R
10D — [onvnutn?
M

thus has one positive direction for each end.




—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

Hodge theorem on intersection form



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

Hodge theorem on intersection form

Form has only one positive direction in H 11 (/]\Z, R):

(_|__..._)



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

Hodge theorem on intersection form



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

So Hodge theorem on intersection form implies:



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

So Hodge theorem on intersection form implies:

Lemma. Any ALE Kahler manifold has only
one end.



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

Proof slightly different when m = 2, but conclusion
the same. . .

So Hodge theorem on intersection form implies:

Lemma. Any ALE Kahler manifold has only
one end.



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

Proof slightly different when m = 2, but conclusion
the same. . .

b

Compactity M as symplectic 4-manifold M.



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

Proof slightly different when m = 2, but conclusion
the same. . .

<P
-

Each end-cap contains immersed symplectic 2-sphere
of positive normal bundle.



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

Proof slightly different when m = 2, but conclusion
the same. . .

<P
-

Each end-cap contains immersed symplectic 2-sphere
of positive normal bundle.

McDuff = M a2 rational complex surface.



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

Proof slightly different when m = 2, but conclusion
the same. . .

<P
-

Each end-cap contains immersed symplectic 2-sphere
of positive normal bundle.

McDuff = intersection form (4—---—).



—> (M, .J) can be compactified as Kéhler orbifold
with H2U = 0.

Proof slightly different when m = 2, but conclusion
the same. . .

Lemma. Any ALE Kahler manifold has only
one end.



Knowing there is only one end,



Knowing there is only one end,

we can now prove mass formula in general,



Knowing there is only one end,
we can now prove mass formula in general,

assuming only Chrusciel fall-off. . .
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and such that df = p, where p 1s the Ricct form
of g with respect to a given compatible integrable
almost-complex structure .J.
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The mass formula then follows, much as before.



Theorem C. Any ALE Kahler manifold (M, g, J)
of complex dimension m has mass given by

() W™ (m 1)
m(M, g) = = (2m — 1)gm—1 Jr4(2?77, — 1)x™m /M Sgdilg




To understand J at infinity:



To understand ./ at infinity:

AEFE case:

Compactity M itself by adding CPP,,,_1 at infinity.



To understand ./ at infinity:
AE case:
Compactity M itself by adding CPP,,,_1 at infinity.

(Works if m > 3, orif m =2 and a > 1/2).



To understand ./ at infinity:

AEFE case:

Compactity M itself by adding CPP,,,_1 at infinity.



To understand ./ at infinity:
AE case:
Compactity M itself by adding CPP,,,_1 at infinity.

Linear system of CIP,,,_1 gives holomorphic map

which is biholomorphism near CP,,,_1.



To understand ./ at infinity:

AE case:
Compactity M itself by adding CPP,,,_1 at infinity.

Linear system of CIP,,,_1 gives holomorphic map

which is biholomorphism near CP,,,_1.

Thus obtain holomorphic map
o.M —C™"

which is biholomorphism near infinity.



To understand ./ at infinity:
AE case:
Compactity M itself by adding CPP,,,_1 at infinity.

Linear system of CIP,,,_1 gives holomorphic map

which is biholomorphism near CP,,,_1.

Thus obtain holomorphic map
o.M —C™"

which is biholomorphism near infinity.

Symplectic workaround when m = 2 and o < 1/2:



To understand ./ at infinity:
AE case:
Compactity M itself by adding CPP,,,_1 at infinity.

Linear system of CIP,,,_1 gives holomorphic map

which is biholomorphism near CP,,,_1.

Thus obtain holomorphic map
o.M —C™"

which is biholomorphism near infinity.
Symplectic workaround when m = 2 and o < 1/2:

Symplectic form w is always standard at infinity!



To understand ./ at infinity:

AE case:
Compactity M itself by adding CPP,,,_1 at infinity.

Linear system of CIP,,,_1 gives holomorphic map

which is biholomorphism near CP,,,_1.

Thus obtain holomorphic map
o.M —C™"

which is biholomorphism near infinity.



To understand ./ at infinity:
AE case:
Compactity M itself by adding CPP,,,_1 at infinity.

Linear system of CIP,,,_1 gives holomorphic map

which is biholomorphism near CP,,,_1.

Thus obtain holomorphic map
o.M —C™"

which is biholomorphism near infinity.

This has some interesting consequences. . .
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Proof actually shows something stronger!



Theorem E (Penrose Inequality).



Theorem E (Penrose Inequality). Let (M?™, g, J)



Theorem E (Penrose Inequality). Let (M?™, g, J)
be an AE Kahler manifold



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0.



Theorem E (Penrose Inequality). Let (M*™, g, J)

be an AE Kahler manifold with scalar curvature

s > 0. Then (M, J) carries a canonical divisor
D



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum ) n;D,



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer

coefficients,



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C".



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor,



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then have

m(M,qg) > Y Vol(Dj)



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then have

m(M, g) > » n;Vol(D;)



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then hcwe

m(M,qg) > (2m gy _121& Vol (D




Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then hcwe

m(M,qg) > (2m gy _121& Vol (D

with = <—




Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then hcwe

m(M,qg) > (2m gy _121& Vol (D

with = <= (M, g, .J) is scalar-flat Kahler.




Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) 2 C™. In terms of this divi-
sor, we then hcwe

m(M,qg) > (2m gy _121& Vol (D

with = <= (M, g, .J) is scalar-flat Kahler.

(Only slightly weaker when m = 2 and o < 1/2.)
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which is a biholomorphism near infinity.

Indeed, we then have a holomorphic section
o= A A dT

of the canonical line bundle which vanishes exactly
at the critical points of P.

The zero set of ¢, counted with multiplicities, gives
us a canonical divisor

D = ZHJD]

and

W m—1
~(@(e1) ) = 3o Vol (D

so the mass formula implies the claim.
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Truncate (M, w), then compactify as symplectic
manifold (A, w) by adding S,

This is a symplectic blow-up of CIPs.

For any compatible almost-complex structure, Taubes’
results in Seiberg-Witten allow us to find pseudo-
holomorphic curves representing blow-ups.

Choose almost-complex structure to coincide with
integrable ./ except in roughly conical asymptotic
region and standard neighborhood of line at infinity.

Calibrated geometry argument then shows that the
curves cannot enter asymptotic region, so remain in
region where we have original integrable J.

In (M, .J), this gives desired Poincaré dual of ¢.
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