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Definition. A Riemannian metric g s said to
be Einstein f it has constant Riccit curvature —
1.€.

"= Ag

for some constant A € R.

'77

*...the greatest blunder of my life
— A Einstein, to G. Gamow

“Mathematicians are like Frenchmen:

tell them something, they translate it into their
own language, and, before you know it, it’s
something entirely different.”

— J.W. von Goethe
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Ricel curvature measures
volume distortion by exponential map:

P

\

exp(v)

In “geodesic normal coordinates”
metric volume measure is

d,&g = |1 — % T]k x]xk + O(‘x‘g) d,uEuclideana

where 7 1s the [ticci tensor 1. = Rijik.
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n =4 case.
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Kahler geometry provides rich source of examples.

On suitable 4-manifolds, Seiberg-Witten theory al-
lows one to mimic Kahler geometry when treating
non-Kahler metrics.

Narrower Question. If M * s the underlying
smooth manifold of a compact complexr surface
(M*,.]), when does M* admit Einstein metrics?

Symplectic Analog. If M* is a smooth com-
pact 4-manifold ectic form w, when does M* ad-
mat Einstein metrics?
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<— 4 almost complex-structure .J with V.J = 0
and g(J-, J-) = g.

= (M*, J)is a complex surface and 3 J-invariant
closed 2-form w such that g = w(-, J-).

Kahler magic:

The 2-form

ir(J-, )

is curvature of canonical line bundle & = A%V,
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Conformal geometry:

Two Riemannian metrics ¢ and h are said to be
conformally related if

h=7Jg

for some smooth function f : M — RT.

If ¢ is Kahler, we will then say that
h is conformally Kahler.

When complex dimension m > 2,
f # const = h never Kahler for same .J.

(Warning: In rare circumstances,

h could still be Kéhler for some .J # J!)
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Main objective of this talk:

Theorem. Let M be a smooth compact 4-manzifold.
Then the following statements are equivalent:

o VI admats both a compler structure and an
Einstein metric with X > 0.

o VI admuts both a symplectic structure and an
Einstein metric with A > 0.

o V[ admits a conformally Kahler, Einstein met-
ric with A > 0.

In A < 0 case, corresponding questions still open.
Wil try to briefly indicate what’s currently known.
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Einstein metric g with A > 0

CPy#kCPy, 0<k <8,
— M= or
S2 % §?
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Recall:

CP5y = reverse oriented CPs.

Connected sum #:

Blowing up:

If NV is a complex surface, may replace p € NV
with CPPy to obtain blow-up

M ~ N#CP,

in which new CIP; has self-intersection —1.
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Theorem. Suppose that M 1s a smooth compact
oriented 4-manifold which admaits an integrable
complex structure J. Then M also admits an
Einstein metric g with A > 0 if and only if
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5% x S2,

K3,
M= { K3/ZQ,
T4
T2, T 23, T | Ly, T* | Zs,
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K3 = Kummer-Kahler-Kodaira manifold.

Diffeomorphic to quartic in CIPg

t4+u4+v4+w4:()

Differentiable model for relevant Zo-action:

(t,u,v,w) — (t,u,v,w)
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Theorem. Suppose that M 1s a smooth compact
oriented 4-manifold which admits a symplectic
structure w. Then M also admits an Einstein

metric g with A > 0 if and only if
(CPo#EkCPy, 0<k <S8,
52 x S?,
K3,
M=~ < K3/Zs,
T
T2, T )23, T" | 24, T" | L,
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Proots of stated results involve two parts:

e cxistence of Einstein metrics; and

e Obstructions to Einstein metrics.

We begin with existence.
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Kihler-Einstein metrics on (M#, J):

(Calabi): Complex Monge-Ampere equation.

(Yau): 4 K-E metric g with A = 0 <=
clR = (0 and d Kahler class.

— K3 and K3/Zy admit Ricci-flat metrics.

Of course, T* and quotients admit flat metrics.

(Siu, Tian-Yau): 94 K-E metric g with A > 0 on

CPo# CPo# - - - #CP5 .
3<k<8

Of course, CP5 and S? x 52 also admit K-E metrics
with A > 0 — namely, obvious homogeneous ones!
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But CPo#CP5 or CPy#2CPy cannot admit

Kahler-Einstein metrics.

(Matsushima):
(M, J, g) compact K-E = Aut(M, .J) reductive.

(Isom(M, g) is compact real form.)

Since CPo#CP5 and CP>#2CP5 have non-reductive

automorphism groups, no K-E metrics.



However, Page ('79) discovered an explicit, A > 0,
cohomogeneity one Einstein metric on CPy#CIPs.



However, Page ('79) discovered an explicit, A > 0,
cohomogeneity one Einstein metric on CPy#CIPs.

Derdzinski (’83) then discovered that this metric is
conformally Kahler, and proved fundamental struc-
ture theorems concerning conformally Kahler, Ein-
stein metrics.



However, Page ('79) discovered an explicit, A > 0,
cohomogeneity one Einstein metric on CPy#CIPs.

Derdzinski (’83) then discovered that this metric is
conformally Kahler, and proved fundamental struc-
ture theorems concerning conformally Kahler, Ein-
stein metrics.

Companion of Page metric:



However, Page ('79) discovered an explicit, A > 0,
cohomogeneity one Einstein metric on CPy#CIPs.

Derdzinski (’83) then discovered that this metric is
conformally Kahler, and proved fundamental struc-
ture theorems concerning conformally Kahler, Ein-
stein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber '07). There is a
A > 0, conformally Kahler, Einstein metric g on

CPQ#Q@Q :



However, Page ('79) discovered an explicit, A > 0,
cohomogeneity one Einstein metric on CPy#CIPs.

Derdzinski (’83) then discovered that this metric is
conformally Kahler, and proved fundamental struc-
ture theorems concerning conformally Kahler, Ein-
stein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber '07). There is a
A > 0, conformally Kahler, Einstein metric g on

CPQ#Q@Q :

Toric (cohomogeneity two).



However, Page ('79) discovered an explicit, A > 0,
cohomogeneity one Einstein metric on CPy#CIPs.

Derdzinski (’83) then discovered that this metric is
conformally Kahler, and proved fundamental struc-
ture theorems concerning conformally Kahler, Ein-
stein metrics.

Companion of Page metric:

Theorem (Chen-LeBrun-Weber '07). There is a
A > 0, conformally Kahler, Einstein metric g on

CPQ#Q@Q :

Toric (cohomogeneity two).
But not constructed explicitly.
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Rough strategy of proof:

Find Kahler metric which minimizes

h — / 2d,uh

among all Kahler metrics A
Here s = scalar curvature.

Note that Kéahler class |w] of h allowed to vary!

Corresponding problem with |[w] fixed:
Calabi’s extremal Kahler metrics.
So minimize among extremal Kahler metrics.

Minimizer h has s > 0.

Einstein metric is ¢ = s~ 2h.
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Theorem. Suppose that M 1s a smooth compact
oriented 4-manifold which admats either a com-
plex structure or a symplectic structure. Then
M also admats an Einstein metric g with A > 0

if and only if

(CPy#kCPy, 0<k <S8,

52 % 82,

K3,

M=~ < K3/Z9,

T

T2, T2, T | 2y, T* | Zs,

T (L & L), T (23 & Z3), or T ) (Zy ® ZLy).

We've discussed existence of Einstein metrics.
Will now discuss obstructions to Einstein metrics.
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Special character of dimension 4:

On oriented (M4, g),
A= AT @A™
where A* are (£1)-eigenspaces of
x: A2 — /\2,
* = 1.

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—82 r

s = scalar curvature
1 = trace-free Ricci curvature
W4 = self-dual Weyl curvature (conformally invariant)

W _ = anti-selt-dual Weyl curvature !
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(M, g) compact oriented Riemannian.

4-dimensional Gauss-Bonnet formula

4-dimensional Hirzebruch signature formula

1
=5 | (W2 = W_P?) du

for signature 7(M) = by (M) — b_(M).
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Hitchin-Thorpe Inequality:

2x + 37)(M) = — 52+2\W 2 7Y
7' g R -
X 172 |\ 24 SR B
Einstein = 1 82+2\W 2] g
1nSsteln = —= —
A2 Jas \ 24 i Hg

Theorem (Hitchin-Thorpe Inequality). If smooth
compact oriented M* admits Einstein g, then

(2x +37)(M) > 0,

with equality only if (M, qg) finitely covered by
flat T* or Calabi-Yau K3.
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Corollary. Suppose that M 1is a smooth com-
pact oriented 4-manaifold which admits either a
complex structure J or a symplectic structure w.
Then if M also admits an FEinstein metric g,

then either

® g 15 Ricci-flat Kahler; or else

© Clz(M) > ().

In particular, in the complex case, (M, .J) is nec-
essarily of Kahler type.

In the ¢;?(M) > 0 case, there is then a well-defined
Seiberg-Witten invariant of M, for the spin® struc-
ture induced by .J or w.
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Seiberg-Witten theory:

generalized Kahler geometry of non-Kahler 4-manifolds.
Can’t hope to generalize O operator to this setting.

But 0 + 9* does generalize:

spin® Dirac operator, preferred connection on L.
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Let J be any almost complex structure on M.
Let L = A2 be its anti-canonical line bundle.

Vg on M, the bundles

V_|_ _ AO’O @/\072
V. = AO,l

can formally be written as
Ve =S4+ ® LY/ 2,
where S are left & right-handed spinor bundles.

Every unitary connection A on L induces
spin® Dirac operator

DA . F(V+> — F(V_)
generalizing 9 + 0*.
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Seiberg-Witten equations:

Ds® =0
1
+ _

Unknowns:
both ® and A.
Here F' jéi = self-dual part of curvature of A.

Non-linear, but elliptic once ‘gauge-fixing’
d*(A— Ay =0

imposed to eliminate automorphisms of L — M.
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Weitzenbock formula:

0 = 2A|D|? + 4|V 4D + s|D)* + ||

—> moduli space compact.

Seiberg-Witten invariant:

# solutions (mod gauge, with multiplicities).
When invariant is non-zero, solutions guaranteed.

—> Ag with s > 0.

If. in addition, ¢;2 > 0,
—> Ag with s > 0.
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Complex case:
Del Pezzo by Enriques and Kodaira.

Symplectic case:

Del Pezzo by Taubes, Gromov, McDuft, Liu.

Theorem. Suppose that M s a smooth compact
oriented 4-manafold which admaits either a com-
plex structure or a symplectic structure. Then
M also admits an Einstein metric g with X > 0
if and only of M s diffeomorphic to

e a Del Pezzo surface,

e o K3 surface,

e an Enriques surface,

e an Abelian surface, or

e a hyper-elliptic surface.
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What about A < 07

Existence in Kahler case:

Theorem (Aubin/Yau). Compact complex man-

ifold (M?™,.J) admits compatible Kdhler-Einstein
metric with A\ < 0 <= c¢1(M, J) < 0.

When m = 2, such M are necessarily minimal com-
plex surfaces of general type.

A complex surface is called minimal if it is not the
blow-up of another complex surface.

Compact complex surface (M?, J) general type if
dm (M, O(K®Y) ~al?, >0,

where & = A%V is canonical line bundle.



A complex surface X is called minimal if it is not
the blow-up of another complex surtace.



A complex surface X is called minimal if it is not
the blow-up of another complex surtace.

Any complex surface M can be obtained from a
minimal surface X by blowing up a finite number
of times:

M ~ X#kCP,
One says that X is minimal model of M.



A complex surface X is called minimal if it is not
the blow-up of another complex surtace.

Any complex surface M can be obtained from a
minimal surface X by blowing up a finite number
of times:

M ~ X#kCP,
One says that X is minimal model of M.

A complex surface M is of general type <=
its minimal model X satisfies

¢12(X) > 0
¢l - lw] < 0.
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A symplectic 4-manifold X is called minimal if it
is not the symplectic blow-up of another symplectic
4-manifold.

Any symplectic 4-manifold M can be obtained from
a minimal symplectic 4-manifold X by blowing up
a finite number of times:

M =~ X#k@g
One says that X is minimal model of M.

A symplectic 4-manifold M is called general type
1ff 1ts minimal model X satisfies
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Theorem (Curvature Estimates). For any Rie-
mannian metric g on a compact compler sur-
face M of general type, the following curvature
bounds are satisfied:

/ 32d,ug > 32721 %(X)
M 2
/ (3 — \/6\W+\) dig > 7211 %(X)
M

where X s the minimal model of M.

Moreover, equality holds in either case iff M =
X, and g 1s Kahler-Einstein with A < 0.

Proved via Seiberg-Witten theory:.

Same conclusion holds in symplectic case.
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Theorem (L 01). Let X be a minimal surface
of general type, and let

M = X#kCP,.
Then M cannot admit an Einstein metric if

k> c’(X)/3.

Second curvature estimate implies

: ‘¥+2mfﬁ Ay > 2e2(X)
A2 24 ) Gy =3¢

So Einstein =—
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Two outstanding problems in A < 0 case:

Question. Are there any non-minimal complex

surfaces M of general type which actually admit
Finstein metrics?

Question. Are there any non-complex symplec-
tic 4-manafolds M of general type which actually
admat Einstein metrics?

If so, quite different from Kahler-Einstein metrics!



